JPS5990082A - Nuclear fuel pellet - Google Patents

Nuclear fuel pellet

Info

Publication number
JPS5990082A
JPS5990082A JP57200078A JP20007882A JPS5990082A JP S5990082 A JPS5990082 A JP S5990082A JP 57200078 A JP57200078 A JP 57200078A JP 20007882 A JP20007882 A JP 20007882A JP S5990082 A JPS5990082 A JP S5990082A
Authority
JP
Japan
Prior art keywords
gadolinia
nuclear fuel
fuel
pellets
pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57200078A
Other languages
Japanese (ja)
Other versions
JPS6319034B2 (en
Inventor
正 久保田
博明 秋山
小峯 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP57200078A priority Critical patent/JPS5990082A/en
Publication of JPS5990082A publication Critical patent/JPS5990082A/en
Publication of JPS6319034B2 publication Critical patent/JPS6319034B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、原子炉に用いる核燃料ペレットに関する。[Detailed description of the invention] The present invention relates to nuclear fuel pellets used in nuclear reactors.

さらに詳しくは、可燃性毒物としてガドリニアを含有す
る核燃料ベレットに関し、燃料ペレッ1への基体である
二酸化ウラン中に混合されるガドリニア粒子の外周に硼
化タングステンをコーティングすることにより、燃料ペ
レッ]〜の融点及び熱伝導度の低下を防止しIC可燃+
Ll 、73物入り核燃料ペレットを提供することにあ
る。
More specifically, regarding nuclear fuel pellets containing gadolinia as a burnable poison, by coating tungsten boride on the outer periphery of gadolinia particles mixed in uranium dioxide, which is the base material for fuel pellets 1, fuel pellets IC combustible+ by preventing a decrease in melting point and thermal conductivity
Ll, 73-pack nuclear fuel pellets are provided.

従来、実用に供せられているガドニア入り核燃料ベレッ
トは、刀′l:リニア(Gd、03)と二酸化ウラン(
(〕o2)を粉末の状態で混合したのち成型圧縮してペ
レット状にし、高温で焼結し7.−もので、ペレットの
焼結過程において二酸化ウランとガドリニアが十分に固
溶するため燃1′81ペレット内にお(プるガドニウム
の分散が均一となる特徴がある。
Conventionally, the gadonia-containing nuclear fuel pellets that have been put into practical use are linear (Gd, 03) and uranium dioxide (
7. Mix (]o2) in a powder state, mold and compress it into a pellet shape, and sinter it at a high temperature.7. - In the pellet sintering process, uranium dioxide and gadolinia are sufficiently dissolved in solid solution, so that the gadolinium is uniformly dispersed within the pellets.

しかし、前記従来法では、固溶体となるために燃料ペレ
ツ1〜の熱伝導率が二酸化ウラン単体のそれより−ら低
下覆ること、及び、添加ガドリニアの燃焼に伴う燃料ペ
レッ1〜融点の低下、そして、照04未明にお(〕る燃
料ベレット溶s+1の可能性の問題がある。
However, in the conventional method, the thermal conductivity of the fuel pellets 1 is lower than that of uranium dioxide alone because it becomes a solid solution, the melting point of the fuel pellets 1 is lowered due to the combustion of the added gadolinia, and There is a possibility of fuel pellet melting (s+1) occurring in the early hours of 2004.

例えば、原子炉燃料に用いられるガドリニア入り二酸化
ウランペレットは、天然のガドリニアを2〜5W10(
Iff1%)二酸化ウラン中に均一に含ませペレット状
に圧縮成形したもので、この燃料ペレッ1−は照射初期
では中性子を吸収するのみで発熱しないが、次第に可燃
物毒物としてのガドリニアが燃え尽き燃料としての機能
を示すJ:うになる。しかし、可燃性dj物を混入した
ために;I;別ペレッ1〜の物理的性質が変化り−ると
いう欠点がある。特に、謝;点の低下は重大な問題で、
U O2−G d2O3系の場合、 Gd2O3が2W
10添加されるど約150°0、/1.W10添加では
約300℃融点が低下覆るの(゛、ガドリニアが燃λ尽
き、燃料ペレッ1〜の熱量ツノが−に界ηると燃*31
ベレッ]〜が)H融ブる可能性が高まるので、燃料ペレ
ッ1−の溶融を避1−ノるためには燃わ1の熱出力を低
く押えてJ3く必要が生じ、出ツノ上昇の観点から不都
合(′ある。
For example, gadolinia-containing uranium dioxide pellets used as nuclear reactor fuel contain 2 to 5W10 of natural gadolinia (
If 1%) uranium dioxide is homogeneously impregnated in uranium dioxide and compression-molded into pellets.At the initial stage of irradiation, these fuel pellets only absorb neutrons and do not generate heat, but gradually the gadolinia, which is a combustible poison, burns out and becomes a fuel. J: Indicates the function of. However, there is a drawback that the physical properties of the pellets change due to the mixing of combustible materials. In particular, the drop in grades is a serious problem.
In the case of U O2-G d2O3 system, Gd2O3 is 2W
When 10 is added, it is about 150°0,/1. When W10 is added, the melting point decreases by about 300℃ (゛, when gadolinia is burned out and the calorific value of the fuel pellet 1 reaches -η, it will burn *31
Since the possibility of H melting increases, in order to avoid the melting of the fuel pellets 1-, it is necessary to suppress the heat output of the burner 1 to a low level, thereby reducing the rise in the output horn. It is inconvenient from a point of view.

このにうな問題を改善づるために、可燃jJl ;:j
物として機能づるGCI−157(天然ガドリニア中に
約20%しか含まれない)の温度を高めて、すなわら、
濃縮ガドリニアを使用することにより、燃料ベレッ1〜
中へのガドリニア添加量を少なく覆ることが考えられて
いるが(例えば、特開昭/18−98297)、同位体
(7) fl!縮ハiff! 縮技術−にの田t#を伴
い酊産し難く濶縮度が高くなるにつれ価18は飛躍的に
上昇−づるどいった問題がある。
In order to improve this problem, combustible jJl ;:j
By increasing the temperature of GCI-157 (which only contains about 20% in natural gadolinia), which functions as a substance,
By using concentrated gadolinia, fuel
Although it has been considered to reduce the amount of gadolinia added to the inside (for example, Japanese Patent Application Laid-Open No. 18-98297), isotope (7) fl! Shrinking high iff! There is a problem in that the shrinkage technique is difficult to produce due to the shrinkage technique, and as the degree of shrinkage increases, the value of 18 rises dramatically.

この発明は、上記の如き事情に鑑みてなされたしのであ
って、容易に製造1゛ることができ、がっ、融y気及び
熱伝導度の低下を防止しうる可燃性汚物入り核燃料ペレ
ッ1〜をJIS供づることを1」的とづるものである。
The present invention was made in view of the above-mentioned circumstances, and provides a nuclear fuel pellet containing combustible filth that can be easily produced and can prevent deterioration in atomization and thermal conductivity. The provision of 1 to JIS is called 1''.

この目的に対応して、この発明の核燃料ベレン1へは、
力下リニア粒子の外周に硼化タングステンコーディング
した可燃性汚物を含有してなることを特徴どしている。
Corresponding to this purpose, the nuclear fuel Belem 1 of the present invention includes:
It is characterized by containing combustible dirt coated with tungsten boride on the outer periphery of the linear particles.

以上、この発明の詳細を一実施例を示づ一図面につい゛
C説明づ“る。
The details of the present invention are described above with reference to one embodiment and one drawing.

第1図は、この発明の核燃料ベレッI〜の側面図を示t
bので、燃料ペレット1の一部破面を斜線にて示してい
る。図中符号2は焼結した状態の二酸化ウラン−C1可
燃性毒物であるガドリニア粉末粒子3の外周に同化タン
グステン4をコーディングしたガドリニア粒子3を二酸
化ウラン粉末中に適量(核設置1で決められる吊C゛通
常20%以内)課合し、成型圧縮しCペレット状とした
後、前記燃料ペレットを1/100℃・〜1800 ’
Cで焼結づる。ガドリニア粒子3は、通常、粒径1〜2
0μのものを用い、表面に硼化タングステンを1〜10
μの1・h囲で適宜選定した厚さコーディングしたもの
を用いる。
FIG. 1 shows a side view of the nuclear fuel bellet I of the present invention.
b, the partially fractured surface of the fuel pellet 1 is shown with diagonal lines. In the figure, reference numeral 2 denotes gadolinia powder particles 3, which are sintered uranium dioxide-C1 burnable poison, and coated with assimilated tungsten 4 on the outer periphery of the gadolinia particles 3. After applying C (usually within 20%) and molding and compressing it into C pellets, the fuel pellets are heated to 1/100°C.~1800'
Sintered with C. Gadolinia particles 3 usually have a particle size of 1 to 2.
Use 0μ material and apply 1 to 10 tungsten boride on the surface.
A thickness coded appropriately selected in the 1·h range of μ is used.

112127粒子が露出している従来法では、燃r1ぺ
!フッ1〜の焼結過程で燃料ペレッ1〜の基体である二
酸化ウランど固溶づるのであるが、本発明の核燃わ1ペ
レツトC・は、可燃性it物である刀下リニア粒子こ3
の外周が硼化タングステン4で覆4っれているので15
00℃以上の高温領域でも二酸化ウラン2ど固溶せり゛
、また、硼化タンゲス−アン4は二酸化ウラン2との反
応が、はと/υどないため、原子炉中にJ月ノる使用状
態に(13いても燃料ベレッ1−製造当初の力下リニア
分散位置を保持することができるので核燃料ベレッl−
の熱的性質の低下を防止できる。
In the conventional method in which 112127 particles are exposed, only 1 pe! During the sintering process of Fluorine 1~, uranium dioxide, which is the base material of Fuel Pellet 1~, is dissolved in solid solution.However, the nuclear fuel 1 pellet C* of the present invention contains flammable linear particles 3.
The outer periphery of is covered with tungsten boride, so 15
Even in the high-temperature range of 00℃ or higher, uranium dioxide 2 remains in solid solution, and tungsten boride 4 does not react quickly with uranium dioxide 2, so it has not been used in nuclear reactors for J months. Even if the nuclear fuel bellet is in the state (13), it is possible to maintain the linear dispersion position under force at the time of manufacture.
It is possible to prevent the thermal properties from deteriorating.

第2図は、照射時のベレン1〜(黄lグ1面図で、燃料
ペレッ1−1は、原子炉中で照射されるとペレット中心
部は20oo℃」ス上となり柱状結晶粒55が生成づる
が、硼化タングステン4は融点が高く安定であるため、
前記したJ、うにガドリニア粒子33を燃illベレッ
ト製造当初の分散位置に保持力ることができる。
FIG. 2 is a top view of Belen 1-(yellow) during irradiation. When the fuel pellet 1-1 is irradiated in the reactor, the center of the pellet becomes above 200°C and the columnar crystal grains 55 are formed. However, since tungsten boride 4 has a high melting point and is stable,
J, described above, can hold the sea urchin gadolinia particles 33 in the dispersed position at the beginning of the production of the burn pellet.

以−1この説明から明らかなように、この発明の核燃料
ペレッ1へは熱伝導率も二酸化ウラン単体の場合とほと
んど変らず、固溶体にJ、N〕るような大幅な熱伝導率
低下はなく、したがって、融点が低Fブるようなことも
ないので熱設削−に極めて有利どなる。また、硼化タン
グステン自身も照Q・1に伴い可燃1!l毒物となりう
るので、照射が続くにしたがって一部硼素が分解しタン
グステンに変化J”るものの、タングステンは二酸化ウ
ランと共存性が良く反応しないため、融点および熱伝導
率低下防止効果が長期にわたって維持できるなどの効果
を奏づる。さらに、(Ej化タングステンのガドリニア
粒子へのコーディングは、真空蒸着法といった慣用技術
ににす1m便に実施できるので、熱的に友定な可燃+1
−毒物入り核燃料ペレッ1〜を安価に提供でき工業的に
右利である。
(1) As is clear from this explanation, the thermal conductivity of the nuclear fuel pellet 1 of the present invention is almost the same as that of uranium dioxide alone, and there is no significant decrease in thermal conductivity as in the case of solid solution. Therefore, the melting point does not drop to a low F value, making it extremely advantageous for hot cutting. In addition, tungsten boride itself is combustible with light Q.1! As irradiation continues, some boron decomposes and changes to tungsten, which can be a toxic substance.However, tungsten coexists well with uranium dioxide and does not react with it, so the effect of preventing a decrease in melting point and thermal conductivity is maintained over a long period of time. In addition, since coating of gadolinia particles with tungsten oxide can be carried out in a distance of 1 m using conventional techniques such as vacuum evaporation, it is possible to achieve thermally stable combustibility +1.
- Poison-containing nuclear fuel pellets can be provided at low cost, which is industrially advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の核燃M’jlベレン1〜の一部破W1
シた側面図、および第2図は照Q=J時のぺ1ノッi−
横断面図である。 1・・・燃料ベレッ1〜  2・・・二酸化ウラン3・
・・ガドリニア粒子  4・・・硼化タングステン5・
・・柱状結晶粒
Figure 1 shows a partially destroyed W1 of the nuclear fuel M'jl Belem 1~ of the present invention.
The side view and Figure 2 are of the P1 no.
FIG. 1... Fuel bellet 1~2... Uranium dioxide 3.
...Gadolinia particles 4...Tungsten boride 5.
・Columnar crystal grains

Claims (1)

【特許請求の範囲】 ガドリニア粒子の外周に硼化タングスデンコーティング
した可燃性毒物を含有してイ【る核燃料ペレッ1−0
[Claims] Nuclear fuel pellet 1-0 containing a burnable poison coated with tungden boride on the outer periphery of gadolinia particles.
JP57200078A 1982-11-15 1982-11-15 Nuclear fuel pellet Granted JPS5990082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57200078A JPS5990082A (en) 1982-11-15 1982-11-15 Nuclear fuel pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57200078A JPS5990082A (en) 1982-11-15 1982-11-15 Nuclear fuel pellet

Publications (2)

Publication Number Publication Date
JPS5990082A true JPS5990082A (en) 1984-05-24
JPS6319034B2 JPS6319034B2 (en) 1988-04-21

Family

ID=16418480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57200078A Granted JPS5990082A (en) 1982-11-15 1982-11-15 Nuclear fuel pellet

Country Status (1)

Country Link
JP (1) JPS5990082A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671927A (en) * 1984-12-03 1987-06-09 Westinghouse Electric Corp. Nuclear fuel rod containing a hybrid gadolinium oxide, boron carbide burnable absorber
CN109859859A (en) * 2019-02-26 2019-06-07 西南科技大学 It is a kind of based on the thermally conductive no heat convection integral module formula microminiature space based reactor reactor core of tungsten

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671927A (en) * 1984-12-03 1987-06-09 Westinghouse Electric Corp. Nuclear fuel rod containing a hybrid gadolinium oxide, boron carbide burnable absorber
CN109859859A (en) * 2019-02-26 2019-06-07 西南科技大学 It is a kind of based on the thermally conductive no heat convection integral module formula microminiature space based reactor reactor core of tungsten
CN109859859B (en) * 2019-02-26 2022-09-16 西南科技大学 Non-convection heat exchange integral module type subminiature space reactor core based on tungsten heat conduction

Also Published As

Publication number Publication date
JPS6319034B2 (en) 1988-04-21

Similar Documents

Publication Publication Date Title
Yang et al. UO2–UN composites with enhanced uranium density and thermal conductivity
CN108335760A (en) A kind of preparation method of high uranium useful load dispersion fuel pellet
RU2684645C2 (en) Ceramic nuclear fuel dispersed in metallic alloy matrix
US4512939A (en) Method for manufacturing oxidic sintered nuclear fuel bodies
GB853750A (en) Improvements in fuel elements for nuclear reactors and methods of making such elements
JPS5990082A (en) Nuclear fuel pellet
JPH1026684A (en) Production of nuclear fuel pellet
Hodkin The ratio of grain boundary energy to surface energy of nuclear ceramics as determined from pore geometries
WO2018124915A1 (en) Nuclear fuel pellet and method for the production thereof
JPS60152985A (en) Manufacture of fuel pellet for nuclear reactor
JP3076058B2 (en) Nuclear fuel pellet and method for producing the same
Durand et al. Preliminary developments of MTR plates with uranium nitride
Asakura et al. Effect of residual carbon on the sintering behavior of MOX pellets
US3755513A (en) Production of porous uo2 containing ceramic oxide fuel
US3161701A (en) Method of making nuclear fuel compact
US3657137A (en) Nuclear fuel comprising uranium dioxide in a porous ceramic oxide matrix
JPS62225993A (en) Manufacture of ceramic nuclear fuel sintered body
JP3012671B2 (en) Method for producing nuclear fuel pellets
JP2002181975A (en) Fuel pellet, its manufacturing method, and its fuel element and fuel assembly
Mahagin Fast reactor neutron absorber materials
US3662042A (en) Method of making a nuclear reactor fuel element of uranium mononitride in a refractory metal matrix
Copeland et al. Evaluation of fast-reactor-irradiated boron carbide powders
US3431329A (en) Method of preparing a fuel material for use in a nuclear reactor
JPS6177793A (en) Burnable poison pellet
Langer et al. HEAD-END SEPARATION OF BISO-COATED FISSILE AND FERTILE PARTICLES FOR HIGH-TEMPERATURE GAS-COOLED REACTORS.