JPS5989559A - Pole change 3-phase armature winding - Google Patents
Pole change 3-phase armature windingInfo
- Publication number
- JPS5989559A JPS5989559A JP19821382A JP19821382A JPS5989559A JP S5989559 A JPS5989559 A JP S5989559A JP 19821382 A JP19821382 A JP 19821382A JP 19821382 A JP19821382 A JP 19821382A JP S5989559 A JPS5989559 A JP S5989559A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- coils
- winding
- series circuit
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K17/00—Asynchronous induction motors; Asynchronous induction generators
- H02K17/02—Asynchronous induction motors
- H02K17/12—Asynchronous induction motors for multi-phase current
- H02K17/14—Asynchronous induction motors for multi-phase current having windings arranged for permitting pole-changing
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Induction Machinery (AREA)
- Synchronous Machinery (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、交流回転電機に使用される三相電機子巻線に
係シ、特に単一巻線によシ構成され接続端子を切換える
ことによって2種類の極数を得ることができる極数変換
三相電機子巻線に関する。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a three-phase armature winding used in an AC rotating electric machine, and in particular, to a three-phase armature winding that is configured with a single winding and by switching connection terminals. This invention relates to a pole number conversion three-phase armature winding that can obtain two types of pole numbers.
〔発明の技術的背景とその問題点3
1台の交流回転電機によシ、高速回転および2−
低速回転の2種類の回転速度を得る場合、回転電機の電
機子巻線の極数を変換することもある。[Technical background of the invention and its problems 3 When obtaining two types of rotation speeds, high speed rotation and 2-low speed rotation, with one AC rotating electric machine, the number of poles of the armature winding of the rotating electric machine must be changed. Sometimes I do.
このような極数を変換できる、いわゆる□極数変換三相
電機子巻線は一般に次のよう構成されている。すなわち
、高速回転数に対応する極数と低速回転数に対応する極
数との極数比が、たとえば、1:2の様に小さい場合は
、三相電機子巻線を単一の巻線で構成し、その巻線の中
途位置に外部へ取シ出す接続端子を設けていた。そして
これら接続端子を切、換ることによ92種類の極数を得
ていた。A so-called □ pole number conversion three-phase armature winding that can convert the number of poles in this manner is generally configured as follows. In other words, if the pole number ratio between the number of poles corresponding to high rotational speed and the number of poles corresponding to low rotational speed is small, for example, 1:2, the three-phase armature winding is replaced by a single winding. It consisted of a connecting terminal that could be taken out to the outside at a midpoint of the winding. By cutting and replacing these connection terminals, 92 different numbers of poles were obtained.
一方、前記極数比を大きく設定した場合は、上記のよう
に単一巻線で構成すると前記接続端子数が多くなり配線
が複雑になるので、一般には、高速回転用および低速回
転用の2組の巻線を用いて三相電機子巻線を構成してい
た。On the other hand, if the pole number ratio is set to a large value, the number of connection terminals will increase and the wiring will become complicated if a single winding is used as described above. A three-phase armature winding was constructed using a set of windings.
しかしながら、このような二つの巻線で構成された極数
変換三相電機子巻線にあっては、次のような問題があっ
た。すなわち、一つの電機子鉄心に高速用および低速用
の二つの巻線が巻装されているので、これら巻線を互い
に電気的に盆竺しなければならない。したがって、巻線
相互間に挿入しなければならない絶縁物の量が増加し、
スロ□ット内外における巻線の占積率が低下し、その結
果、交流回転電機の回転性能が低下するおそれがあった
。However, the pole number changing three-phase armature winding composed of two windings has the following problems. That is, since two windings, one for high speed and one for low speed, are wound around one armature core, these windings must be electrically connected to each other. Therefore, the amount of insulation that must be inserted between the windings increases,
The space factor of the windings inside and outside the slot is reduced, and as a result, there is a risk that the rotational performance of the AC rotating electric machine will be reduced.
また、交流回転電機の高速運転時においては低速回転用
の巻線は使用されず、一方、低速運転時においては高速
回転用の巻線は使用されないので、巻線利用率が低かっ
た。したがって、はぼ同程度の回転性能を有する単一巻
線の交流回転機に比較して、寸法、重量等が増大す□る
問題もあった。Furthermore, the windings for low speed rotation are not used during high speed operation of the AC rotating electric machine, while the windings for high speed rotation are not used during low speed operation, resulting in a low winding utilization rate. Therefore, there is a problem that the size, weight, etc. are increased compared to a single winding AC rotating machine having approximately the same rotational performance.
本発明は、このような事情に基づいてなされたものであ
シ、その目的とするところは、高速回転と低速回転との
極数比が大きい場合であっても電機子巻線を単一巻線で
構成でき、巻線利用率を向上できると共に、交流回転電
機の小型化および軽量化を図ることのできる極数変換三
相電機子巻線を提供することにある。The present invention has been made based on these circumstances, and its purpose is to provide a single winding of the armature winding even when the pole number ratio between high-speed rotation and low-speed rotation is large. It is an object of the present invention to provide a three-phase armature winding with pole number change that can be constructed of wires, improve the winding utilization rate, and reduce the size and weight of an AC rotating electric machine.
変換三相電機子巻線を次のように構成したことを特徴と
している。すなわち、各相毎に複数のコイルが同心的に
巻装されたコイル群を複数個スロットをあけずに連続配
置”し、基準とするコイル群の最外側のコイルから最内
側のコイルへ、さらにこの最内側のコイルから一方向に
隣接するコイル群の最外側のコイルへと順次連続番号を
付す。次にこれらのコイルのうち奇数番号が付されたコ
イルを、同一コイル群内では同一巻回方向に、隣接する
コイル群間では逆巻目方向になるよ□うに番号順に接続
して第1の直列回路を形成し、偶数番号が付されたコイ
ルを隣接する上記第1の直列回路の各コイルに対し逆巻
目方向になるように番号順に接続して第2の直列回路を
形成する。さらに、前記第1の直列回路の最終端のコイ
ルと前記第2の直列回路の最前端のコイルとを接続し、
外部へ取シ出す接続端5−
子を前記第1と第2直列回路間の接続点および前記第1
および第2の直列回路の各他端に接続している。The converter's three-phase armature winding is configured as follows. In other words, a plurality of coil groups in which multiple coils are wound concentrically for each phase are arranged consecutively without opening any slots, and from the outermost coil of the reference coil group to the innermost coil, Continuous numbers are assigned sequentially from this innermost coil to the outermost coils of the adjacent coil group in one direction.Next, among these coils, odd numbered coils are assigned the same winding within the same coil group. □, adjacent coil groups are connected in numerical order in reverse winding direction to form a first series circuit, and the even numbered coils are connected to each other in the adjacent first series circuit. A second series circuit is formed by connecting the coils in numerical order in a reverse winding direction.Furthermore, a coil at the final end of the first series circuit and a coil at the frontmost end of the second series circuit Connect with
Connect the connecting end 5- to be taken out to the outside at the connection point between the first and second series circuits and the first
and connected to each other end of the second series circuit.
第1図は本発明の一実施例に係る極数変換三相電機子巻
線の展開接続図である。FIG. 1 is a developed connection diagram of a three-phase armature winding with pole number conversion according to an embodiment of the present invention.
この実施例においては、36個のスロットが形成された
電機子鉄心に、3個のコイルからなる2個のコイル群を
連続配置している。図中実線、破線および一点鎖線はそ
れぞれU相、■相、装されたコイルUJ、2−17間に
巻装されたコイルU2.および3−16間に巻装された
コイルU3とで構成されている。一方、第2のコイル群
Ua2は、19−36間、20−35間、21−34間
にそれぞれ巻装されコイルU4゜U5.U6とで構成さ
れている。In this embodiment, two coil groups each consisting of three coils are successively arranged in an armature core in which 36 slots are formed. In the figure, solid lines, broken lines, and dashed-dotted lines indicate the U phase, the ■ phase, the coil UJ wound between 2 and 17, and the coil U2 wound between 2 and 17, respectively. and a coil U3 wound between 3 and 16. On the other hand, the second coil group Ua2 is wound between 19 and 36, between 20 and 35, and between 21 and 34, and coils U4, U5, . It is composed of U6.
そして、□これらのコイルU1〜U6のうち奇数番号を
付されたコイルUJ、U、?、U5を図6−
中央部で示す巻回方向になるように番号順、すなわちコ
イル、UJ−U3−U5の順で接続して第1の直列回路
を形成する。次に上記コイルU1〜U6のうち偶数番号
を付されたコイルU2.U4 、U6を隣接する第1の
直列回路の各コイルに対して逆向きの巻回方向になるよ
うに番号順、すなわちコイル、U2−UJ−U6の順で
接続して第2の直列回路を形成する。そして、第1の直
列回路の最終端のコイルU5と第2の直列回路の最前端
のコイルU2とを接続している。□ Among these coils U1 to U6, odd numbered coils UJ, U, ? , U5 are connected in numerical order, that is, in the order of coils, UJ-U3-U5, in the winding direction shown in the center part of FIG. 6 to form a first series circuit. Next, among the coils U1 to U6, even numbered coil U2. A second series circuit is formed by connecting U4 and U6 in numerical order, that is, in the order of coils, U2-UJ-U6, so that the winding direction is opposite to each coil of the adjacent first series circuit. Form. The coil U5 at the final end of the first series circuit and the coil U2 at the forefront end of the second series circuit are connected.
さらに、外部へ取り出す三つの接続端子U。Furthermore, there are three connection terminals U that can be taken out to the outside.
U8.Xをそれぞれ、第1の直列回路の最前端のコイル
U1、前記した第1と第2の直列回路間の接続点および
第2の直列回路の最終端のコイルU6とに接続している
。U8. X are respectively connected to the coil U1 at the forefront of the first series circuit, the connection point between the first and second series circuits, and the coil U6 at the last end of the second series circuit.
他のV相、W相のコイル■1〜V6.Wl〜W6も上記
U相と同じ方法で接続し、接続端子v 、 v 、
y 、 wo、 w、 、 zも上記U相と同様0
8
にそれぞれのコイルに接続されている。ただし、各相の
コイルは、それぞれ電機子鉄心の36個のスロットに均
等に配設されている。Other V-phase and W-phase coils ■1 to V6. Wl to W6 are also connected in the same way as the U phase above, and the connection terminals v, v,
y, wo, w, , z are also 0 as in the above U phase.
8 is connected to each coil. However, the coils of each phase are equally arranged in the 36 slots of the armature core.
このよう力構成の極数変換三相電機子巻線において、高
速回転に対応する極数を形成する場合、第2図(a)に
示すように、並列2回路を有するΔ結線とする。すなわ
ち、接続端子Ull、V8eWをそれぞれ電源に接続し
、U−X間、 v −y8
0
0間およびW−Z間をそれぞれ
短絡する。When forming a pole number corresponding to high speed rotation in the pole number conversion three-phase armature winding having such a power configuration, a Δ connection having two parallel circuits is used as shown in FIG. 2(a). That is, connect the connection terminals Ull and V8eW to the power supply respectively, and connect between U-X, v - y8
0
0 and W-Z are short-circuited.
このように接続された第2図(、)に示すΔ結線回路で
あれば、たとえば、U相の接続端子Uに(→電圧を印加
すると、第1の直列回路のコイルU5 #U3 、Ul
には、巻回方向に対して逆方向、すなわち第1図中矢印
に対して逆方向の電流が流れる。−万、第2の直列回路
のコイルU、? 、U4 、U6には、巻回方向と同一
方向の電流が流れる。したがって、同一コイル群内では
電流はすべて同一方向に流れるので、スロット番号16
〜21間の各スロット内の各コイル辺およびスロット番
号34〜3間の各スロット内の各コイル辺には、それぞ
れ同一方向の起磁力が励起される。In the case of the delta connection circuit shown in FIG.
A current flows in the direction opposite to the winding direction, that is, in the direction opposite to the arrow in FIG. - ten thousand, coil U of the second series circuit, ? , U4, and U6, a current flows in the same direction as the winding direction. Therefore, since all currents flow in the same direction within the same coil group, slot number 16
Magnetomotive force in the same direction is excited in each coil side in each slot between slot numbers 34 and 21 and in each coil side in each slot between slot numbers 34 and 3.
したがって、仮にU相の接続端子Uに1.0、■相、W
相の接続端子V 、W にそれぞれ−0,5II
に相当する電圧を印加すると、各スロット1〜36の各
相のコイル辺に励起される起磁力波形は第3図に示すよ
うになる。この第3図によシ、第2図(、)のように接
続端子を接続すると実極で2極が形成されることが理解
できる。Therefore, if the connection terminal U of the U phase is 1.0,
When a voltage corresponding to -0,5II is applied to the phase connection terminals V and W, respectively, the waveform of the magnetomotive force excited in the coil side of each phase of each slot 1 to 36 becomes as shown in FIG. From FIG. 3, it can be understood that when the connecting terminals are connected as shown in FIG. 2 (,), two actual poles are formed.
次に低速回転に対応する極数を形成する場合、第2図(
b)に示すように、1回路のΔ結線とする。Next, when forming the number of poles corresponding to low-speed rotation, see Figure 2 (
As shown in b), one circuit is Δ-connected.
すなわち、接続端子U01 Vol Woをそれぞれ電
源に接続し、接続端子U、 、 V、 l WSをそれ
ぞれ開放する。That is, the connection terminals U01 Vol Wo are connected to the power supply, and the connection terminals U, V, lWS are opened.
このように接続された第2図(b)に示すΔ結線回路で
あれば、たとえば、U相の接続端子U。In the case of the Δ connection circuit shown in FIG. 2(b) connected in this way, for example, the connection terminal U of the U phase.
に(ト)電圧を印加すると、第1の直列回路のコイルU
J #U3 、U5および第2の直列回路のコイルU2
.U4.U6には、それぞれ第1図の矢印で示す巻回方
向と同一方向の電流が流れる。(g) When a voltage is applied to the coil U of the first series circuit
J #U3, U5 and coil U2 of the second series circuit
.. U4. A current flows through U6 in the same direction as the winding direction indicated by the arrow in FIG. 1, respectively.
したがって、同−相同においては、互いに隣接9−
するスロット内のコイル辺にはそれぞれ互いに逆向の起
磁力が励起される。Therefore, in the homologous case, magnetomotive forces in opposite directions are excited in the coil sides in the slots that are adjacent to each other.
したがって、第2図(、)のΔ結線回路と同様に、U相
の接続端子Uに1.0XV相、W相の接続端子V 、
Wにそれぞれ−0,5に相当する電圧を0 0
印加すると、各スロット1〜36の各相のコイル辺に励
起される起磁力波形は第4図に示すようになる。ただし
、U相と他のV相、W相との四つの境界部、具体的には
スロット番号3−4間、15−16間、21−22間、
33−34間のコイルには互いに同一方向の電流が流れ
ている。したがって図示するように実極で32極が形成
されることが理解できる。Therefore, similarly to the Δ connection circuit shown in FIG.
When a voltage of 0 0 corresponding to -0 and 5 is applied to W, the waveform of the magnetomotive force excited on the coil side of each phase of each slot 1 to 36 becomes as shown in FIG. However, the four boundaries between the U phase and other V phases and W phases, specifically between slot numbers 3 and 4, between 15 and 16, between 21 and 22,
Currents flowing in the same direction flow through the coils between 33 and 34. Therefore, it can be understood that 32 actual poles are formed as shown in the figure.
なお、第5図(a)、第5図(b)はそれぞれ第2図(
&)、第2図(b)に示すΔ結線回路の各相の各接続端
子に前述した電圧を印加した場合の各スロット内のコイ
ル辺における電圧ベクトル図でおる。In addition, Fig. 5 (a) and Fig. 5 (b) are respectively shown in Fig. 2 (
&) is a voltage vector diagram at the coil side in each slot when the voltage described above is applied to each connection terminal of each phase of the Δ connection circuit shown in FIG. 2(b).
力お図中の番号はそれぞれスロット番号を示す。Each number in the diagram indicates a slot number.
以上説明したように本実施例の極数変換三相電機子巻線
においては、高速回転に対応する極10−
数と低速回転に対応する極数との極数比は2:32と非
常に大きいにもかかわらず、外部へ取り出す接続端子数
は3相分合計しても9である。したがって、配線が特に
複雑になることはない。As explained above, in the pole number conversion three-phase armature winding of this embodiment, the pole number ratio between the number of poles corresponding to high speed rotation and the number of poles corresponding to low speed rotation is very high at 2:32. Although it is large, the number of connection terminals taken out to the outside is nine in total for three phases. Therefore, the wiring is not particularly complicated.
また、実施例の極数変換三相電機子巻線は、単一の巻線
で構成しているので、前記極数比が大きい場合に2巻線
で構成していた従来の電機子巻線における巻線相互間の
絶縁物を用いる必要はない。したがって、スロット内外
における巻線の占積率を高くすることができ、その結果
、交流回転電機の回転性能を向上させることができる。In addition, since the pole number conversion three-phase armature winding of the embodiment is composed of a single winding, it is different from the conventional armature winding composed of two windings when the pole number ratio is large. There is no need to use insulation between the windings. Therefore, the space factor of the windings inside and outside the slot can be increased, and as a result, the rotational performance of the AC rotating electric machine can be improved.
さらに、単一巻線を高速回転用および低速1刊転用とし
て使用しているので、巻線利用率を高くすることができ
る。したがって、2巻線を使用した従来の三相電機子巻
線に比較して、交流回転電機の小型化および軽量化を図
ることが可能である。Furthermore, since a single winding is used for high-speed rotation and low-speed rotation, the winding utilization rate can be increased. Therefore, compared to the conventional three-phase armature winding using two windings, it is possible to make the AC rotating electric machine smaller and lighter.
なお、本発明は上述した実施例に限定されるものではな
い。すなわち、本発明のように構成されたー相当シn個
のコイルからなるN個のコイル群で構成された極数変換
三相電機子巻線であれば、高速回転に対応する極数Pは
Nとなシ、電機子鉄心のスロット総数2は3 nNとな
る。また第2図(b)のように接続した場合、隣接する
コイルどうしの電流が同一方向に流れるスロット対は2
N個であるので、低速回転に対応する極数Pbは次式で
示される。Note that the present invention is not limited to the embodiments described above. That is, if the pole number conversion three-phase armature winding is configured as in the present invention and is composed of N coil groups each consisting of N coils, the number of poles P corresponding to high-speed rotation is N, the total number of slots 2 in the armature core is 3 nN. In addition, when connected as shown in Figure 2(b), there are two pairs of slots in which the currents of adjacent coils flow in the same direction.
Since the number of poles is N, the number of poles Pb corresponding to low speed rotation is expressed by the following equation.
Pb ” 3 nN −2N =Z −2P&上式を変
形すると次式が得られる。Pb ” 3 nN −2N =Z −2P & By transforming the above equation, the following equation is obtained.
Z = 2 P、 十Pb
したがって、本発明は上式を満足する極数の組合せに対
して適応できる。すなわち、スロット数が36で4極と
28極を形成する場合、スロット数が72で4極と64
極を形成する場合等に適応できる。Z = 2 P, 10 Pb Therefore, the present invention can be applied to combinations of pole numbers that satisfy the above formula. In other words, if the number of slots is 36 and 4 poles and 28 poles are formed, the number of slots is 72 and 4 poles and 64 poles are formed.
It can be applied to cases such as forming poles.
以上説明したように本発明によれば、1相渦J)n個の
コイルを同心的に巻回してなるコイル群をスロットをあ
けずにN個連続配置し、隣接するコイルどうしの巻回方
向が互いに逆向方になるように第1および第2の直列回
路を形成し、これら二つの直列回路を並列接続又は直列
接続することによって、高速回転に対応する極数P、=
Nおよび低速回転に対応する極数Pb ” 3 nN
2 N f形成することができる。したがって、たと
え上記極数P と極数Pbとの極数比pa: p、が大
きい場合であっても、単一巻線で外部への取シ出す接続
端子の設置数の少い極数変換三相電機予巻#を構成する
ことができる。As explained above, according to the present invention, one-phase vortex J) N coil groups each formed by concentrically winding n coils are arranged consecutively without opening a slot, and the winding direction of adjacent coils is By forming the first and second series circuits so that they are in opposite directions, and connecting these two series circuits in parallel or in series, the number of poles P, which corresponds to high-speed rotation, can be increased.
Number of poles Pb corresponding to N and low speed rotation 3 nN
2 N f can be formed. Therefore, even if the pole number ratio pa: p between the number of poles P and the number of poles Pb is large, pole number conversion is possible with a single winding and fewer connecting terminals that can be taken out to the outside. A three-phase electric machine pre-winding # can be configured.
その結果、スロット内外における巻線の占積率を高くす
ることができ、変流回転電機の回転性能を向上させ得る
。さらに、単一巻線で構成しているので、巻線利用率を
高くすることができ、その結果、交流回転電機の小型化
および軽量化を図ることが可能である。As a result, the space factor of the windings inside and outside the slot can be increased, and the rotational performance of the current-changing rotating electric machine can be improved. Furthermore, since it is configured with a single winding, the winding utilization rate can be increased, and as a result, it is possible to reduce the size and weight of the AC rotating electric machine.
第1図は本発明の一実施例に係る極数変換三相電機子巻
線の展開接続図、第2図(、)および第2図(b)はそ
れぞれ第1図の同電機子巻線のΔ結13−
線接続図、第3図および第4図はそれぞれ第2図(、)
および第2図(b)における起磁力波形図、第5図(、
)および第5図(b)はそれぞれ第2図(、)および第
2図(b)における電圧ベクトル図である。
U 1〜U 6 、 V 1〜V 6 、 Wl 〜W
6・’:Iイル、Ua 1 、 Ua 2 、 vl
1 、 Va 2 、 Wa 1 。
Wa 2 ・・−:Iイル群、Uo、Us # X#
vOpvs #y 、 wo、 w、 、 z ・・・
接続端子。
出願人代理人 弁理士 鈴 江 武 彦−1°47FIG. 1 is an expanded connection diagram of a three-phase armature winding with pole number conversion according to an embodiment of the present invention, and FIGS. 2(a) and 2(b) are the same armature windings of FIG. The Δ connection 13- line connection diagram, Figures 3 and 4 are respectively shown in Figure 2 (,)
and the magnetomotive force waveform diagram in Fig. 2(b), Fig. 5(,
) and FIG. 5(b) are voltage vector diagrams in FIG. 2(, ) and FIG. 2(b), respectively. U 1 to U 6 , V 1 to V 6 , Wl to W
6・': Iil, Ua 1, Ua 2, vl
1, Va2, Wa1. Wa 2...-:I group, Uo, Us#X#
vOpvs #y, wo, w, , z...
Connecting terminal. Applicant's agent Patent attorney Takehiko Suzue -1°47
Claims (2)
を切換えることによって2種類の極数を得る極数変換三
相電機子巻線において、各相毎に複数のコイルを同心的
に巻回してなるコイル群をスロットをあけずに複数個連
続配置し、基準とするコイル群の最外側のコイルから最
内側のコイルへ、さらにこの最内側のコイルから一方向
に隣接するコイル群の最外側のコイルへと順次コイルに
接続番号を付し、これらのコイルのうち奇数番号が付さ
れたコイルを、同一コイル群内では同一巻回方向に、隣
接するコイル群間では逆巻同方向になるように番号順に
接続して第1の直列回路を形成し、偶数番号が付された
コイルを隣接する前記第1の直列回路の各コイルに対し
逆巻同方向に々るように番号順に接続して第2の直列回
路を形成し、前記第1の1− 9Q0 直列回路の最終端のコイルと前記第2の直列回路の最前
端のコイルとを接続し、前記外部へ取シ出す接続端子を
前記第1と第2の直列回路間の接続点および前記第1お
よび第2の直列回路の各他端に接続したことを特徴とす
る極数変換三相電機子巻線。(1) In a pole number conversion three-phase armature winding that is constructed with a single winding and obtains two types of pole numbers by switching the connecting terminals taken out to the outside, multiple coils are connected concentrically for each phase. A plurality of coil groups formed by winding are arranged in succession without opening slots, and from the outermost coil of the reference coil group to the innermost coil, and from this innermost coil to the adjacent coil group in one direction. Assign connection numbers to the coils in order, starting from the outermost coil, and among these coils, odd numbered coils are wound in the same direction within the same coil group, and reversely wound in the same direction between adjacent coil groups. a first series circuit is formed by connecting the coils in numerical order such that connection to form a second series circuit, connect the final end coil of the first 1-9Q0 series circuit and the foremost end coil of the second series circuit, and take out the connection to the outside. A pole-change three-phase armature winding, characterized in that a terminal is connected to a connection point between the first and second series circuits and to each other end of the first and second series circuits.
してなシ、36スロツトを有する電機子鉄条 心2個の上記コイル群を配置したことを特徴とする特許
請求の範囲第(1)項記載の極数変換三相電機子巻線。(2) The coil group consists of three coils wound concentrically, and the coil group is arranged in two armature cores each having 36 slots. ) Three-phase armature winding with pole number conversion as described in section 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19821382A JPS5989559A (en) | 1982-11-11 | 1982-11-11 | Pole change 3-phase armature winding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19821382A JPS5989559A (en) | 1982-11-11 | 1982-11-11 | Pole change 3-phase armature winding |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5989559A true JPS5989559A (en) | 1984-05-23 |
Family
ID=16387367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19821382A Pending JPS5989559A (en) | 1982-11-11 | 1982-11-11 | Pole change 3-phase armature winding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5989559A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999000890A1 (en) * | 1997-06-30 | 1999-01-07 | Fanuc Ltd | Induction motor |
CN107070105A (en) * | 2017-04-18 | 2017-08-18 | 深圳市瑞迪构科技有限公司 | A kind of program control generator |
-
1982
- 1982-11-11 JP JP19821382A patent/JPS5989559A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999000890A1 (en) * | 1997-06-30 | 1999-01-07 | Fanuc Ltd | Induction motor |
US6333578B1 (en) | 1997-06-30 | 2001-12-25 | Fanuc Ltd | Induction motor |
CN107070105A (en) * | 2017-04-18 | 2017-08-18 | 深圳市瑞迪构科技有限公司 | A kind of program control generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8928199B2 (en) | Wound rotor brushless doubly-fed motor | |
US7009320B2 (en) | Stator of electric rotating machine | |
US20080129137A1 (en) | Motor Winding | |
JP2012085533A (en) | Five-phase generator | |
CN109286258B (en) | Preparation method of wound rotor winding of alternating-current brushless double-fed motor | |
US20070024146A1 (en) | Single-phase motor and stator winding method thereof | |
CN113794302A (en) | Balanced winding flat wire motor capable of reducing groove voltage drop and armature winding method | |
CN104882975B (en) | A kind of motor stator and its method for winding | |
JPH09205750A (en) | Armature winding pattern for rotary electric machine | |
JP2001309597A (en) | Armature winding of rotating electric machine | |
JPS5989559A (en) | Pole change 3-phase armature winding | |
JP2000350396A (en) | Winding method of dynamo-electric machine and dynamo- electric machine | |
CN1326311C (en) | Permanent-magnet type synchronous motor | |
CN104917351B (en) | A kind of brushless double feed generator | |
US2900587A (en) | Electric motors | |
CN220797914U (en) | Stator assembly of crown end outgoing line and flat wire motor | |
CN210350872U (en) | High-efficiency generator stator structure | |
CN108566008B (en) | Tapped motor winding circuit and tapped synchronous motor | |
JP7309693B2 (en) | Electric motor and winding method | |
CN109672290B (en) | High-speed motor winding | |
JPS5819182A (en) | Capacitor motor | |
SU1279020A1 (en) | Three-phase two-speed winding | |
JP2637103B2 (en) | Armature winding | |
SU1474804A1 (en) | Three-phase switchable-pole winding with 2:3:4 pole-pair number ratio | |
EP4364174A1 (en) | Winding of an electric machine made of multistrand conductors with two or more twisting levels |