JPS5989460A - Manufacture of thyristor - Google Patents

Manufacture of thyristor

Info

Publication number
JPS5989460A
JPS5989460A JP19996082A JP19996082A JPS5989460A JP S5989460 A JPS5989460 A JP S5989460A JP 19996082 A JP19996082 A JP 19996082A JP 19996082 A JP19996082 A JP 19996082A JP S5989460 A JPS5989460 A JP S5989460A
Authority
JP
Japan
Prior art keywords
life time
diffusion
heat treatment
lifetime
heavy metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19996082A
Other languages
Japanese (ja)
Inventor
Tsuneo Ogura
常雄 小倉
Tsuneo Tsukagoshi
塚越 恒男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19996082A priority Critical patent/JPS5989460A/en
Publication of JPS5989460A publication Critical patent/JPS5989460A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1012Base regions of thyristors
    • H01L29/102Cathode base regions of thyristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To eliminate the variance of a life time by forming P-N-P-N four layer structure, lengthening the life time once only through heat treatment with no impurity diffusion and shortening the life time through the diffusion of a heavy metal. CONSTITUTION:The P-N-P-N four-layer structure is formed, and the whole is thermally treated within a range of 600-1,000 deg.C in an inert gas. Consequently, the life time lengthens up to 100-200musec from 20-40musec. The life time is shortened up to a target value such as 20musec through the diffusion of the heavy metal or the irradiation of electron rays or radiation. The life time lengthens through heat treatment while variance reduces, and the life time is kept within a range of 15-25musec when it is set to the target value of 20musec through the diffusion of the heavy metal.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はサイリスタの製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing a thyristor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来のサイリスタの製造方法f、第1図を用いて説明す
る。まずN型シリコン基板1の両主面よシP型不純物を
拡散させてP型層2.3を形成する(a)。次に一方の
P型層2を一部エツチオフしくb)、その層内に部分的
にN型不純物を拡散させて耐型層4を形成する(c)。
A conventional thyristor manufacturing method f will be explained using FIG. First, P-type impurities are diffused onto both main surfaces of the N-type silicon substrate 1 to form P-type layers 2.3 (a). Next, one of the P-type layers 2 is partially etched off (b), and N-type impurities are partially diffused into that layer to form a resistive layer 4 (c).

この工程は、通常数μmの厚さでリンをデポジットし、
更に高温でドライブ拡散するもので、耐型層4は20μ
m程度の深さとなる。との後、を型層4の濃度よシ低く
、かつ耐型層4の深さの範囲内でP型不純物を拡散させ
てP型層5.6を形成する(d)。
This process usually involves depositing phosphorus to a thickness of several micrometers,
Furthermore, the drive diffusion occurs at high temperatures, and the die-resistant layer 4 has a thickness of 20μ.
The depth is about m. After that, a P-type impurity is diffused at a concentration lower than that of the type layer 4 and within the depth of the type-resistant layer 4 to form a P-type layer 5.6 (d).

ζうしてPNPN四層構造を得た後、基板のキャリアラ
イフタイムを低下させるために重金属の拡散や電子線ま
たは放射線の照射全行い、最後に必要な電極を形成して
完成する。
After obtaining the PNPN four-layer structure, heavy metal diffusion and electron beam or radiation irradiation are carried out to reduce the carrier lifetime of the substrate, and finally, the necessary electrodes are formed to complete the structure.

以上の製造工程における基板のライフタイムの変化を示
すと第2図のようになる。即ち出発基板は100μfl
ee以上のライフタイムを有するが、P型不純物拡散の
工程(a)で20〜40μsecに低下し、Nfi不純
物拡散の工程(e)ではリンのrツタ効果によ)40〜
60μsecに回復し、再度のP型不純物拡散の工程(
d)でまた20〜40μsecまで低下する。この後の
重金属拡散等によるライフタイムの目標値は、サイリス
タの仕様によフ異なるが、低周波用途の場合には一般に
20μsee程度である。ところが従来の製造方法では
、重金属拡散前のライフタイムのばらつきが重金属拡散
後もそのまま残ってしまう。この様子上わかシ易く示す
と第3図のとお勺であシ、目標値20μsecに対して
10〜30μsecと大きいばらつきが残る。
FIG. 2 shows changes in the lifetime of the substrate during the above manufacturing process. That is, the starting substrate is 100μfl
It has a lifetime of more than ee, but it decreases to 20 to 40 μsec in the P-type impurity diffusion step (a), and it decreases to 40 to 40 μsec in the Nfi impurity diffusion step (e) due to the ivy effect of phosphorus).
Recovery time is 60 μsec, and the process of P-type impurity diffusion is performed again (
In d), the time decreases again to 20 to 40 μsec. The target value of the lifetime due to subsequent heavy metal diffusion etc. varies depending on the specifications of the thyristor, but is generally about 20 μsee for low frequency applications. However, in conventional manufacturing methods, variations in lifetime before heavy metal diffusion remain as they are after heavy metal diffusion. To simply illustrate this situation, as shown in FIG. 3, there remains a large variation of 10 to 30 μsec with respect to the target value of 20 μsec.

このようにライフタイム値のばらつきが大きいと、多数
個のサイリスタ全直列または並列接続して使用した場合
に各サイリスタの動作が不揃いとなシ、一部のサイリス
タに大きな負担がかかつて破壊し易くなるという不都合
がある。
If the lifetime values vary widely in this way, when a large number of thyristors are connected in series or in parallel, each thyristor will operate unevenly, putting a heavy burden on some of the thyristors and making them more likely to break down. There is an inconvenience that this happens.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑み、ライフタイムのばらつきが少
ないサイリスタの製造方法を提供することを目的とする
In view of the above points, it is an object of the present invention to provide a method for manufacturing a thyristor with less variation in lifetime.

〔発明の概要〕[Summary of the invention]

本発明は、P型およびN型不純物の拡散工程を経てPN
PN四層構造を形成した後、600℃〜1000℃の範
囲で不純物拡散を伴なわない熱処理のみによツ一旦うイ
フタイムを上昇させ、その後重金属拡散等によってライ
フタイムを目標値まで低下させることを特徴とする。上
記温度範囲をはずれると、ライフタイムのばらつきが減
少する効果は得られなり0 〔発明の効果〕 本発明によれば、熱処理のみによフライフタイムの上昇
と共にそのばらつきが小さくなシ、その後の重金属拡散
等によフライフタイム全目標値に設定したときにそのば
らつきが小さい、特性の揃ったサイリスタが得られる。
In the present invention, PN
After forming the PN four-layer structure, the life time is increased by heat treatment without impurity diffusion in the range of 600°C to 1000°C, and then the lifetime is reduced to the target value by heavy metal diffusion, etc. Features. [Effects of the Invention] According to the present invention, heat treatment alone increases the fly life time and reduces the variation. Through heavy metal diffusion, etc., a thyristor with uniform characteristics can be obtained with small variations in fly life when all target values are set.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。N型シリコン基板を用い
、P型およびN型不純物拡散によ、9 PNPN四層構
造を得る工程は%第1図(a)〜(d)で説明した従来
の工程と変らない。本実施例では、第1図(d)のPN
PN四層構造鷺形成した後、熱処理を行う。この熱処理
は、N2がス等の不活性ガス中で、600℃〜1000
℃の範囲とする。これによフライフタイムは20〜40
μsecから10()−120μBeeへと上昇する。
The present invention will be explained in detail below. The process of obtaining a 9PNPN four-layer structure using an N-type silicon substrate by diffusing P-type and N-type impurities is the same as the conventional process described in FIGS. 1(a) to 1(d). In this example, the PN of FIG. 1(d)
After forming the PN four-layer structure, heat treatment is performed. This heat treatment is performed at 600°C to 1000°C in an inert gas such as N2 gas.
The range is ℃. This gives a fly life of 20 to 40
It increases from μsec to 10()-120 μBee.

600℃以下または1000℃以上ではライフタイムは
上昇せず、またそのばらつきも減少しない。この熱処理
温度とライフタイムの関係を第4図に示す、。熱処理時
間は10時間以内であればほぼ同じ効果が得られること
がこうして熱処理工程に、’、l:’j’!Dライフタ
イムを上昇させた後、重金属の拡散または電子線もしく
は放射線の照射によシ、ライフタイムを目標値、例えば
20μsee tで低下させる。
Below 600°C or above 1000°C, the lifetime does not increase and the variation thereof does not decrease. The relationship between this heat treatment temperature and lifetime is shown in FIG. As long as the heat treatment time is within 10 hours, almost the same effect can be achieved. After increasing the D lifetime, the lifetime is lowered to a target value, for example 20 μs, by diffusion of heavy metals or irradiation with electron beams or radiation.

この実施例による各工程でのライフタイムの変化を第5
図に、また熱処理工程とその後の重金属拡散工程による
ライ 第6図に示す。これらの図から明らかなように、ライフ
タイムは熱処理によって上昇すると共にばらつきが小さ
くなり、重金属拡散によシ目標値20μl1eCに設定
したとき15μ8eC〜25μ8eeの範囲に収まる。
The changes in lifetime in each process according to this example are shown in the fifth column.
Also shown in FIG. 6 is a heat treatment process followed by a heavy metal diffusion process. As is clear from these figures, the lifetime increases with heat treatment and the variation becomes smaller, and when the target value is set to 20 μl1eC due to heavy metal diffusion, it falls within the range of 15μ8eC to 25μ8ee.

このように、この実施例によれば、熱処理工程の追加の
みでライフタイムのばらつきが小さいサイリスタが得ら
れ、多数のサイリスタを直列または並列接続して使用す
る場合に信頼性向上が図られる。
As described above, according to this embodiment, a thyristor with small lifetime variations can be obtained by simply adding a heat treatment process, and reliability can be improved when a large number of thyristors are connected in series or in parallel.

本発明に類似したものとして、例えば[2500V 。As something similar to the present invention, for example [2500V].

600 A Gate Turn−off Thyri
stor (GTO):IEDM sl 979 、 
P、246 :M、AZuMAet al Jがある。
600 A Gate Turn-off Thyri
stor (GTO): IEDM sl 979,
P, 246: M, AZuMA et al J.

上記文献は、リンのダツター効果によフライフタイムを
上昇させているが、その値は、最大でも千 45μBeeと本発明の半分以外である。本発明は、リ
ンダツタ−法と比較して2倍以上ライフタイムの上昇が
可能となるばかシでなくさらに、rツタ一層の除去など
の工程上の複雑さもない点□ですぐれているのである。
Although the above-mentioned document increases the fly-life time by the darter effect of phosphorus, the value is at most 1,45 μBee, which is less than half of the value of the present invention. The present invention is superior in that it is not foolproof in that it can increase the lifetime by more than twice as much as the linda ivy method, and it also does not require complicated processes such as removing a single layer of ivy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は一般的なサイリスタの製造工程
を示す図、第2図および第3図は従来の各工程でのライ
フタイムの変化を示す図、第4図は熱処理温度と得られ
るライフタイムの関係を示す図、第5図および第6図は
本発明の一実施例の各工程でのライフタイムの変化を示
す図である0 1・・・N型シリコン基板、2,3・・・P型層、4+ ・−・N型層、5,6・・・P+型層。 出願人代理人  弁理士 鈴 江 武 章節1図 第2図 第3図 第4図 第5図 °苓投 (a)  (C)  (d)  勲)更俤詑敷 第6図 ブイフタイム(P幻
Figures 1 (a) to (d) are diagrams showing the manufacturing process of a typical thyristor, Figures 2 and 3 are diagrams showing changes in lifetime in each conventional process, and Figure 4 is a diagram showing the heat treatment temperature. FIGS. 5 and 6 are diagrams showing changes in lifetime in each step of an embodiment of the present invention.0 1... N-type silicon substrate, 2 , 3...P type layer, 4+...N type layer, 5, 6...P+ type layer. Applicant's representative Patent attorney Takeshi Suzue Chapter 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)N型半導体基板の両表面よシネ細物を拡散させて
P型層を形成し、両面のP型層のうち一方に部分的に不
純物を拡散させてN型層を形成してPNPN四層構造を
得た後、600℃〜1000℃の範囲で熱処理全行い、
その後重金属の拡散または電子線もしくは放射線の照射
によシライフタイムを所定範囲に設定することを特徴と
するサイリスタの製造方法。
(1) P-type layers are formed by diffusing cine particles from both surfaces of an N-type semiconductor substrate, and impurities are partially diffused into one of the P-type layers on both sides to form an N-type layer to form a PNPN. After obtaining the four-layer structure, heat treatment is performed in the range of 600°C to 1000°C,
1. A method for manufacturing a thyristor, characterized in that the lifetime is then set within a predetermined range by diffusion of heavy metals or irradiation with electron beams or radiation.
(2)前記熱処理は、不活性がス中、10時間以内の処
理時間で行う特許請求の範囲第1項記載のサイリスクの
製造方法。
(2) The method for producing cyriska according to claim 1, wherein the heat treatment is performed in an inert gas for a treatment time of 10 hours or less.
JP19996082A 1982-11-15 1982-11-15 Manufacture of thyristor Pending JPS5989460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19996082A JPS5989460A (en) 1982-11-15 1982-11-15 Manufacture of thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19996082A JPS5989460A (en) 1982-11-15 1982-11-15 Manufacture of thyristor

Publications (1)

Publication Number Publication Date
JPS5989460A true JPS5989460A (en) 1984-05-23

Family

ID=16416462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19996082A Pending JPS5989460A (en) 1982-11-15 1982-11-15 Manufacture of thyristor

Country Status (1)

Country Link
JP (1) JPS5989460A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232646A (en) * 1985-08-05 1987-02-12 Mitsubishi Electric Corp Manufacture of gate turn-off thyristor
WO1997003458A1 (en) * 1995-07-10 1997-01-30 Rohm Co., Ltd. Method of manufacturing semiconductor device
CN107611087A (en) * 2017-08-30 2018-01-19 常州银河世纪微电子股份有限公司 The preparation method of unidirected discharge pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232646A (en) * 1985-08-05 1987-02-12 Mitsubishi Electric Corp Manufacture of gate turn-off thyristor
WO1997003458A1 (en) * 1995-07-10 1997-01-30 Rohm Co., Ltd. Method of manufacturing semiconductor device
CN1110074C (en) * 1995-07-10 2003-05-28 罗姆股份有限公司 Method of manufacturing semiconductor device
CN107611087A (en) * 2017-08-30 2018-01-19 常州银河世纪微电子股份有限公司 The preparation method of unidirected discharge pipe
CN107611087B (en) * 2017-08-30 2020-07-17 常州银河世纪微电子股份有限公司 Method for manufacturing one-way discharge tube

Similar Documents

Publication Publication Date Title
US2849664A (en) Semi-conductor diode
JP2002305305A (en) Semiconductor device
US3128530A (en) Production of p.n. junctions in semiconductor material
US3513035A (en) Semiconductor device process for reducing surface recombination velocity
JPS5989460A (en) Manufacture of thyristor
JP3125112B2 (en) Integrated structure of bipolar power device and fast diode with high current density and related manufacturing process
JP2792908B2 (en) Method of manufacturing high reverse blocking power diode
JPS5942989B2 (en) High voltage semiconductor device and its manufacturing method
US3729811A (en) Methods of manufacturing a semiconductor device
US5397903A (en) Semiconductor substrate for gettering
JP3077760B2 (en) Solid phase diffusion method
US4613381A (en) Method for fabricating a thyristor
JPH0927613A (en) Manufacture of semiconductor device
JPH10150004A (en) Semiconductor device and its manufacture
JPH0336312B2 (en)
JPS6152976B2 (en)
JPH02170522A (en) Manufacture of semiconductor device
JPS5916417B2 (en) Manufacturing method of semiconductor device
JPS6348195B2 (en)
JPS587885A (en) Manufacture of semiconductor photodetector
JPH0669036B2 (en) Method for manufacturing semiconductor device
JPH05144730A (en) Manufacture of semiconductor device
JP2618965B2 (en) Method for manufacturing semiconductor device
JPS58212174A (en) Optical firing type thyristor
JPS584466B2 (en) Method for manufacturing semiconductor devices