JPS5988632A - Strain gauge type load converter - Google Patents

Strain gauge type load converter

Info

Publication number
JPS5988632A
JPS5988632A JP19937882A JP19937882A JPS5988632A JP S5988632 A JPS5988632 A JP S5988632A JP 19937882 A JP19937882 A JP 19937882A JP 19937882 A JP19937882 A JP 19937882A JP S5988632 A JPS5988632 A JP S5988632A
Authority
JP
Japan
Prior art keywords
strain
load
strain gauge
generating body
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19937882A
Other languages
Japanese (ja)
Inventor
Takao Yoshida
吉田 敬夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOWA DENGIYOU KK
Kyowa Electronic Instruments Co Ltd
Original Assignee
KYOWA DENGIYOU KK
Kyowa Electronic Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOWA DENGIYOU KK, Kyowa Electronic Instruments Co Ltd filed Critical KYOWA DENGIYOU KK
Priority to JP19937882A priority Critical patent/JPS5988632A/en
Publication of JPS5988632A publication Critical patent/JPS5988632A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • G01L1/2231Special supports with preselected places to mount the resistance strain gauges; Mounting of supports the supports being disc- or ring-shaped, adapted for measuring a force along a single direction

Abstract

PURPOSE:To obtain the titled converter capable of lowering the height of a strain generating body, free from a buckling possibility light in wt. and high in capacity, by obtaining the electric signal corresponding to load to be applied from a wheatstone bridge circuit. CONSTITUTION:The strain generating part 8 by a columnar strain generating body is provided with a plurality of holes C1-C8 different in the depths thereof toward the center shaft 9 vertical to the load applying surface (not shown by the drawing) of the columnar strain generating body by drilling and strain gauges A1-A8 for detecting compression strain are provided to the bottom wall surface 10 along the center shafts 9 of the holes C1-C8 while strain gauges D1-D8 for detecting tensile strain are provided toward the direction along the center shafts 9 and the direction crossing the same at right angles. A double wheatstone bridge is constituted as a whole around the center shaft 9. When compression load is applied to the columnar strain generating body along the center shaft 9, eight strains at the center part and the peripheral edge part in the strain generating body 8 are detected meanly because of the constitution of the double wheatstone bridge circuit.

Description

【発明の詳細な説明】 状起歪体にひずみゲージを添着し、そのひずみゲ一・ジ
によって印加荷重に応じた電気信号を得るひずみゲージ
式荷重変換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a strain gauge type load transducer in which a strain gauge is attached to a strain-generating body, and the strain gauge obtains an electric signal corresponding to an applied load.

従来のこの種のひずみゲージ式変換器は、第1図(A)
および第2図(蜀に示すような角柱または円柱等の柱状
起歪体の側周面上に荷重印加方向に沿う方向とこれに直
交する方向に向けて、ひずみゲージを添着し、このひず
みゲージによりホイートストンブリッジ回路を構成して
、このホイートス1へンブリッジ回路より印加荷重に応
じた電気信号(出力)を得るように構成されていた。こ
の従来の荷重変換器について、第1図(A) 、 (I
3)および第2図(A) 、 (B)を参照して更に詳
細に説明する。第1図(A)は、円柱起歪体の正面図で
ある。
A conventional strain gauge type transducer of this type is shown in Fig. 1 (A).
A strain gauge is attached to the side circumferential surface of a columnar flexural body such as a prism or cylinder as shown in Figure 2 (Shu) in the direction along the load application direction and in the direction perpendicular to this. A Wheatstone bridge circuit was constructed using the Wheatstone bridge circuit, and an electric signal (output) corresponding to the applied load was obtained from this Wheatstone bridge circuit.This conventional load converter is shown in Fig. 1 (A). , (I
3) and FIGS. 2(A) and 2(B). FIG. 1(A) is a front view of the cylindrical strain body.

同図(A)において、円柱起歪体1の上面2に印加され
た荷重W(単位面積当りの荷重Wの総和)は、円柱起歪
体1の側周面3上に中心軸4と平行なひずみゲージ(圧
縮ひずみ検出用)5およびこれと直交するひずみゲージ
(引張ひすみ検出用)6により該荷重に比例した電気信
号として検出される。
In the same figure (A), the load W (total load W per unit area) applied to the upper surface 2 of the cylindrical flexure element 1 is parallel to the central axis 4 on the side peripheral surface 3 of the cylindrical flexure element 1. The load is detected as an electrical signal proportional to the load by a strain gauge (for compressive strain detection) 5 and a strain gauge (for tensile strain detection) 6 orthogonal thereto.

尚ひずみゲージ5および6は、同図(A)において正面
側と背面側、つまり180°角間隔をずらせて添着され
、これらのひずみゲージ5,6により周知のポイー1−
ス1〜ンブリッジが構成される。ここで、■4は円柱起
歪体1の起歪部7の高さ、Dはその直径を示す。
In addition, the strain gauges 5 and 6 are attached to the front side and the back side in FIG.
A link bridge is configured. Here, ■4 indicates the height of the strain-generating portion 7 of the cylindrical strain-generating body 1, and D represents its diameter.

第1図(B)は、第1図(Nのa −a断面およびb−
す断面における応力分布図を示す。第2図(A)は、第
1図(A)に示した円柱起歪体」の高さHに比べ、その
高さH’が非常に低い円柱起歪体1′の正面図であり、
同図FB)は同図FA)の円柱起歪体1′の中間部C−
C断面における応力分布図を示す。
Figure 1 (B) shows the cross section a-a and b-a of Figure 1 (N).
The stress distribution diagram in the cross section is shown. FIG. 2(A) is a front view of a cylindrical flexural body 1' whose height H' is very low compared to the height H of the cylindrical flexural body shown in FIG. 1(A),
The figure FB) shows the middle part C- of the cylindrical strain body 1' of the figure FA).
The stress distribution diagram in the C section is shown.

第1図(S)において、円柱起歪体1の端部に近いa 
−’ a断面における応力分布は、前記円柱起歪体1内
の中心部と、周縁部とでは大きく異なっているが、円柱
起歪体1の端部から離れた中間部近傍のb−b断面にお
ける応力分布は、はぼ均等分布になっていることがわか
る。
In FIG. 1(S), a near the end of the cylindrical strain body 1
-' The stress distribution in cross-section a is largely different between the center and the periphery of the cylindrical flexure body 1, but the stress distribution in the bb section near the middle part away from the end of the cylindrical flexure body 1 is It can be seen that the stress distribution at is almost uniform.

第2図体)に示すように円柱起歪体1′の高さH’を第
1図(A)に示すものより短くすると、同図(■3)の
C−c断面における応力分布図に見られるように、円柱
起歪体1′d中間部における応力分布は一様ではなく、
複雑な分布状態を呈する。このように円柱起歪体がある
程度短い場合、および円柱起歪体が長い場合であっても
、ひずみゲージの添着位置が、円柱起歪体の端面よりあ
まり離れていない場合には、そのひずみゲージによって
は、印加荷重Wに正確に対応した電気信号を得ることが
できない。このため、円柱起歪体側周面上にひずみゲー
ジを添着する従来の荷重変換器においては、円柱起歪体
の高さをある程度長くとる必要があった。
If the height H' of the cylindrical flexural body 1' is made shorter than that shown in Figure 1 (A) as shown in Figure 2), the stress distribution diagram at the C-c cross section in Figure 3 (■3) shows that As can be seen, the stress distribution in the middle part of the cylindrical flexural body 1'd is not uniform;
It exhibits a complex distribution state. In this way, even if the cylindrical flexure element is short to some extent, or even if the cylindrical flexure element is long, if the strain gauge is attached not far from the end face of the cylindrical flexure element, the strain gauge In some cases, it is not possible to obtain an electrical signal that accurately corresponds to the applied load W. For this reason, in a conventional load converter in which a strain gauge is attached to the side circumferential surface of the cylindrical flexure element, it is necessary to increase the height of the cylindrical flexure element to some extent.

しかしながら、円柱起歪体をあまり長くすると、印加さ
れる荷重によって、該起歪体に座屈現象が発生し、傾斜
荷重に対して影響を受は易くなり、荷重検出精度が低下
するという問題があった。また、荷重変換器を力の伝達
系中に介挿するような場合、円柱起歪体の長さを大きく
することができず、仮に太きくすれば、被測定対象物が
大型化するという問題があった。従って円柱起歪体の高
さriと直径りとは、例えば起歪体の材質、熱処理方法
、形状等によっても異なるが、所定の比率(x4/ I
)−i、、s〜25 程度)に設定している。
However, if the cylindrical flexure element is made too long, the applied load will cause the flexure element to buckle, making it more susceptible to tilted loads and reducing load detection accuracy. there were. Additionally, when a load transducer is inserted into a force transmission system, it is not possible to increase the length of the cylindrical flexure element, and if it were made thicker, the object to be measured would become larger. was there. Therefore, the height ri and the diameter of the cylindrical flexure element vary depending on the material, heat treatment method, shape, etc. of the flexure element, but are determined by a predetermined ratio (x4/I
)-i,,s~25).

このように、上述した従来の荷重変換器においては、荷
重検出精度を上げるためには、柱状起歪体の高さを座屈
を生じない範囲である程度以上高くせざるを得す、その
ため、荷重変換器自体が大型化、高重量化してしまうば
かりでなく、その荷重変換器を用いて荷重測定゛を行な
う必要のある被測定対象物(例えば、鍛造機械、プレス
機械等)に適用できる範囲が制限されるという難点があ
った。
In this way, in the conventional load converter described above, in order to improve the load detection accuracy, the height of the columnar strain body must be increased to a certain level without causing buckling. Not only will the transducer itself become larger and heavier, but the range of applicability to the objects to be measured (for example, forging machines, press machines, etc.) that need to be used for load measurement will be limited. The problem was that it was restricted.

本発明は、上述した従来のひずみゲージ式荷重変換器の
欠点を解消すべくなされたもので、その目的とするとこ
ろは、小型、軽量で、座屈を生じる虞れがなく、高容量
に対応でき、測定精度の極めて高いひずみゲージ式荷重
変換器を提供することにある。
The present invention was made in order to eliminate the drawbacks of the conventional strain gauge type load transducer described above, and its objectives are to be small, lightweight, free from buckling, and compatible with high capacity. It is an object of the present invention to provide a strain gauge type load transducer that can perform high measurement accuracy and has extremely high measurement accuracy.

以下、本発明の実施例を図面をもとに説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図(蜀は、本発明に係る円柱起歪体の起歪部の斜視
図、同図(■3)は、同図(A)のd−d線矢視方向。
FIG. 3 (Shu is a perspective view of the strain-generating part of the cylindrical strain-generating body according to the present invention, and FIG. 3 (■3) is a direction taken along line dd in FIG. 3A.

断面図である。同図において、円柱起歪体の起歪体の起
歪部8は、その側周面より、円柱起歪体の荷重印加面(
図示せず)に垂直な中心軸9に向けて深さの異なる複数
個の穴01〜C8を穿設し、それぞれの穴01〜C8の
前記中心軸9に沿った底壁面10に、圧縮ひずみ検出用
ひずみゲージA1〜A8および引張りひずみ検出用ひず
みゲージDI〜D8をそれぞれ前記中心軸9に沿う方向
およびこれに直交する方向に向けて、例えば接着等の手
段にて添着する。この実施例の場合、深い穴C1,,0
3,05,07と浅い穴02 、04 。
FIG. In the same figure, the strain-generating portion 8 of the cylindrical flexure body is arranged so that the load application surface of the cylindrical flexure body (
A plurality of holes 01 to C8 having different depths are bored toward the central axis 9 perpendicular to The strain gauges A1 to A8 for detection and the strain gauges DI to D8 for tensile strain detection are attached in the direction along the central axis 9 and the direction perpendicular thereto, for example, by means of adhesive or the like. In this example, the deep hole C1,,0
3, 05, 07 and shallow holes 02, 04.

06.08とを交互に穿設しである。06.08 are drilled alternately.

第4図(Δ)は、第3図に示したひずみゲージによリポ
イー1−ストンブリッジを構成した回路図である。同図
において、中心軸9を中心として、対称位置に添着され
た圧縮ひずみ検出用ひずみゲージA1とA5 、A2と
A6をそれぞれ直列接続し、これらの直列回路を並列接
続してブリッジの一辺とし、同様に中心軸9を中心とし
て対称位置に添着された圧縮ひずみ検出用のひずみゲー
ジA3とA7.A、4.A8をそれぞれ直列接続し、こ
れらの直列回路を並列接続してブリッジの前記−辺(A
I、A5.A−2,A6より構成された)の対辺に相当
するブリッジの一辺とし、また引張ひすみ検出用ひずみ
ゲージDI 、D2.D5.D6のグループとD3.D
4.D7,1)8のグループを同様にブリッジの残る2
辺(対辺)としてそれぞれ回路接続し、全体として二重
のホビー1−ス1−ンブリツジを構成したものである。
FIG. 4 (Δ) is a circuit diagram in which a lipoey 1-stone bridge is constructed using the strain gauge shown in FIG. In the figure, compressive strain detection strain gauges A1 and A5, A2 and A6 attached at symmetrical positions with respect to the central axis 9 are connected in series, respectively, and these series circuits are connected in parallel to form one side of the bridge. Similarly, strain gauges A3 and A7 for detecting compressive strain are attached at symmetrical positions with respect to the central axis 9. A, 4. A8 are connected in series, and these series circuits are connected in parallel to form the - side (A
I, A5. One side of the bridge corresponds to the opposite side of A-2, A6), and strain gauges for detecting tensile strain DI, D2. D5. Group D6 and D3. D
4. D7, 1) Group of 8 is similarly connected to the remaining 2 of the bridge.
Each side (opposite side) is connected to the circuit, and the whole constitutes a double hobby 1-1-1 bridge.

ここで、ei  ばブリッジ電源電圧、eo は出力電
圧を示す。
Here, ei represents the bridge power supply voltage, and eo represents the output voltage.

このように構成された上記実施例において、円柱起歪体
に中心軸9方向に沿って、圧縮荷重が印加されると、起
歪部8は中心軸9に沿う方向には、圧縮ひずみを生じ、
圧縮ひずみ検出用ひずみゲへジA1−八8の抵抗値は減
少し、起歪部8の中心軸9に直交する方向には引張ひず
みを生じ、引張ひすみ検出用ひずみゲージD1〜D8の
抵抗値は増加する。而して、これらのひずみゲージは、
第4図(Nに示した如く、二重のホイートストンブリッ
ジ回路に構成されているため、起歪体8内の中心部と周
縁部の8箇所のひずみを平均して検出すとも、全体とし
ては、印加荷重に比例したひずみ出力を検出することが
できる。すなわち、第2図([))に示したように、中
心軸からの距離によってひずみが異なっている場合であ
っても、第1図FA)のb−b断面のような応力分布が
等しい箇所におい℃、印加荷重を検出するのと実質的に
等しい結果を得ることができる。このことは、本実施例
の如く構成することにより円柱起歪体の起歪部8の高さ
を低くすることができることを意味し、従って、荷重変
換器自体の小型、軽量化が実現できる。また、荷重変換
器を鍛造機械、プレス機械等に組込んで、金型に負荷さ
れる荷重を測定する場合においては、作動ストロークが
制限されているので、荷重変換器の装着スペースがあま
りとれないことが多いが、本発明によれば荷重変換器を
薄型のものとすることができ、適用範囲を大幅に拡張す
ることができる。更にまた柱状起歪体の起歪部8の高さ
を低くできるから、座屈を生ずる虞れは全くない。
In the above embodiment configured in this way, when a compressive load is applied to the cylindrical flexure body along the direction of the central axis 9, the flexure element 8 produces compressive strain in the direction along the central axis 9. ,
The resistance value of strain gauges A1-88 for compressive strain detection decreases, and tensile strain is generated in the direction perpendicular to the central axis 9 of strain-generating portion 8, and the resistance of strain gauges D1-D8 for tensile strain detection decreases. The value increases. Therefore, these strain gauges are
As shown in FIG. 4 (N), since it is configured as a double Wheatstone bridge circuit, even if the strain at eight locations in the center and the periphery of the strain body 8 is averaged and detected, the overall , it is possible to detect the strain output proportional to the applied load.In other words, even if the strain differs depending on the distance from the central axis, as shown in Figure 2 ([)), the strain output in Figure 1 can be detected. It is possible to obtain substantially the same result as detecting the applied load at a location where the stress distribution is equal, such as the bb section of FA). This means that by configuring as in this embodiment, the height of the strain-generating portion 8 of the cylindrical strain-generating body can be reduced, and therefore, the load converter itself can be made smaller and lighter. In addition, when a load converter is installed in a forging machine, press machine, etc. to measure the load applied to a mold, the operating stroke is limited, so there is not much space for installing the load converter. However, according to the present invention, the load transducer can be made thin, and the range of application can be greatly expanded. Furthermore, since the height of the strain-generating portion 8 of the columnar strain-generating body can be reduced, there is no possibility of buckling occurring.

第4図(B)は、ひずみゲージの他の結線例を示づ回路
図である。この実施例の場合、第3図CB)に力した8
個のそれぞれの穴01〜C8に各4枚の乙ずみゲージ(
圧縮ひずみ検出用:2枚、引張ひづみ検出用:2枚)を
添着し、各穴毎にそれぞれ汀イードストンブリッジB1
〜B8を構成し、こオ′ら8個のポイートス1〜ンプリ
ツジB1〜B8を1列に接続することにより、1個のホ
イートスl−)ブリッジを構成する場合よりも検出精度
を高めブ2ものである。すなわち、1個のポイー)−ス
)−ンフリッジを用いたときよりも8個のホイー)−ス
トニブリッジを用いたときの方が二乗誤差を考慮すイと
、理論上ゲ倍精度を向上せしめることができイ尚、本発
明は、」二連し且つ実施例に示したもCに何ら限定され
るものではなく、本発明の要旨不逸脱しない範囲で種々
変形実施が可能である。
FIG. 4(B) is a circuit diagram showing another example of strain gauge connections. In this example, the 8
4 Otsumi gauges (
For compressive strain detection: 2 sheets, for tensile strain detection: 2 sheets) are attached to each hole, respectively.Eadstone Bridge B1
By configuring B1 to B8 and connecting these eight Points 1 to B1 to B8 in a row, the detection accuracy is improved compared to the case of configuring one Wheats L-) bridge. It is. In other words, it is theoretically possible to take into account the squared error and improve the double precision when using 8 wheel bridges than when using 1 point bridge. However, the present invention is not limited to the two embodiments shown in Example C, and various modifications can be made without departing from the gist of the present invention.

例えば、上記実施例においては、起歪部8に、中心軸9
に対して対称であるようにひずみゲージ添着用の穴01
〜08を穿設した例を示したが、必らずしも前記穴は対
称的でなくともよいし、袷数個の穴の深さが全部具なっ
ていてもよい。
For example, in the above embodiment, the center axis 9 is attached to the strain generating portion 8.
Hole 01 for attaching the strain gauge so that it is symmetrical to
Although an example in which holes .about.08 are drilled is shown, the holes do not necessarily have to be symmetrical, and the depths of several holes may be the same.

また、起歪体8の形状は、円柱に限らず、円筒、ト  
 角柱、角筒等の形状であってもよい。
Further, the shape of the strain body 8 is not limited to a cylinder, but may be a cylinder or a cylinder.
The shape may be a prism, a rectangular tube, or the like.

以上詳述したように、本発明によれば、高い荷重検出精
度を維持しながら、起歪体の高さを低くし   するこ
とができるので、座屈の虞れが皆無となり、≧   小
型、軽1;で高容量のものが得られ、適用範囲の極めて
広いひずみゲージ式荷重変換器を提供することができる
As detailed above, according to the present invention, it is possible to reduce the height of the strain-generating body while maintaining high load detection accuracy, so there is no risk of buckling. 1; a high capacity can be obtained, and a strain gauge type load transducer with an extremely wide range of application can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)および(I3)は、従来のひずみゲージ式
荷重変換器の円柱起歪体の正面図および同図(A)のa
−a断面とb−bVfT面における応力分布図、第2、
   図(A)は、第1図囚に示すものより高さの低い
円柱起歪体の正面図、第2図(B)は、同図(A)の円
柱起歪体中間部c−c断面における応力分布図、第3図
(A)および(Blは、本発明の一実施例の構成を示す
起歪部の斜視図および同図(A)のd−d線矢視方向断
面図、第4図(A)および(r+lは、本発明に係るひ
ずみゲージの2つの結線例を示すそれぞれ回路図である
。 8 ・・・起歪部、  9・・・・・円柱起歪体の中心
軸、】0・ ・穴の底面、 01〜C8・・・穴、Δ」
〜へ8 ・圧縮ひずみ検出用ひずみゲージ、D 1〜D
 8  ・・引張ひずみ検出用O・ずみゲージ、81〜
B8 ・・ブリッジ回路、 el・ ブリッジ電源電圧、 eo  ・・・・・ブリッジ出力電圧。 第  1   図 (A) \4 第  2   図 第  3 (A) 第   4 (A)
Figures 1 (A) and (I3) are a front view of a cylindrical strain body of a conventional strain gauge type load transducer and a of Figure 1 (A).
- Stress distribution diagram in the a cross section and the b-b VfT plane, 2nd,
Figure (A) is a front view of a cylindrical flexure element with a lower height than that shown in Figure 1, and Figure 2 (B) is a cross section cc of the middle part of the cylindrical flexure element in Figure 1 (A). 3(A) and (Bl) are a perspective view of a strain-generating part showing the structure of an embodiment of the present invention, and a sectional view taken along line dd in FIG. 3(A), 4 (A) and (r+l) are respective circuit diagrams showing two connection examples of the strain gauge according to the present invention. 8... Strain-generating portion, 9... Central axis of cylindrical strain-generating body ,】0・・Bottom of hole, 01~C8・・hole, Δ”
~8 ・Strain gauge for compressive strain detection, D1~D
8...O strain gauge for tensile strain detection, 81~
B8: Bridge circuit, el: Bridge power supply voltage, eo: Bridge output voltage. Figure 1 (A) \4 Figure 2 Figure 3 (A) 4 (A)

Claims (1)

【特許請求の範囲】[Claims] Fil  荷重が印加されると弾性変形する柱状起歪体
にひずみゲージを添着し、そのひずみゲージによって印
加荷重に応じた電気信号を得るひずみゲージ式荷重変換
器において、前記柱状起歪体の側周面より前記柱状起歪
体の荷重印加面に垂直な中心軸に向けて複数個の深さの
異なる穴を穿設し、前記各穴の前記中心軸に沿った底壁
面に、ひずみゲージを前記中心軸に沿う方向とこれと直
交する方向に向けて添着し、前記ひずみゲージによりホ
イートストンブリッジを構成し、前記ホイートストンブ
リッジ回路より、前記印加荷重に応じた電気信号を得る
ようにしたことを特徴とするひずみゲージ式荷重変換器
Fil In a strain gauge type load transducer in which a strain gauge is attached to a columnar flexure element that elastically deforms when a load is applied, and the strain gauge obtains an electric signal according to the applied load, the side periphery of the columnar flexure element is A plurality of holes with different depths are bored from the surface toward the central axis perpendicular to the load application surface of the columnar strain body, and a strain gauge is installed on the bottom wall surface of each hole along the central axis. The strain gauge is attached in a direction along the central axis and in a direction perpendicular to the central axis, and the strain gauge constitutes a Wheatstone bridge, and the Wheatstone bridge circuit obtains an electric signal according to the applied load. Strain gauge type load transducer.
JP19937882A 1982-11-13 1982-11-13 Strain gauge type load converter Pending JPS5988632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19937882A JPS5988632A (en) 1982-11-13 1982-11-13 Strain gauge type load converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19937882A JPS5988632A (en) 1982-11-13 1982-11-13 Strain gauge type load converter

Publications (1)

Publication Number Publication Date
JPS5988632A true JPS5988632A (en) 1984-05-22

Family

ID=16406760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19937882A Pending JPS5988632A (en) 1982-11-13 1982-11-13 Strain gauge type load converter

Country Status (1)

Country Link
JP (1) JPS5988632A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338485A (en) * 2011-06-10 2012-02-01 常州大学 Safety protection method and device of driving unit of groove type solar heat generating condenser
CN114370960A (en) * 2021-12-29 2022-04-19 浙江清华柔性电子技术研究院 Pull rod load measuring method, device and system and storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338485A (en) * 2011-06-10 2012-02-01 常州大学 Safety protection method and device of driving unit of groove type solar heat generating condenser
CN114370960A (en) * 2021-12-29 2022-04-19 浙江清华柔性电子技术研究院 Pull rod load measuring method, device and system and storage medium
CN114370960B (en) * 2021-12-29 2024-01-26 浙江清华柔性电子技术研究院 Pull rod load measuring method, device, system and storage medium

Similar Documents

Publication Publication Date Title
JP2909729B2 (en) 6-component load cell
US3411348A (en) Electronic dynamometer
US6575025B1 (en) Method and apparatus for measuring forces in the presence of external pressure
US3088083A (en) Transducer
US11320326B2 (en) Force sensor and sensing element thereof
JPS5988632A (en) Strain gauge type load converter
US3315202A (en) Load sensing device
US11035746B2 (en) Multi-axis force sensor capable of reducing influence on the other when measuring one of the axial force and torque
US4702329A (en) Load cell
EP3295141B1 (en) Multi axis load cell body
US2997875A (en) Balance for sensing axial forces
EP1925925A2 (en) Sensor and manufacturing method thereof
JPH0194234A (en) Load converter
US3871216A (en) Dynamometer apparatus
HU189359B (en) Complex meassuring device for high-accuracy strain gauge force meters
JP2753483B2 (en) Load transducer for detecting vertical force acting on road surface of automobile
JP2614743B2 (en) Load transducer
JP2527551B2 (en) Thin load cell
JP3060259B2 (en) 3 component force meter
JP4464005B2 (en) High rigidity load transducer
JPS59187205A (en) Shearing type strain detector
JPS6342436A (en) Strain gauge type physical quantity-electric energy transducer
JPH07128157A (en) Load converter
JPS58150816A (en) Strain detector
JPH0127072Y2 (en)