JPS5990687A - Pressure flotation device - Google Patents

Pressure flotation device

Info

Publication number
JPS5990687A
JPS5990687A JP20093182A JP20093182A JPS5990687A JP S5990687 A JPS5990687 A JP S5990687A JP 20093182 A JP20093182 A JP 20093182A JP 20093182 A JP20093182 A JP 20093182A JP S5990687 A JPS5990687 A JP S5990687A
Authority
JP
Japan
Prior art keywords
water
flows
flotation
passage
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20093182A
Other languages
Japanese (ja)
Inventor
Seiji Asano
浅野 静二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKORUSU KK
Original Assignee
NIKORUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKORUSU KK filed Critical NIKORUSU KK
Priority to JP20093182A priority Critical patent/JPS5990687A/en
Publication of JPS5990687A publication Critical patent/JPS5990687A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the adverse influence occuring in the shearing force, etc. generated as a result of nonuniform swirling flow, turbulence, vortex flow, etc. by constituting a pressure flotation device which maintains the water depth in the flotation section at 40-60cm and flows waste water from the central part toward the outside circumferential part. CONSTITUTION:Pressurized water in which air is dissolved under high-pressure conditions flows through a pipe 9 into a reducing valve 10, where the pressure is reduced and said water is joined with an introducing pipe 8 for waste water. A flocculating agent is added to the water from a pipe 11 right after the joining of the waste water and the pressurized water, then the water flows through an adjusting valve 12 for an inflow rate and an inflow port 13 into an annular water passage 14 around a pipe 18 from the direction tangetial. The inflow water arrives at the top end of the passage 14 while swirling and ascending in the passage 14, then it flows while swirling downward in the annular water passage 19 between partition walls 15 and 16 and when the water arrives at a bottom plate, it ascends in the annular water passage 20 between the partition walls 16 and 17 while swirling upward until it arrives at the water surface where the water is admitted gently into the flotation section on the outside of the wall 17.

Description

【発明の詳細な説明】 本発明は加圧浮上”分離装置に関し、特に、廃水中に浮
遊懸濁する固形粒子を加圧浮上法によシ分離除去するに
当り、浮上作用を促進して、分離効率を最大とする加圧
浮上分離装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure flotation separation device, and in particular, when solid particles suspended in wastewater are separated and removed by a pressure flotation method, the flotation effect is promoted. This invention relates to a pressurized flotation separation device that maximizes separation efficiency.

一般に、3〜6 kg/ crttの高圧下では水中に
5〜12%(容積比)の空気を溶11弄させることがで
きる。この空気を溶解した高圧水(以後加圧水という)
を大気圧或はその近傍迄減圧してやると、水田に溶解し
ていた空気は過飽和となる為、直径が50〜100. 
μ(micron )の微細す気泡トナッテ水中に析出
してくる。加圧浮上法は、この微細気泡を水中に浮遊す
る固形粒子に付着させ、気泡の浮力を利用して固形物を
浮上分離、除去する方法である。
Generally, 5-12% (volume ratio) of air can be dissolved in water under high pressure of 3-6 kg/crtt. High pressure water that dissolves this air (hereinafter referred to as pressurized water)
When the pressure is reduced to atmospheric pressure or close to it, the air dissolved in the rice field becomes supersaturated, so the diameter becomes 50 to 100 mm.
Micron (micron) microbubbles are deposited in the water. The pressure flotation method is a method in which these microbubbles are attached to solid particles floating in water, and the buoyancy of the bubbles is used to float and separate and remove the solids.

ここで在来の円形加圧浮上分離装置を第1図に示す。廃
水は多量の微細気泡を含有する加圧水と混合され、次に
凝集剤を添加され、管1より加圧浮上分離装置に流入す
る。更に、中央部の直径の大きな管2を上昇し、頂部よ
り浮上分離槽に流入し、微細気泡を付着した水中の浮遊
画形物は水面に向って上昇し、分離される。在来の加圧
浮上分離槽の水深は2・〜3mで大形の装置では水深3
.5711に達する場合もあり、滞留時間は40〜60
分であるが、多量の微細気泡を含有する廃水は、平均密
度が小さい為、密度流となって、水面下40〜60cr
rLの間を、中心部から外周方向へ高速で流れる。隔壁
3に達すると下方へ向って流れ、隔壁3の下端に達する
と隔壁3と水槽内壁との間の流路4を通って上昇し、越
流堰5より水路6に落下し、放水管7よシ排出される。
Here, a conventional circular pressurized flotation separation device is shown in FIG. The wastewater is mixed with pressurized water containing a large amount of microbubbles, then a flocculant is added, and the wastewater flows into the pressure flotation device through pipe 1. Further, the tube 2 having a large diameter at the center is ascended and flows into the flotation separation tank from the top, and the floating figures in the water with attached microbubbles rise toward the water surface and are separated. The water depth of conventional pressurized flotation tanks is 2-3 m, and the water depth of large equipment is 3 m.
.. It may reach 5711, and the residence time is 40-60
However, since wastewater containing a large amount of microbubbles has a small average density, it becomes a density flow 40 to 60 cr below the water surface.
It flows between rL from the center toward the outer circumference at high speed. When it reaches the partition wall 3, it flows downward, and when it reaches the lower end of the partition wall 3, it rises through the channel 4 between the partition wall 3 and the inner wall of the water tank, falls through the overflow weir 5 into the water channel 6, and flows into the water discharge pipe 7. It will be drained out.

流動する水中には、多かれ少かれ常に局部的な乱流や渦
流が発生し、水中の固形物の自然な浮上を妨けるが、在
来の浮上分離装置では、上記の密度流が原因となって、
図示の如く、浮上分離槽内に旋回流を生じさせる。この
旋回流が、密度流を加速したり、層内流速の不均一によ
り発生する剪断力が水中の固形物に付着した気泡を取シ
去ったり、凝集フロック(Floc )を破壊したυ、
或は、一旦浮上分離した固形粒子全隔壁3付近で下方へ
運搬して、処理水の水質を悪化させfc9、沈澱物、を
生じさせる現象があった。
In flowing water, local turbulence and eddy currents always occur to a greater or lesser degree, which prevent the natural floating of solids in the water, but in conventional flotation separation devices, the density currents mentioned above are the cause. hand,
As shown in the figure, a swirling flow is generated in the flotation separation tank. This swirling flow accelerated the density flow, and the shearing force generated by the non-uniform flow velocity within the bed removed air bubbles attached to solids in the water, and destroyed flocs υ.
Alternatively, there has been a phenomenon in which the solid particles once floated and separated are transported downward near the entire partition wall 3, deteriorating the quality of the treated water and producing fc9 and precipitates.

本発明は、1基当りの処理水量が2,000m/日よシ
so、ooom/日の間の多くの製作装置の運転状態の
分析と、数種の実験装置による研究から生れたもので、
前記の密度流の部分のみ、即ち、水深40〜60αの範
囲内だけで浮上分離を行うことにより、在来の浮上分離
装置にみられた旋回流、乱流、渦流、流速の不均一によ
って生じる剪断力等による悪影響を排除し、層流に近い
状態の元での浮上分離を可能としだものである。
The present invention was born out of analysis of the operating conditions of many production equipment with a processing water volume of 2,000 m/day to 2,000 m/day, and research using several types of experimental equipment.
By performing flotation separation only in the density flow part, that is, within the water depth range of 40 to 60α, the problems caused by the swirling flow, turbulence, eddy current, and non-uniformity of flow velocity observed in conventional flotation separation equipment. This eliminates the negative effects of shearing forces, etc., and enables flotation separation under conditions close to laminar flow.

在来の加圧浮上装置では浮上面積1mf当り4〜4.8
rn:/時の処理しか出来ず、しかも処理装置内の滞留
時間が40〜60分であったが、不発明によシ、浮上面
積1m当97〜10ゴ/時と、在来装置の約2倍の処理
が可能となυ、処理装置内の滞留時間は3〜5分即ち、
在来装置の約10分の1(1/10 )に短縮された。
With conventional pressurized flotation devices, 4 to 4.8 per 1 mf of flotation area
It was possible to process only rm:/hour, and the residence time in the processing device was 40 to 60 minutes, but due to inventiveness, the processing rate was 97 to 10 g/hour per 1 m of floating area, which is about the same as that of the conventional device. Double processing is possible υ, residence time in the processing equipment is 3 to 5 minutes, i.e.
The time was reduced to about one-tenth (1/10) of conventional equipment.

水質に関しても、処理水中の浮遊固形物(5uspen
ded 5olid )が、在来型浮上分離装置と比較
して、30〜50%減少した。
Regarding water quality, suspended solids (5 uspen) in treated water
ded5olid) was reduced by 30-50% compared to conventional flotation equipment.

また、本発明の第2の特徴は、廃水中の浮遊固形物の浮
上速度に関する5tokesの法則に着眼したところに
ある。
The second feature of the present invention is that it focuses on the 5tokes law regarding the floating speed of suspended solids in wastewater.

5tokesの法則は次式で示される。The 5tokes law is expressed by the following equation.

μ vf:浮上速度 g 重力加速度 D=固形粒子の直径 ρl:廃水の液密度 ρS°固形粒子の密度 パ気泡を付着している場合は気泡を含 めた平均密度 μ:廃水の液粘度 上式に於いて、gは定数であシ、ρ4とμも実用上、殆
んど変えることは出来ない。水処理技術によって浮上速
度Vf i大きくしようとする場合、最も大きな効果を
持つのは粒子直径りを太きくすることである。何故なら
ば、浮上速度は粒子の直径の二乗に比例するからである
。通常、粒子の直径を大きくする為に高分子凝集剤(、
Polymer )が添加されるが、その効果を最大限
に発揮させる為には最適の攪拌速度が要求される。廃水
の種類や水温や使われる凝集剤の種類によって多少の差
異はあるが、先ず中速攪拌し、次いで緩速攪拌し、生成
した凝集フロック(Floc)を破壊しない様に、静か
に浮上分離部へ導入する必要がある。在来の装置では、
第1図に示した如く攪拌機構が無いことが多く、特別に
凝集反応槽を設ける場合は、浮上分離装置の外部に攪拌
機を備えた凝集反応槽を設け、凝集反応を終了した廃水
を配管で浮上分離槽に導入している。この場合導入管内
の流速が15〜2.sm/秒と犬なる為、一旦生成した
凝集フロック(Floc )が管内で破壊ちれてしまう
為、これを防止する為に多量の凝集剤を添加する必要が
あった。このため本発明の第2の特徴は、円形加圧浮よ
装置の中央部付近に迂流式の凝集反応槽を設けている為
、緩速で浮上分離部へ廃水を導入することか可能とした
ところにある。しかも、迂流式の攪拌方法を採用した為
、攪拌機等の動力が不要となった。
μ vf: Floating speed g Gravitational acceleration D = Diameter of solid particles ρl: Liquid density of wastewater ρS° Density of solid particles (if bubbles are attached) Average density including bubbles μ: Liquid viscosity of wastewater In this case, g is a constant, and ρ4 and μ can hardly be changed in practice. When trying to increase the floating speed Vfi by water treatment technology, the most effective method is to increase the diameter of the particles. This is because the floating speed is proportional to the square of the particle diameter. Usually, polymer flocculants (,
Polymer) is added, but an optimum stirring speed is required to maximize its effect. Although there are some differences depending on the type of wastewater, water temperature, and type of flocculant used, first stir at medium speed, then stir at slow speed, and gently pour into the flotation separation section so as not to destroy the generated flocs. It is necessary to introduce With conventional equipment,
As shown in Figure 1, in many cases there is no agitation mechanism, and if a flocculation reaction tank is specially provided, a flocculation reaction tank equipped with an agitator is installed outside the flotation separator, and the wastewater after the flocculation reaction is piped. It is installed in the flotation separation tank. In this case, the flow rate in the introduction tube is 15 to 2. sm/sec, the coagulated flocs (Floc) once generated are destroyed within the tube, so it was necessary to add a large amount of coagulant to prevent this. Therefore, the second feature of the present invention is that a bypass type flocculation reaction tank is provided near the center of the circular pressurized flotation device, making it possible to introduce wastewater into the flotation separation section at a slow speed. There it is. Furthermore, since a bypass type stirring method was adopted, power such as a stirrer was not required.

本発明の第3の特徴は、本発明の第2の特徴の迂流式凝
集反応部の形状に関する。第2図、第3図の円筒状隔壁
(阻流板)15..16.17によって区画された環状
水路14.19.20を廃水が迂流して、凝集反応に最
適の攪拌条件が満され、更に、周囲の浮上分離部へ緩速
、且つ均一に廃水を導入することが可能としたものであ
る。
The third feature of the present invention relates to the shape of the bypass type aggregation reaction section, which is the second feature of the present invention. Cylindrical bulkhead (baffle plate) 15 in FIGS. 2 and 3. .. The wastewater detours through the annular waterway 14.19.20 divided by 16.17, the optimum stirring conditions for the flocculation reaction are satisfied, and the wastewater is introduced slowly and uniformly into the surrounding flotation separation section. This made it possible.

尚、大型の処理装置(1基当9の処理水量が、10.0
00m3/日以上の装置)に於いては、円筒状隔壁に切
欠き32a、33bを設けて、スリット状の隔壁として
も良い。これを第4図、第5図の32.33に示す。
In addition, large-scale treatment equipment (the amount of water treated per unit is 10.0
00 m3/day or more), the cylindrical partition wall may be provided with notches 32a and 33b to form a slit-shaped partition wall. This is shown at 32.33 in FIGS. 4 and 5.

本発明の第4の特徴は、本発明の第3の%徴の凝集反応
部への廃水の導入方法に関する。即ち、第5図に示す如
く、複数の環状水路のうち、最も中心側の環状水路に対
して、液腺方向よシ廃水を導入する様、流入口を設けた
ものである。このため、本発明の第3の特徴によれば垂
直方向の攪拌に加えて、水平方向の旋回攪拌を行うこと
が出来、迂流方式のみの攪拌に必要な隔壁(阻流板)を
約3分の1 (1/3 )の数に減少させることに成功
した。尚、流入速度は1〜3m/秒が最も有効であるこ
とが、実験によシ確かめられた。
A fourth feature of the present invention relates to a method for introducing wastewater into the flocculation reaction section according to the third aspect of the present invention. That is, as shown in FIG. 5, an inlet is provided for the annular waterway closest to the center among the plurality of annular waterways so as to introduce wastewater in the direction of the liquid glands. Therefore, according to the third feature of the present invention, in addition to vertical stirring, horizontal rotational stirring can be performed, and the partition wall (baffle plate) required for stirring using only the bypass method can be reduced to about 3. We succeeded in reducing the number to one-third (1/3). It has been confirmed through experiments that an inflow velocity of 1 to 3 m/sec is most effective.

本発明のこれらの4?徴の組合せにより、凝集剤の消費
量を30〜60%削減することに成功した。
These 4 of the present invention? By combining these features, we succeeded in reducing the consumption of flocculant by 30-60%.

次に実施例を示す図面に基き本発明を説明する。Next, the present invention will be explained based on drawings showing examples.

第2図、第3図は本発明の水の流れを示し、第6図、第
7図は除去された固形物粒子の排出方法を示す。
2 and 3 show the flow of water according to the present invention, and FIGS. 6 and 7 show the method of discharging the removed solid particles.

第2図に於いて、高圧下で空気を爵解した加圧水ハ、管
9を通ってフリクションバルブ(Friction V
alve )と呼ばれる減圧弁10に到り、ここで減圧
され、廃水の導入管8と合流する。廃水と加圧水が合流
した直後に管11より凝集剤が添加され、流入速度調節
弁12を経て、流入口13より管18の周シの環状水路
14に対し、接縁方向よシ流入する。流入水は環状水路
14f:旋回しながら上昇し、環状水路14の上端に達
すると隔壁15と隔壁16の間の環状水路19を下向き
に旋回しながら流れ、底板に達すると隔壁16と隔壁1
70間の環状水路20を上向に旋回しながら上昇し、水
面に達すると、隔壁1Yの外側の浮上分離部に緩かに流
入する。
In FIG. 2, pressurized water containing air under high pressure passes through pipe 9 to a friction valve (Friction V).
The wastewater flows to a pressure reducing valve 10 called an alve, where the pressure is reduced and it joins the wastewater inlet pipe 8. Immediately after the wastewater and pressurized water are combined, a flocculant is added through the pipe 11, and flows into the annular waterway 14 around the circumference of the pipe 18 from the inlet 13 through the inflow speed control valve 12 in the rim direction. The inflow water rises while swirling in the annular waterway 14f, and when it reaches the upper end of the annular waterway 14, it flows downward in the annular waterway 19 between the partition wall 15 and the partition wall 16 while swirling, and when it reaches the bottom plate, it flows between the partition wall 16 and the partition wall 1.
It ascends while turning upward in the annular waterway 20 between 70 and 70, and when it reaches the water surface, it gently flows into the flotation separation section outside the partition wall 1Y.

環状水路14.19.20の巾は、旋回及び上昇下降流
速が、外側!ζ進むに従って小はくなる様設計されてい
るので、環状水路14では中速攪拌、環状水路20では
緩速攪拌される。又、廃水の種類、水温、添加される凝
集剤の種類等によって、最適攪拌速度が多少異なるので
、流入速度調節弁12により廃水の流入流速を制御する
ことが好ましい。環状水路14.19.20によシ構成
芒れた凝集反応部に於いて、廃水中の浮遊固形物は直径
の大きな凝集フロック(Floc )に生長し、ヵロ圧
水から析出した微細気泡を多量に付着しており、浮上性
の人なる状態となって浮上分離部21に流入する。従っ
て、廃水中の浮遊固形物は速かに上昇して水面に集−ま
り、隔壁17から隔壁22の間の浮上分離部の水面に集
合する。この水面に果合した固形粒子又は凝集フロック
(FloC)の集合体は浮上汚泥と呼ばれる。さて、隔
壁17から隔壁22の間で廃水中の固形物を分離し、浄
化された水は、隔壁22の下部に穿孔された整流孔23
を通って水路24に到り、水路24からオーバーフロー
・り7 り(Overflow Tank ) 25 
ヘ集められる。処理水は、環状の越流堰28の内側へ向
って水路27よシ越流し、処理水の出口管31よシ排出
される。
The width of the annular waterway 14.19.20 is that the swirling and rising and falling flow speeds are outside! Since it is designed to become smaller as it advances, the annular waterway 14 is agitated at medium speed, and the annular waterway 20 is agitated at a slow speed. Furthermore, since the optimum agitation speed varies somewhat depending on the type of wastewater, water temperature, type of flocculant added, etc., it is preferable to control the inflow flow rate of wastewater using the inflow speed control valve 12. In the flocculation reaction part arranged in the annular waterway 14.19.20, the suspended solids in the wastewater grow into flocs with a large diameter, and the fine air bubbles precipitated from the Caro pressure water are A large amount of it adheres, and it flows into the flotation separation section 21 in the form of floating particles. Therefore, suspended solids in the wastewater quickly rise and collect on the water surface, and collect on the water surface of the flotation separation section between the partition wall 17 and the partition wall 22. This aggregate of solid particles or flocs (FloC) that meets the water surface is called floating sludge. Now, the solid matter in the wastewater is separated between the partition wall 17 and the partition wall 22, and the purified water flows through the rectifying hole 22 drilled in the lower part of the partition wall 22.
It reaches the waterway 24 through the waterway 24, and from the waterway 24 there is an overflow tank (Overflow Tank) 25
be collected. The treated water overflows through the water channel 27 towards the inside of the annular overflow weir 28 and is discharged through the outlet pipe 31 of the treated water.

整流孔23の目的は、凝集反応部から流出した水が隔壁
22の全周に渡って均一に処理水を集めて、浮上分離部
に於ける偏流の発生を防止することである。この為、整
流孔23の穴の数と直径は、水路24の水面の高さが、
浮上分離部21の水面の高さより20〜40mra低く
なる様設計される。又、オーバーフロー・タンク(Ov
erflow Tank )は、後述のスパイラル・ス
クープ(5piral 5coop )による浮上汚泥
排出に際して、汚泥濃度の制御を目的として\浮上分離
部の水面高さ調節を行う目的で設備されている。ハンド
ル29を回転させると、ネジ(Screw )加工され
たシャフト30が上下し、図示されていないが、このシ
ャフト30が、越流基28と連結されている為、越流基
28の高さも上下する。従って水路2Y即ち、水路24
の液面高さを調節することが出来、整流孔23を通じて
浮上分離部21の水面高さも調節することが出来る。
The purpose of the straightening holes 23 is to uniformly collect the treated water over the entire circumference of the partition wall 22 from the water flowing out from the coagulation reaction section, thereby preventing the occurrence of drift in the flotation separation section. For this reason, the number and diameter of the rectifying holes 23 are determined by the height of the water surface of the water channel 24.
It is designed to be 20 to 40 mra lower than the water surface height of the flotation separation section 21. Also, overflow tank (Ov
The erflow tank is installed for the purpose of adjusting the water surface height of the flotation separation section for the purpose of controlling the sludge concentration during floating sludge discharge using a spiral scoop (5piral 5coop), which will be described later. When the handle 29 is rotated, a screw-processed shaft 30 moves up and down, and although not shown, since this shaft 30 is connected to the overflow base 28, the height of the overflow base 28 also changes up and down. do. Therefore, the waterway 2Y, that is, the waterway 24
The height of the liquid surface in the flotation separation section 21 can also be adjusted through the rectification hole 23.

さて、浮上分離部で水面に浮いた浮上固形物、即ち浮上
汚泥は第6図、第7図に示されたスパイラルスクープ(
5piral  5coop ) 34によって水面よ
り掬い上げられる。スパイラルスクープは羽根35を持
ち、羽根のある部分の断面は第8図に示される如く、管
の一部に切欠けが設けられておシ、第8図のAで示され
る水面上の浮上汚泥を、(a) (b) (C) (d
)の順序で回転することによシ掬い上げる。
Now, the floating solids floating on the water surface in the flotation separation section, that is, the floating sludge, are removed by the spiral scoop (
5piral 5coop) It is scooped up from the water surface by 34. The spiral scoop has blades 35, and the cross section of the part with the blades is as shown in Figure 8, with a notch provided in a part of the pipe. (a) (b) (C) (d
) and scoop it up by rotating it in this order.

スパイラルスクープの管部は2〜4度傾斜しておシ、中
央寄シが低くなっている為、掬い取られた浮上汚泥は、
浮上分離装置中央部の円筒状汚泥落下槽36に洛下し、
浮上汚泥排出口3了より排出される。
The pipe part of the spiral scoop is tilted 2 to 4 degrees, and the central part is low, so the floating sludge that is scooped out is
The sludge is lowered into the cylindrical sludge drop tank 36 in the center of the flotation separator,
It is discharged from the floating sludge discharge port 3.

尚、スパイラルスクープ(5piral  5coop
 )は第6図に第8図に矢印で示された如く自転するば
かりでなく、第7図に矢印で示した如く公転し、浮上分
離装置内部の浮上汚泥全作い取る構造となっている。廃
水中には、砂粒等の沈降性の固形物も多少は混入してお
り、極めて少量ずつであっても、浮上分離槽底部に沈澱
する。この沈澱物を第6図のレーキ(Rake)38で
掻寄せ、沈澱汚泥貯槽39に留め、沈澱汚泥排出弁40
を間歇的に開いて排出する。
In addition, spiral scoop (5piral 5coop
) not only rotates as shown by the arrows in Figures 6 and 8, but also revolves as shown by the arrows in Figure 7, and is structured to remove all of the floated sludge inside the flotation separator. . Some amount of sedimentable solids such as sand grains are mixed in the wastewater, and even in extremely small amounts, they settle at the bottom of the flotation tank. This sediment is raked up with a rake 38 shown in FIG.
is opened intermittently and discharged.

以上説明した様に本発明によれば、加圧浮上装置浮上分
離部の水深を40〜60cIrLとすることによって、
在来型の浮上分離装置に比較して、V2の設置面積と1
/10の容積で廃水処理可能となり、浮上分離装置内部
に適当な凝集反応部を設けることにより、凝集剤の消費
量を30〜60%削減することが可能となり、更に処理
水の水質も格段に向上する。
As explained above, according to the present invention, by setting the water depth of the flotation separation section of the pressure flotation device to 40 to 60 cIrL,
Compared to conventional flotation separation equipment, the installation area of V2 and 1
By installing an appropriate flocculation reaction section inside the flotation separator, it is possible to reduce the consumption of flocculant by 30 to 60%, and the quality of the treated water is also significantly improved. improves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は在来形円形加圧浮上装置の断面図で浮上分離槽
内部に於ける水の流れを示す。 第2図、第3図はそれぞれ本発明の円形カロ圧浮上分離
装置の断面図及び平面図で装置内の水の流れを図示して
いる。 第4図、第5図はそれぞれ本発明の凝集反応部形状を示
す。 第6図、第7図はそれぞれ本発明の円形加圧浮上分離装
置の断面図及び平面図で浮上汚泥及び沈澱汚泥の排出方
法を図示している。 第8図は浮上汚泥作土げ用スノくイラン・スクープ(5
piral 5coop )の断面とその作用を説明す
る図である。 代理人 弁理士  守 谷 −雄 第1図 に 水 第2図 第3図 第5図 手続補正帯(方式) 1、事件の表示 特願昭 57−200931号 2、発明の名称 加圧浮上分離装置 、 補正をする者 事件との関係  特許出願人 株式会社 ニコルス −代理人〒103 東京都中央区日本橋本町3−9−5 昭和58年2月22日(発送日) 補正の対象
FIG. 1 is a sectional view of a conventional circular pressurized flotation device, showing the flow of water inside the flotation tank. FIGS. 2 and 3 are a sectional view and a plan view, respectively, of the circular caloric flotation separation apparatus of the present invention, illustrating the flow of water within the apparatus. FIG. 4 and FIG. 5 each show the shape of the aggregation reaction part of the present invention. FIGS. 6 and 7 are a cross-sectional view and a plan view of the circular pressurized flotation separator of the present invention, respectively, illustrating a method for discharging floated sludge and settled sludge. Figure 8 shows the Sunoku Iran scoop (5) for floating sludge cultivation.
FIG. 5 is a diagram illustrating a cross-section of a piral 5 coop and its function. Agent Patent Attorney Moritani-O Figure 1 Figure 2 Figure 3 Figure 5 Procedure amendment band (method) 1. Indication of the case Patent Application No. 57-200931 2. Name of the invention Pressurized flotation separation device , Relationship with the case of the person making the amendment Patent Applicant Nichols Co., Ltd. - Agent Address: 3-9-5 Nihonbashi Honmachi, Chuo-ku, Tokyo 103 February 22, 1981 (Shipping date) Subject of the amendment

Claims (1)

【特許請求の範囲】 1、 中央部より外周方向へ廃水を流す加圧浮上分離装
置に於いて、浮上分離部の水深を40〜60cmの範囲
に設定することを特徴とする加圧浮上分離装置。 2、 中央部に迂流式の凝集反応部を持つことを特徴と
する特許請求の範囲第1項記載の加圧浮上分離装置。 3、凝集反応部が複数の円筒状隔壁(阻流板)により区
画される複数の環状水路又は切入けのある環状水路より
成ることを特徴とする特許請求の範囲第2項記載の加圧
浮上分離装置。 4、 中心側の環状水路に接線方向より廃水が流入する
様、流入口を設けたことf:%徴とする特許請求の範囲
第3項記載の加圧浮上分離装置。
[Claims] 1. A pressurized flotation separator in which wastewater flows from the center toward the outer periphery, characterized in that the water depth of the flotation section is set in a range of 40 to 60 cm. . 2. The pressurized flotation separation device according to claim 1, which has a bypass type aggregation reaction section in the center. 3. Pressurized flotation according to claim 2, characterized in that the aggregation reaction section is composed of a plurality of annular waterways defined by a plurality of cylindrical partition walls (baffle plates) or an annular waterway with incisions. Separation device. 4. The pressurized flotation separation device according to claim 3, wherein an inlet is provided so that the wastewater flows tangentially into the annular waterway on the center side.
JP20093182A 1982-11-15 1982-11-15 Pressure flotation device Pending JPS5990687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20093182A JPS5990687A (en) 1982-11-15 1982-11-15 Pressure flotation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20093182A JPS5990687A (en) 1982-11-15 1982-11-15 Pressure flotation device

Publications (1)

Publication Number Publication Date
JPS5990687A true JPS5990687A (en) 1984-05-25

Family

ID=16432662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20093182A Pending JPS5990687A (en) 1982-11-15 1982-11-15 Pressure flotation device

Country Status (1)

Country Link
JP (1) JPS5990687A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196116A (en) * 2006-01-25 2007-08-09 Kurita Water Ind Ltd Pressure flotation device
JP2008029958A (en) * 2006-07-28 2008-02-14 Kurita Water Ind Ltd Dissolved air floatation system
CN101780993A (en) * 2010-03-10 2010-07-21 无锡沪东麦斯特环境工程有限公司 Mixing tube component for shallow-pool air floatation water purifier
CN103771568A (en) * 2012-10-18 2014-05-07 郑州江宇水务工程有限公司 Spinning type micro-vortex flocculation device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168877A (en) * 1980-05-31 1981-12-25 Nikorusu:Kk Waste water treating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56168877A (en) * 1980-05-31 1981-12-25 Nikorusu:Kk Waste water treating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196116A (en) * 2006-01-25 2007-08-09 Kurita Water Ind Ltd Pressure flotation device
JP2008029958A (en) * 2006-07-28 2008-02-14 Kurita Water Ind Ltd Dissolved air floatation system
CN101780993A (en) * 2010-03-10 2010-07-21 无锡沪东麦斯特环境工程有限公司 Mixing tube component for shallow-pool air floatation water purifier
CN103771568A (en) * 2012-10-18 2014-05-07 郑州江宇水务工程有限公司 Spinning type micro-vortex flocculation device

Similar Documents

Publication Publication Date Title
US5800717A (en) Water and wastewater treatment system with internal recirculation
CN105263866B (en) Pressurize flotation gear
WO2006036014A1 (en) Coagulation-separation apparatus
US5525238A (en) Apparatus and process for separating substances
JP2006263670A (en) Solid-liquid separator
JP3676659B2 (en) Solid-liquid separator having stirring flow forming means
JP3676208B2 (en) Solid-liquid separation tank
US4199451A (en) Split flow water treatment plant
WO1997035655A1 (en) Water treatment system
US4330407A (en) Process for clarifying algae-laden waste water stream
US5160610A (en) Radial header for dissolved air flotation systems
US3117082A (en) Flotation system
JPS5990687A (en) Pressure flotation device
US6719911B2 (en) Apparatus and method for the treatment of a contaminated fluid
JP3676657B2 (en) Swirl type agglomeration separator
JP2017013029A (en) Flocculation tank and flocculation treatment method
EP0625074B1 (en) Vortex flocculation of solids suspended in liquid
US3305096A (en) Sedimentation apparatus
US5792363A (en) Method for removing solids from a contaminated liquid
JP2002282605A (en) Forced circulation type separation device
CN111170546A (en) High-density clarification tank
WO2023224116A1 (en) Floatation separating apparatus
JP3676658B2 (en) Circulating flow agglomeration separator
JPS601772Y2 (en) Suspension granulation separation concentration equipment
JP6750774B2 (en) Coagulating sedimentation equipment