JPS5990217A - Thin-film magnetic recording head - Google Patents
Thin-film magnetic recording headInfo
- Publication number
- JPS5990217A JPS5990217A JP19832982A JP19832982A JPS5990217A JP S5990217 A JPS5990217 A JP S5990217A JP 19832982 A JP19832982 A JP 19832982A JP 19832982 A JP19832982 A JP 19832982A JP S5990217 A JPS5990217 A JP S5990217A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- magnetic
- core
- alloy
- head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3109—Details
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Magnetic Heads (AREA)
Abstract
Description
不発明け、^ii i+j磁気ヘッドに係り、q、+I
にそ第1のg12録ヘッドにおけるコア薄膜の4:4質
に関するものである。
Wt+ 111j\磁気紀0ヘツドは、非^tht性+
4から1Be non-inventive, ^ii i+j Related to magnetic heads, q, +I
This relates to the 4:4 quality of the core thin film in the first G12 recording head. Wt+ 111j\magnetic period 0 head is non^tht property+
4 to 1
【る仙板J二に&)1のコアF、’7 INと
、非出ヤletイン・(、(月i、4と、芽)2のコア
薄膜1.〜とかスパッタリングやみ9尤なとによって程
I層伏態に形成されたものからll’l Ti’2+さ
れている。
この71i911A−磁気記録ヘッドは?’li7膜磁
気+4.F生ヘッドと対になって薄膜磁気ヘッドな構成
し、例えは′r1ζ、子言1算機のd己1.は装置Nな
どに1目いられる。薄り0磁気6己録ヘツドにおいては
d己録効≧+(を、I(、めろために冴)1および第2
のコア薄膜な可及的に薄くずろ傾向があるが、コア薄j
111が;’Ijj <:なるに従ってt′((気ト;
リイ11か問題となり、磁気特性の低下をきたすことに
ムシ)。
これを防止するためには、コア7′I:メl11’;−
に高いがり和砒東密1(lと(lJtた軟磁気ζr“f
性が3′求されろ。
従来よりΦ1、磁性(、イ料として、鉄−ニッケル合金
からl「ろニー元系パーマロイや、その二元系パーマ【
1イに(;1jえはり[1ム、モリブデン、11などの
an 3jC1素を添加した多元系パーマロイが知られ
ている。
ところかパーマロイでは一般に透磁率tCらびにF)・
1和j、L+1.!!+Q’4’ IQ−を十分に高く
することがヴも1fシかった。
従って(IH気記・i、)ヘッドの記録効率にも限度が
あつプこ。
本発明iISら(:1、スパッタリングt「どによって
?(すられるアモルファス合金M l換について+11
(々研究した結果、コバル)(CO)を主成分とし、少
屓のジルコニウム(Zr)と二珂ブ(Nb)を添加した
Co−Zr −N+)の3成分系のアモルファス合金か
らなる薄1)1pが、Mj月!、! raF?気旺己録
ヘッドのコア式11鴎として第1常に好適であることを
見出した。
基板に結晶化ガラスを用い、コバルトディスク(的径4
インヂ、1%Tさ5nIT11)上にジルコニウムのペ
レットとニオブのペレット(いずれのペレットも紹、楢
10關、1ワさ1間)本・中心より放射法に交互に配置
f’IL、 、ターゲット」、のペレットの数を調整す
ることにより合金組成が変えられるようにする。そして
真空度がlXl0 TOrr以下の高真空にし、アル
ゴンの雰囲気中で、高1−11波電力20W/(Jでス
パッタリングを行ない、基板ににコバルトを主醐1分と
するCo −Zr −N+3の3成分系のアモルファス
合金薄膜を作成することができる。このようにして作成
された各セ11組成の合金試料が後述の各特性試験に使
用される。
第1図は、合金中のZr含イ」率か常[6小tIF%に
なるJ:うにして、N1)の含有率を11]1々変えた
場合の保磁力(■1c )の装作を測定した結果を示す
特性図である。従ってこの図によ3いてNbの含有率が
Oj、li jii、 %の場合(」、Cog4車11
1%−Zr 6 jjl、+11チの2成分系合金とな
る。この合金もril述とG;ヨは同様の条件で作成さ
れる。。
この図から明らかなように、COにZrを添加しまた2
成分糸自金ではまだHcか高いが、これにざらにNbを
少n+添加す−ることにより、ずなわちCo −Zr−
Nbの3成分系合金になるとIIc口急に低下する。特
にNb含イf率が約2重[11チ以上、好ましくは約5
i′r(lj %以」二にl〔ると)Icを0.1
(Oe) +I近まで下げることがTきる。Nbの含
有率が5山量チ以J−に1Cるとlieのイ1(1けほ
とんど一定であり、含有廓が17爪)1Lチを越えると
3成分系合払の飽和磁束密度13 sが低くなるため好
ましくない。従って合金中にお(−)るNl+の含有率
を約2〜17恵11チ、好ましく(,1約5〜15爪1
−(チの範囲に規制ずろ方が良い。このような傾向は、
Zrの含有率が多少変化しても回()nであることが実
験で11ω′!召されている。このよう(・こCo −
Zr −Nbの3成分系合金にすることにより、CoJ
li狛くあるいはCo−Zrの2成分系合金よりもHe
を極つ;+1)に低く抑えることができ、またZrとN
bの添加は透磁率μにも大きく影響する。
412図(、↓ZrとN13のトータル含有率とμとの
関係を測シ5シシた結果を示ずQ:f検図で、/rrと
Nbとの重11(比が常に:1.rr :N1)−6,
5: 10.IKなるよう調4;′−さ第1ている。こ
の図から明らかなように、CO中KZIとN l)を添
加】ることにより/lが急激に高くなり、特にZrとN
bのトータルa有率力1約5〜20爪量チθ〕範囲でc
Jpを40 +l f1以上VCすることができ、ぞの
中でも特にZrとNbのトータルa有率が約8〜1フル
h〕の範囲のものはμIJニ一定し□でおり、品τノの
安定した高透磁率のアモルファス合金か?jJられる。
絹2図に示すような特性は、ZrとNbの重量比を多少
変化しても同様の傾向を示16第3図GゴZrとNbの
トータル含有率と13sとθ〕μm係を1iI11定し
た結果を示ず行fi図で、相2図の場合と同様にZ「と
Nbとの重lit Jtが1+;■てZr:Nb−6、
5: 10.1になる」:うにH,+1移されている。
この図から明E)か4Cように、ZrとNbのトータル
含有率がM くなるに従って81.↓低くなる傾向シ[
あり、竹にZrとNbのトータル含ゴ有率が約20爪柘
チを越えるとBsは10 K G以下Kl+ってしまう
。この9、y性は、zrとNbの重量比が多少変化して
も同様の傾向を示す。
この第2図およびul 3図の9、テ性曲線力)ら明ら
力)なように、/’ならびにB5の高いアモルファス合
4kを得るためには、zrとNbのトータル含有率を奇
勺5〜20 jlj l’1%の範囲に規制した方がよ
い。
このように7JrとNl)のトータル含有率を約5〜2
0 jlj t11%の’uni Il、li VC規
制御〜でも、ソノ中のZr合有率が低く過ぎるとHcの
高いアモルファス合金と/、【る。第4図(ま、合金中
のNb含冶率が常KIO重titチになるようにして、
Zrの含有率を4111々変えた場合のllcの変化を
測定した結果を示す特性図である。従ってこの図におい
てZrの含有率がO爪fatチのL’jt 9 It
SCo 90 if’< IC七%−N1310爪ji
−t % )2 成分系合金となる。この合金も+i+
1述とけば同球の条件で11;酸される。
この図から明らかなように、C0KNbを添加した2成
分系会金l(らびにZ+の含イj率が2 Itt tr
tチまでのGo −Z r −N bの3(蔀分糸合金
G35ticが高い。
どころかZrの含有率が約25止11チを一ノチえると
Ticも、1急激に11−一ロー約5iRtjlチ以−
t: i(:なるとIlcは+1.1 (OC)以下
にすることができる。このようにCo−7,r −Nb
の3成分糸アモルファス合金においマー、Zrを約2.
51文M−以上含有することにより、Ireを低く抑え
ることができるが、z「の含イ1串か金り高くなっても
Ilcを低く抑える効果は同じであり、かえって1bが
低くなるためtjf * L <ない○(フイ・つてI
Icな低く抑えしかち8Sを^゛6く維持ずイ)ためV
C口Zrの含局率を約25〜6.6 jl(f^チ、好
ましくは約り〜65爪17H係の範囲に〃J、制ずZ、
力か望ましい。
本発明に係るCo −Zr −Nhの3成分系アモノト
ファス合金は枳導磁気異方’i/i、Hが出や)才いた
め、高181波特性を;ぢ)5S L、て、アモルファ
ス合金の磁化IIIfelt 1f(i方向をコアダi
’j 崩、′−041)作方向に向けることができZ)
。ところでCo −Zr −N11の30り分糸合金1
1 、。
スパッタリング直後のf、’j II’%のりへ力性(
磁界11kC;j15〜7.0(Oe)ど大きい。この
ジへ力性磁界を小さくする手段について神々検討し7た
結果、コア薄1i・本として形成されたF+iJ紀3成
分系のアモルファス合金五ヤ膜を回軌磁y−中で熱処理
する方法が有効であることを見出した。この回転磁界中
の熱処11iで、温度は300〜400 (℃)、回転
速1a i;11 o〜20 (r、 p、nb) 、
(+j、i界の強さは1oo(Oe)以上、処理時間は
3時間段」−が適当である。例えば1AAI’J:を3
5o (℃) 、ft、!1転伸度をI O(r、
p、m、)。
イ市界の強さを100 (Ue) 、処tilt I
I&間を3時間に設定して、スパッタリングによって形
成したコア薄膜な処理ずれは、異カ性磁界Hkを約4(
Oe)程度までドげることができる。
第5図は、本発明の実−例に係る薄膜磁気記録ヘッドの
一部を断面にした斜視図である。ガラスやシリコンtC
どの非+j(外材からl「る基板1のJ−には、最初第
1のコア薄膜2が形成され、その上に非砂性拐の絶縁薄
1模3.>7yvα薄j換4ならびに絶縁薄III;’
5を介して第2のコアγ’、J7膜6が形成される。
これら第1のコア薄++t、12 、絶縁薄1漠3.導
電II’7膜4 、1(!I縁薄膜57.cらびに第2
(7) コア薄1llXt6は、スパッタリング′/
、【どσ)成膜技術によって順次tjf定の厚さに形成
される。なお、4α、4bは外tflI接続用端子部で
ある。
Ail Hα相1のコアノII1月帆27J6びに第2
のコア薄膜Q6はCo−Zr −Nbの3成分系アモル
ファス合金薄膜から7.jす、合金中のCO含有率は8
34重1ft俤。
Z「含、fJ率i;j、6.5爪(dチ、Nb含有率は
10.1重爪チであり、ZrとNbのトータル含有率は
166爪111嗟となる。この両コア^I))囚2,6
はスパッタリングで形成されたのち、前述の条「1゛下
においてそれぞれ回転磁界中で熱処理される1、
本発明は前述のように薄膜磁気記f4ヘッドのコア薄膜
を、コバルトを主成分とじ1それVCジルコニウムとニ
オブを少hk添加した3 1jシ2分系アモルファス合
金でff11J 6したことを特徴とするものである。
この3成分系アモルファス合金は、高い飽和磁束密度と
透磁率とを有しているから、極めて薄いコア薄膜を形成
することが可0ヒで、そのために磁気ヘッドの記録効率
な島めることができろ、[Rusen board J 2 &) 1 core F, '7 IN, non-exit let in (, (month i, 4, bud) 2 core thin film 1.~ or sputtering stop 9 y... This 71i911A-magnetic recording head is made up of a thin film magnetic head that is paired with a 71i7 film magnetic+4.F raw head. , for example, 'r1ζ, child word 1 calculator's d self 1. is applied to device N, etc. In a thin 0 magnetic 6 self-recording head, d self-recording effect ≥ + (, I (, Mero Tomasae) 1 and 2
The core thin film tends to be as thin as possible, but the core thin J
111 is ;'Ijj <: t'((kito;
11, which may lead to a decline in magnetic properties). To prevent this, core 7'I:mel11';-
Soft magnetic ζr "f
Seek 3' sex. Conventionally, Φ1, magnetic materials have been used, ranging from iron-nickel alloys to lronny element permalloys and their binary permalloys.
Multi-component permalloy is known in which an 3jC1 element such as 1, molybdenum, and 11 is added to 1i (; 1j ehari [1mu, molybdenum, 11, etc.]. However, permalloy generally has magnetic permeability tC and F).
1 sum j, L+1. ! ! It was also difficult for 1f to raise +Q'4' IQ- to a sufficiently high level. Therefore, there is a limit to the recording efficiency of the head. The present invention iIS et al.
(As a result of extensive research, we found that a thin film made of a three-component amorphous alloy consisting of cobal (CO) as the main component and a small amount of zirconium (Zr) and nickel (Nb) added) is a three-component system. ) 1p is Mj month! ,! raF? It has been found that the core type 11 of the Qi Wang Jinroku head is the first and most suitable. Using crystallized glass as the substrate, a cobalt disk (target diameter 4
Zirconium pellets and niobium pellets (both pellets are arranged in a radiation direction from the center) are placed alternately on the target. ”, the alloy composition can be changed by adjusting the number of pellets. Then, the degree of vacuum was set to a high vacuum of less than l It is possible to create a three-component amorphous alloy thin film.Alloy samples of each cell composition created in this way are used for each characteristic test described later. It is a characteristic diagram showing the results of measurement of the coercive force (■1c) when the content rate of N1) is changed by 11%. . Therefore, according to this figure, if the Nb content is Oj, li jii, % ('', Cog4 vehicle 11
It becomes a binary alloy of 1%-Zr 6 jjl, +11ch. This alloy is also produced under similar conditions. . As is clear from this figure, when Zr is added to CO and 2
Although Hc is still high in the component thread self-metallic, by roughly adding a small amount of Nb to it, Co -Zr-
When it comes to Nb ternary alloys, IIc suddenly decreases. In particular, the Nb content f ratio is about 2 [11 or more, preferably about 5
i′r (lj % or more) Ic is 0.1
(Oe) It is possible to lower it to near +I. If the content of Nb exceeds 1C in 5 strands or more, the saturation magnetic flux density of the 3-component system becomes 13 s. This is not preferable because it lowers the value. Therefore, the content of Nl+ in the alloy is about 2 to 17, preferably about 5 to 15.
- (It is better to adjust the regulations to the range of
Experiments have shown that even if the Zr content changes slightly, it remains 11ω'! I am called. Like this (・koCo -
By making a ternary alloy of Zr-Nb, CoJ
He than Li or Co-Zr binary alloys.
can be suppressed to extremely low
The addition of b also greatly affects the magnetic permeability μ. Figure 412 (, ↓ The relationship between the total content of Zr and N13 and μ is not shown. The Q:f inspection diagram shows that the weight of /rr and Nb is 11 (the ratio is always: 1.rr) :N1)-6,
5: 10. IK becomes key 4;'-sa 1st. As is clear from this figure, by adding KZI and Nl) in CO, /l suddenly increases, especially when Zr and N
b total a dominant force 1 about 5 to 20 claw amount θ] range c
Jp can be VCed over 40 + l f1, and among these, especially those with a total a ratio of Zr and Nb in the range of about 8 to 1 full h], μIJ is constant □, and the quality of τ is stable. Is it an amorphous alloy with high magnetic permeability? jJ will be done. The characteristics shown in Figure 2 show the same tendency even if the weight ratio of Zr and Nb is slightly changed. In the row fi diagram, which does not show the result, as in the phase 2 diagram, the weight between Z' and Nb is 1+;
5: Becomes 10.1”: Sea urchin H, +1 has been moved. From this figure, as shown in E) and 4C, as the total content of Zr and Nb increases to 81. ↓Trend to become lower [
However, if the total content of Zr and Nb in bamboo exceeds about 20 tons, Bs will be less than 10 KG or Kl+. This 9,y property shows the same tendency even if the weight ratio of zr and Nb changes somewhat. As shown in Figure 2 and Figure 3, the total content of Zr and Nb must be increased to an extreme value in order to obtain a high amorphous composite of /' and B5. It is better to restrict it to a range of 5 to 20 jlj l'1%. In this way, the total content of 7Jr and Nl) is approximately 5 to 2
0 jlj t11%'uni Il,li Even if the VC regulation is controlled, if the Zr content in the sono is too low, it will become an amorphous alloy with high Hc. Figure 4 (well, the Nb content in the alloy is always KIO weight tit)
FIG. 3 is a characteristic diagram showing the results of measuring changes in llc when the Zr content is varied by 4111. Therefore, in this figure, the Zr content is
SCo 90 if'< IC 7%-N1310 nail ji
-t%) becomes a two-component alloy. This alloy is also +i+
Firstly, under the conditions of the same ball, 11; it is acidified. As is clear from this figure, the two-component alloy l (and Z+) containing C0KNb is 2 Itt tr
3 of Go - Z r - N b up to t chi (Silk thread alloy G35tic is high. In fact, when the Zr content increases by one notch from about 25 to 11 chi, Tic also suddenly decreases to 11 - 1 row about 5 i Rtjl Chii-
When t: i(:, Ilc can be made below +1.1 (OC). In this way, Co-7,r -Nb
A three-component yarn amorphous alloy containing about 2.0% of Zr.
By containing 51 sentences M- or more, it is possible to keep Ire low, but even if the content of z becomes higher, the effect of keeping Ilc low is the same, and on the contrary, 1b becomes lower, so tjf *L <No○(Fui・tsute I
Ic should be kept low and 8S should not be maintained too low.
The inclusion rate of C mouth Zr is set to about 25 to 6.6 jl (f^chi, preferably in the range of about 65 to 17H).
Power or Desirability. The Co-Zr-Nh ternary amorphous alloy according to the present invention has a high shear magnetic anisotropy 'i/i, H, and has high 181 wave characteristics. Magnetization III felt 1f (i direction is core die i
'j collapse, '-041) Can be directed in the direction of construction Z)
. By the way, Co-Zr-N11 30 thread alloy 1
1. f, 'j II'% adhesive strength immediately after sputtering (
The magnetic field is 11 kC; as large as j15 to 7.0 (Oe). As a result of careful consideration of means to reduce this dihetoric magnetic field, we found a method of heat-treating an amorphous alloy film of the F+iJ period ternary system formed as a thin core 1i in a rotating magnet y-. It was found to be effective. In the heat treatment 11i in this rotating magnetic field, the temperature is 300 to 400 (°C), the rotation speed is 1a i; 11 o to 20 (r, p, nb),
(+j, the strength of the i field is 1oo (Oe) or more, the processing time is 3 hours) - is appropriate. For example, 1AAI'J: is 3
5o (℃), ft,! 1 rotation and elongation I O(r,
p, m,). The strength of the city is 100 (Ue), tilt I
The processing deviation of the core thin film formed by sputtering with the I
It can be lowered to about Oe). FIG. 5 is a partially sectional perspective view of a thin film magnetic recording head according to an example of the present invention. glass and silicon tC
First, a first core thin film 2 is formed on the J- of the substrate 1, which is separated from the external material, and a non-sand-free insulating thin film 1 is formed on it, and a Thin III;'
A second core γ' and a J7 film 6 are formed via the film 5. These first core thin ++t, 12, insulation thin 1 and 3. Conductive II'7 film 4, 1 (!I edge thin film 57.c and second
(7) The core thin 1llXt6 is sputtered'/
, [σ] are sequentially formed to a constant thickness of tjf using a film forming technique. Note that 4α and 4b are terminal portions for external tflI connection. Ail Hα phase 1 Koano II January sail 27J6 and 2nd
The core thin film Q6 is made of a ternary amorphous alloy thin film of Co-Zr-Nb. j, the CO content in the alloy is 8
34 layers 1ft tall. Z "includes, fJ ratio i; I)) Prisoner 2,6
are formed by sputtering, and then heat-treated in a rotating magnetic field under the above-mentioned conditions.1 As described above, the core thin film of the thin-film magnetic recording F4 head is made of cobalt as a main component1. This ternary amorphous alloy is characterized by a 31J-2 bipartite amorphous alloy to which a small amount of VC zirconium and niobium is added.This ternary amorphous alloy has high saturation magnetic flux density and magnetic permeability. Therefore, it is possible to form an extremely thin core thin film, which makes it possible to improve the recording efficiency of the magnetic head.
第1図はニオブの含有率とイλ1磁力との関係を示す特
性図、第2図はジルコニウムとニオブのトータル含有率
と透磁率との関係を示す特性肉、第3図はジルコニウム
とニオブのトータル含有率とト;q和磁束密度との関係
を示す特性図、舶4図はジルコニウムと保磁力との関係
を示す特性図、第5図G」本発明の実践例に係るf+’
フル:!f+→(、記6”イ1ヘッドの斜視(74であ
る。
1・・・・・・JN板、2・・・・・・第1のコアA<
*膜、3・・・・・・絶縁薄膜、4・・・・・・導↑I
t薄膜、5・・・・・・絶縁薄膜、6・・・・・・第2
のコア薄It1:(。
第1図
05 10 15 2ONb
(wf’3≦]
第2図
5 Io 15 20
25Zr+Nb(wt%)
第3図
0 5 10 1
5 20 25Zr+Nb(wt
%)
第4図
0 5 10 15
20手続補正書(自発)
昭和58年7月23日
特許庁j、i官若杉和夫 殿
1 事件の表示
昭和57年 !侍 的−願第19832952、発1町
の名称 薄膜磁気記録ヘッド3 補正をする者
事件上の関係 、゛J5願人
(1) 明籾1′、1r:の発明の名称を[薄[M磁
気ヘラ1−」に補正しt、J−2
(2) り、?77山’/=Rの範υnの114のt
i+! 4Q ’i:下記のj+uす?+Ili、l:
、Lま4−1
「(1)フ16該イj:LJからなるJk抜」二に身H
のコア薄膜と、非磁性材N眸と第2のコア薄膜とが積層
状h!i!+?形成される。薄2鼻−気語匈ヘツ1−に
おいて。
前記コア薄「(が、コバル1−を主成分とし6、少M、
のジルニ1−・す、/\とニオ)どを添加した3成づ)
系のアモルT) 7 ;(台金“(信成されCいること
を特徴とVる一41肱磁気全71・。
(2) +’r ’a’F MW−1SノNBffi
(1) 1nRd載ニIEイテ、前記ジルニ1ニウムと
ニオブσロー−タル含有率が約5〜20 Q’(J¥1
.%の範囲に規ルリさJtていることを1、?徴と”
ルr7j Ii’A IA 気・\、2− j 9−0
(3)特ii’F aA求の範囲第(1)項および第(
2)項記載にJ′ノいて−1111「δ!!ジル:1ニ
ウノ、の含(r車が約2.5虫紙%以上L−,,1,+
7、制さ、1」、又いる。−どを特徴どする一薄一11
(4磁鼠◇ツ1.。
(4)1′?許請、1七の範囲第(1) 、rt”y記
載ニJ:; イテ、Of記=1ア)遼11(rとしでl
形成さ:h、i−二Iパル1・−フルコニウムーニオゾ
の3成分系アモルファス合金薄DJが回転ka 、)’
/、 IIJC熱処IllさJしることを1・、テ徴と
する3晩−磁つ(ごX2−十−、、J
にI) 明+tli 5jF 2ページ〔9〜′7行
の「特にそれの・・コア薄1模」を[特にそれのファン
1γ膜」のように捕市しまず。
(4)明細書2ぺ〜ジI7行の1第2のコア薄膜−・・
」から3ペ一ジ9行の「限度があった。」までを下記の
通り補正します、3
「第2のコア薄膜に、高透磁率で高い飽和磁束密度を有
する軟磁性材?’)を用いることが必要である。
従来、この種磁気ヘッドの第1よjよび第2のコア薄I
ル1どしC例えばパーマロイなどが用いられていたが、
このものは飽和磁束密度が低い。吐飽和磁束密度である
と記録時に二ノア、Wn侍が磁気飽和しこしまい、特に
メタルテープやクロ11テープなどのような飽和磁束密
度の高い磁気記録媒体に対して(3号を記録する場合、
記録効率が悪い。
そのため:コイルのり〜ンζ(を増やし、たり、記録電
流を増大したりして記録効率の低下を抑制することが5
〕えられろ。しかし、コイルのターン数に増やtことは
薄股磁貝・\ラドのIiW ;ili l円相で、3〜
5タ一ン程度に制限され、七分な効果が得られない。一
方、記i1+/i電流を増大すると発熱量が人きくなり
、断線を牛したり:J 7 、+4膜の磁性劣化を生し
る。」
(5)明細非3ページ15行、10ページ5行の「薄膜
磁気記tム・・、ツl、J を[薄1模磁賦・\ラド」
に捕正し士す。
(6)明創井10ページ12行の1記録効率を」を’t
!L!録効字かどら・11−補iF、Lまず。Figure 1 is a characteristic diagram showing the relationship between the niobium content and the λ1 magnetic force, Figure 2 is a characteristic diagram showing the relationship between the total content of zirconium and niobium and magnetic permeability, and Figure 3 is a characteristic diagram showing the relationship between the total content of zirconium and niobium and magnetic permeability. Figure 4 is a characteristic diagram showing the relationship between the total content and the sum of magnetic flux density. Figure 5 is a characteristic diagram showing the relationship between zirconium and coercive force.
full:! f+→(, 6" A1 head perspective view (74). 1...JN plate, 2...1st core A<
*Membrane, 3... Insulating thin film, 4... Conductive ↑I
t thin film, 5... insulating thin film, 6... second
Core thinness It1: (. Fig. 1 05 10 15 2ONb
(wf'3≦) Fig. 2 5 Io 15 20
25Zr+Nb (wt%) Figure 3 0 5 10 1
5 20 25Zr+Nb(wt
%) Figure 4 0 5 10 15
20 Procedural Amendment (Spontaneous) July 23, 1980 Patent Office J, I Official Kazuo Wakasugi 1 Case Indication 1988! Samurai - Application No. 19832952, Name of town of Hatsu 1 Thin film magnetic recording head 3 Relationship in the case of the person making the correction, ゛J5 Applicant (1) Akiomi 1', 1r: The name of the invention of [thin [M magnetic] t, J-2 (2) ri, ? 77 mountains'/=114 t of range υn of R
i+! 4Q 'i: The following j+u? +Ili, l:
, Lma 4-1 "(1) Fu 16 said Ij: Jk excluded consisting of LJ" 2nd body H
The core thin film, the non-magnetic material N, and the second core thin film form a laminated structure h! i! +? It is formed. In the thin 2 nose - Qi language 匈hetsu 1 -. The core thin "(mainly composed of Kobal 1-6, a small amount of M,
Jirni 1-・su, /\ and nio) 3 products added)
(2) +'r'a'F MW-1S no NBffi
(1) 1nRd-mounted IEite, the dilinium and niobium σ rotal content is about 5 to 20 Q' (J ¥1
.. 1, that the standard Jt is in the range of %? Signs and”
Le r7j Ii'A IA Ki・\, 2- j 9-0
(3) Range of specific ii'F aA search Paragraph (1) and Paragraph (
2) In the description of J', -1111 "δ!! Jill: 1 Niuno," (r car is about 2.5% or more of insect paper L-,, 1, +
7, control, 1”, there is again. -What are the characteristics of Ichishoichi 11?
(4 magnetic mouse ◇tsu 1.. (4) 1'? permission, 17th range No. (1), rt"y description ni J:; Ite, Of note = 1a) Liao 11 (r and
Formed: h, i-2 I pal 1--fluconium niozo ternary amorphous alloy thin DJ rotates ka,)'
/、IIJC Heat treatment The core thin 1 model of it should not be captured like [especially the fan 1 gamma film of it]. (4) Page 2 of the specification, line I7, 1 Second core thin film...
'' to ``There was a limit.'' on page 1, line 9, are corrected as follows. 3 ``A soft magnetic material with high magnetic permeability and high saturation magnetic flux density for the second core thin film?') Conventionally, the first and second cores of this type of magnetic head are
For example, permalloy was used,
This material has a low saturation magnetic flux density. If the saturation magnetic flux density is high, Ninoa and Wn Samurai will become magnetically saturated during recording, especially for magnetic recording media with high saturation magnetic flux density such as metal tapes and black 11 tapes (when recording No. 3). ,
Recording efficiency is poor. Therefore, it is possible to suppress the decline in recording efficiency by increasing the coil glue (ζ) or by increasing the recording current.
] Get it. However, increasing the number of turns of the coil is 3~
It is limited to about 5 tans, and the effect cannot be obtained. On the other hand, when the i1+/i current is increased, the amount of heat generated increases, leading to wire breakage and magnetic deterioration of the J 7 and +4 films. ” (5) On page 3, line 15, and page 10, line 5, “thin film magnetic recording tm…, tsl, J [thin 1 magnetic recording, \rad”]
There is a police officer. (6) 10 pages 12 lines 1 record efficiency't
! L! Recording effect letter 11-supplement iF, L first.
Claims (3)
と、非6′z′ζ性拐、!、17膜と、m 2のコア薄
膜とが積層状態で形成される薄1換磁気記録ヘッドにお
いて、前記コア薄膜が、コバルトを主成分とし、少(杖
のジルコニウムとニオブとを添加した3我分系のアモル
ファス合金で41’l成さオ]ていることを特徴とする
薄jト1(値◇r1語hbヘッド。(1) A first core thin film is placed on a wide plate J- made of a non-magnetic material, and a non-6'z'ζ magnetic layer is formed! , 17 films and a core thin film of m 2 are formed in a laminated state. A thin head head characterized by being made of a partial amorphous alloy.
記ジルコニウムと7図1のトータル含有率力Mt 5〜
20 ll()11%の111NItlK規制されてい
ることを特徴とず2)去1ト1′!郁ζ′/、i、 I
!己ぐ茅へン ド、。(2) In claim axis (1), the zirconium and the total content ratio Mt of 7 in FIG.
20 ll () 11% of 111NItlK regulated 2) 1 t 1'! Iku ζ′/, i, I
! I'm self-centered.
(11項および第(2)項記載において、011制ジル
コニウムの含有率が約25爪+1(チ以」―に規制され
又いることを特徴とする薄膜4G気itl’+ 1I1
1!ヘツド。 (41’tarバ’l’ f!l’i 、S北のi’i
t囲第(1)丁口J己叔において、前d己コア薄月骨゛
へとしてj1炙I(さオしたコバルト−ジルコニウム−
ニオブの3成分系アモルブγス合金薄膜が回転磁界中で
熱処理されることを特徴とづ−ろ?“d、j膜磁気記録
ヘッド。(3) Special N'l't! l'i request 6・iji box a1
(In the descriptions in Items 11 and (2), the thin film 4G-itl'+1I1 is characterized in that the content of 011-based zirconium is regulated to about 25 + 1 (chi or more).
1! Head. (41'tarba'l'f!l'i, S north i'i
Part 1 (1) In Dingguchi, the cobalt-zirconium was placed on the previous core of the bone.
The feature is that the niobium ternary amorphous gamma alloy thin film is heat treated in a rotating magnetic field. “d,j film magnetic recording head.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19832982A JPS5990217A (en) | 1982-11-13 | 1982-11-13 | Thin-film magnetic recording head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19832982A JPS5990217A (en) | 1982-11-13 | 1982-11-13 | Thin-film magnetic recording head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5990217A true JPS5990217A (en) | 1984-05-24 |
Family
ID=16389293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19832982A Pending JPS5990217A (en) | 1982-11-13 | 1982-11-13 | Thin-film magnetic recording head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5990217A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4841401A (en) * | 1983-02-10 | 1989-06-20 | Matsushita Electric Industrial Co., Ltd. | Amorphous magnetic head |
-
1982
- 1982-11-13 JP JP19832982A patent/JPS5990217A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4841401A (en) * | 1983-02-10 | 1989-06-20 | Matsushita Electric Industrial Co., Ltd. | Amorphous magnetic head |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5091266A (en) | Soft-magnetic film having saturation magnetic-flux density and magnetic head utilizing the same | |
JPS5990217A (en) | Thin-film magnetic recording head | |
England et al. | Magnetic and structural characterization of copper/cobalt multilayers | |
JP2018133422A (en) | Magnetic resistance element | |
JP3905424B2 (en) | Perpendicular magnetic recording medium and magnetic recording apparatus having the same | |
JPH0653039A (en) | Corrosion-resistant magnetic film and magnetic head using the same | |
JPS60101709A (en) | Vertical magnetic recording medium | |
JP2548769B2 (en) | Heat resistant amorphous alloy | |
JPH0636927A (en) | Soft magnetic thin film and thin film magnetic head using that | |
JPH083883B2 (en) | Thin film magnetic head | |
JPS5998318A (en) | Magnetic reproducing thin film head | |
JP3021785B2 (en) | Magnetoresistive material and method of manufacturing the same | |
JPS6022726A (en) | Thin film magnetic playback head | |
JPS60208442A (en) | Amorphous soft-magnetic alloy | |
JPH0555035A (en) | Multiple amorphous artificial lattice film, magnetic head and manufacture of multiple amorphous artificial lattice film | |
JPH03132005A (en) | Magnetic thin film and magnetic head using this film | |
JPS584915A (en) | Manufacture of magnetic thin film | |
JPS6021507A (en) | Magnetic recording medium | |
JPH10326920A (en) | Magnetic resistance effect sensor and its manufacture | |
JP2832588B2 (en) | Iron-based soft magnetic material | |
JPH088103A (en) | Fe-pt alloy for permanent magnet with high coercive force and its manufacturing method | |
JPS63275106A (en) | Magnetic thin film and manufacture thereof | |
JPH08107036A (en) | Soft magnetic thin film magnetic recording equipment using that film | |
JPH0613236A (en) | Soft magnetic thin film | |
JPH0376102A (en) | Multilayer magnetic thin film and magnetic head using the same |