JPH0194234A - Load converter - Google Patents
Load converterInfo
- Publication number
- JPH0194234A JPH0194234A JP25066487A JP25066487A JPH0194234A JP H0194234 A JPH0194234 A JP H0194234A JP 25066487 A JP25066487 A JP 25066487A JP 25066487 A JP25066487 A JP 25066487A JP H0194234 A JPH0194234 A JP H0194234A
- Authority
- JP
- Japan
- Prior art keywords
- load
- strain
- axis
- strain gauge
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005553 drilling Methods 0.000 claims abstract description 11
- 238000001514 detection method Methods 0.000 claims description 26
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 8
- 238000005259 measurement Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Measurement Of Force In General (AREA)
Abstract
Description
【発明の詳細な説明】
(a) 技術分野
本発明は、荷重変換器に関し、より詳細には、荷重軸に
沿って荷重導入部、受感部および荷重支持部が順に連な
り、前記荷重導入部に印加された被測定荷重をひずみゲ
ージによって電気量に変換して検出する荷重変換器に関
するものである。Detailed Description of the Invention (a) Technical Field The present invention relates to a load converter, and more particularly, a load introduction section, a sensing section, and a load support section are successively connected along a load axis, and the load introduction section The present invention relates to a load converter that converts a load to be measured applied to a load into an electrical quantity using a strain gauge and detects it.
(b) 従来技術
従来のこの種のひずみゲージを用いた荷重変換器は、第
5図に示すような角柱または円柱等の柱状起歪体の互い
に反対側の側周面上に、荷重軸(荷重印加軸)に沿う方
向とこれと直交する方向に受感軸を向けてひずみゲージ
SG1.Oaと5G20aおよび図には現われていない
ひずみゲージ5G10bと5G20bを添着し、これら
ひずみゲージ5G10a 、5G10b 、5G20a
。(b) Prior Art A conventional load transducer using this type of strain gauge has a load axis ( The strain gauge SG1. Oa and 5G20a and strain gauges 5G10b and 5G20b, which are not shown in the figure, are attached, and these strain gauges 5G10a, 5G10b, 5G20a are attached.
.
S G 20bによりホイートストンブリッジ回路(図
示せず)を構成して、このホイートストンブリッジ回路
より荷重導入部]、aに印加された荷重に応じた電気信
号(出力)を得るように構成されている。A Wheatstone bridge circuit (not shown) is configured by the S G 20b, and an electric signal (output) corresponding to the load applied to the load introducing section], a is obtained from this Wheatstone bridge circuit.
しかしながら、この第5図に示す柱状タイプの荷重変換
器には、次のような欠点がある。However, the columnar type load converter shown in FIG. 5 has the following drawbacks.
第1には、大きなひずみ出力が得られないという欠点が
ある。First, there is a drawback that a large strain output cannot be obtained.
即ち、この起歪体1の荷重導入部1aと荷重支持部1b
との間に圧縮荷重が印加されたと仮定したとき、この起
歪体1の中間部の起歪部ICは、荷重軸方向(図におい
ては上下方向)には圧縮されて圧縮ひずみ(以下荷重軸
方向のひずみを「縦ひずみ」という場合がある)が生じ
、荷重軸方向と直交する方向(図においては左右方向)
には膨張されて引張ひすみ(以下この荷重軸方向に直交
する方向のひずみを「横ひずみ」という場合がある)が
生じる。このときの、横ひずみ/縦ひずみは、その起歪
体の材質固有のポアソン比によって決まり、例えば鋼の
場合0.3である。従って、縦ひずみを検出するひずみ
ゲージ5G10a。That is, the load introducing portion 1a and the load supporting portion 1b of this strain body 1
When it is assumed that a compressive load is applied between Strain in the direction (sometimes referred to as "longitudinal strain") occurs in the direction perpendicular to the load axis direction (left and right direction in the figure).
is expanded, resulting in tensile strain (hereinafter, strain in the direction perpendicular to the load axis direction may be referred to as "transverse strain"). The transverse strain/longitudinal strain at this time is determined by the Poisson's ratio specific to the material of the strain body, and is, for example, 0.3 in the case of steel. Therefore, strain gauge 5G10a detects longitudinal strain.
5G10bと横ひずみを検出するひずみゲージS G
20a 、 S G 20bをもってホイートストンブ
リッジ回路を構成したとしても、縦ひずみを検出するひ
ずみゲージ1枚で得られる出力の2.6倍にしかならず
、ひずみ出力としては充分とはいえないのである。5G10b and strain gauge S G that detects lateral strain
Even if a Wheatstone bridge circuit is constructed with SG 20a and SG 20b, the output is only 2.6 times the output obtained with one strain gauge for detecting longitudinal strain, which is not sufficient as a strain output.
第2には、荷重−ひずみ(応力)特性が非直線性を示す
という欠点がある。The second drawback is that the load-strain (stress) characteristics exhibit nonlinearity.
これは、上述のように起歪体1の荷重導入部1aに例え
ば圧縮荷重が印加されると、起歪部1cが荷重軸方向に
縮み、それに従って荷重軸と直交する方向に膨らむ(断
面積が増加する)結果、荷重軸方向のひずみを減少させ
る作用を果たすからである。This is because when, for example, a compressive load is applied to the load introducing portion 1a of the strain-generating body 1 as described above, the strain-generating portion 1c contracts in the direction of the load axis, and accordingly expands in the direction perpendicular to the load axis (the cross-sectional area (increases), which acts to reduce the strain in the axial direction of the load.
第3には、荷重軸方向と異なる方向から作用する横荷重
や偏荷重(偏心荷重)成分の影響を大きく受け、これが
荷重軸方向の荷重測定値に誤差成分として混入してしま
うという欠点がある。Thirdly, it has the disadvantage that it is greatly influenced by lateral loads and eccentric load components that act from a direction different from the load axis direction, and this is mixed in as an error component in the load measurement value in the load axis direction. .
即ち、ひずみゲージ(S G 10a−S G 20b
)が中心軸(荷重軸)から離れた起歪部ICの外表面に
添着されており、起歪体1が横荷重(または偏荷重)を
受けて曲がり、一方の外表面が圧縮されこれと180°
反対側の他方の外表面が引張られるため、それに対応す
るひずみゲージ(S G 10a・・・5G20b)も
圧縮されあるいは伸張される。That is, strain gauges (SG 10a-SG 20b
) is attached to the outer surface of the strain-generating part IC that is away from the central axis (load axis), and when the strain-generating body 1 bends under the lateral load (or uneven load), one of the outer surfaces is compressed and 180°
Since the other outer surface on the opposite side is stretched, the corresponding strain gauges (S G 10a...5G20b) are also compressed or stretched.
このひずみゲージの圧縮と、伸張は、ホイートストンブ
リッジ回路でキャンセルするように回路を構成すること
は可能であるが、起歪部ICの外表面の圧縮ひずみ、引
張ひすみは必らずしも理論通りキャンセルし得るように
は生ぜず、結局、横荷重、偏荷重の成分が荷重軸方向の
荷重成分に混入され、測定精度を低下させるのである。It is possible to configure a circuit so that the compression and expansion of the strain gauge are canceled by a Wheatstone bridge circuit, but the compressive strain and tensile strain on the outer surface of the strain generating part IC are not necessarily theoretical. In the end, components of the lateral load and unbalanced load are mixed into the load component in the axial direction of the load, reducing measurement accuracy.
ところで、このような多くの欠点を持つ中実(無空)の
柱状起歪体タイプの荷重変換器を改良すべく考えられた
ものとして、第6図および第7図に正面図および側面図
をもって示すような荷重変換器(以下「参考例の変換器
」ということがある)がある。By the way, Figures 6 and 7 show a front view and a side view of a load transducer designed to improve the solid (empty) columnar strain body type load transducer, which has many drawbacks. There is a load converter as shown (hereinafter sometimes referred to as "reference example converter").
この参考例に示す荷重変換器2は、荷重導入部3、受感
部4および荷重支持部としての台座部5が順に連なり、
全体として一体に形成されている。In the load converter 2 shown in this reference example, a load introducing section 3, a sensing section 4, and a pedestal section 5 as a load supporting section are successively connected.
It is integrally formed as a whole.
受感部4と荷重導入部3および台座部5の各連設・ 部
には、それぞれ受感部4、荷重導入部3および台座部5
の各断面積より小さな断面積とすべく、穿孔および摺割
加工を施してくびれ部6および7を形成しである。そし
て、受感部4の中央部には、荷重軸X上の受感部4の荷
重軸X方向中央部を中心とする円孔4aを穿設し、この
円孔4aの内壁面における荷重軸Xが通る上壁面および
下壁面には、横ひずみ検出用のひずみゲージ5G40a
。The sensing part 4, the load introducing part 3, and the pedestal part 5 are connected to each other.
The constricted portions 6 and 7 are formed by drilling and slotting so that the cross-sectional area is smaller than that of each cross-sectional area. A circular hole 4a is bored in the central part of the sensing part 4, and the circular hole 4a is centered on the central part of the sensing part 4 in the direction of the load axis X on the load axis X. Strain gauges 5G40a for transverse strain detection are installed on the upper and lower wall surfaces through which X passes.
.
40bを、一方円孔4aの内壁面における荷重軸Xと直
交する軸が通る左壁面および右壁面には、縦ひずみ検出
用のひずみゲージ5G30a。Strain gauges 5G30a for detecting longitudinal strain are provided on the left and right wall surfaces through which an axis perpendicular to the load axis X on the inner wall surface of the circular hole 4a passes through 40b.
30bをそれぞれ接着しである。30b are glued together.
このような構成よりなる参考例の作用について説明する
。The operation of the reference example having such a configuration will be explained.
被測定荷重(例えば圧縮荷重)が荷重導入部3に印加さ
れると、該荷重はくびれ部6で集中された後、受感部4
における円孔4aの上端近傍部に集中して作用する。一
方、印加荷重に抗する反力は、台座部5からくびれ部7
を介して集中されて受感部4の円孔4aの下端近傍部に
作用する。すると、円孔4aの上端近傍部と下端近傍部
の受感部4に力が集中するため、受感部4が押圧されて
円孔4aが楕円形状に変形する。従って、縦ひずみ検出
用ひずみゲージ5G30aと30bは縮み横ひずみ検出
用のひずみゲージ5G40aと5G40bは伸びる。そ
の結果、ひずみゲージ5G30aと5G30b並びにひ
ずみゲージ5G40a と5G40bとで構成されたホ
イートス1ヘンブリッジ回路(図示せず)の出力端から
は、印加荷重に対応した電気信号を取り出すことができ
る。When a load to be measured (for example, a compressive load) is applied to the load introduction section 3, the load is concentrated at the constriction section 6 and then transferred to the sensing section 4.
It acts concentratedly on the vicinity of the upper end of the circular hole 4a. On the other hand, the reaction force against the applied load is generated from the pedestal part 5 to the constriction part 7.
, and acts on the vicinity of the lower end of the circular hole 4a of the sensing section 4. Then, the force is concentrated on the sensing parts 4 near the upper end and the lower end of the circular hole 4a, so the sensing parts 4 are pressed and the circular hole 4a is deformed into an elliptical shape. Therefore, the strain gauges 5G30a and 30b for detecting longitudinal strain are contracted, and the strain gauges 5G40a and 5G40b for detecting transverse strain are expanded. As a result, an electrical signal corresponding to the applied load can be extracted from the output end of the Wheat's 1 Henbridge circuit (not shown), which is composed of strain gauges 5G30a and 5G30b and strain gauges 5G40a and 5G40b.
このように構成され且つ作用する参考例の荷重変換器2
において、例えば圧縮荷重を受けると、受感部4におけ
る円孔4aの左右両側部4b。Reference example load converter 2 that is configured and operates in this way
For example, when a compressive load is applied, the left and right sides 4b of the circular hole 4a in the sensing section 4.
4cは、圧縮されつつ外方に湾曲するように変形するた
め、断面積変化が殆んど生せず、第5図に示した従来例
の場合のように、断面積の増加による縦ひずみの抑制作
用が殆んどないため、荷重−ひずみ特性は、きわめて良
好な直線性を示すようになる。4c is deformed so as to curve outward while being compressed, so there is almost no change in cross-sectional area, and as in the case of the conventional example shown in Fig. 5, longitudinal strain due to increase in cross-sectional area does not occur. Since there is almost no suppressing effect, the load-strain characteristics come to show extremely good linearity.
また、この参考例に示す荷重変換器2は、円孔4aのひ
ずみゲージ40a 、40bが接着された上端部、下端
部とひずみゲージ30a 、30bが接着された左右両
端部とが、はぼ同程度に変形する(但し、極性は逆とな
る)ため、縦ひずみと横ひずみの比がほぼ同程度となり
、その結果、4つのひずみゲージによって得られるひず
み出力は、1つのひずみゲージによって得られるひずみ
出力の約4倍近くまで増大される。In addition, in the load transducer 2 shown in this reference example, the upper and lower ends of the circular hole 4a to which the strain gauges 40a and 40b are glued, and the left and right ends to which the strain gauges 30a and 30b are glued are almost the same. As a result, the ratio of longitudinal strain to transverse strain is approximately the same, and as a result, the strain output obtained by four strain gauges is equal to the strain output obtained by one strain gauge. The output is increased to nearly four times the output.
しかしながら、このような利点をもつ参考例の荷重変換
器にも、次のような欠点がある。However, the load transducer of the reference example having such advantages also has the following drawbacks.
第1には、第5図に示す荷重変換器と同様の理由により
、横荷重や偏荷重の影響を受は易く、これが荷重軸X方
向の荷重測定値に誤差となって混入するという欠点があ
る。First, for the same reason as the load converter shown in Fig. 5, it is easily affected by lateral loads and unbalanced loads, and this has the disadvantage that it causes an error in the load measurement value in the load axis X direction. be.
第2には、円孔4aの内周面、即ち円弧状面にひずみゲ
ージ5G30a等を接着する構成となっているため、ひ
ずみゲージ5G30a等の接着作業が困難であると共に
所定の位置に正確に接着しにくいという問題があるほか
、予めある曲率をもって湾曲された状態で接着されてい
るため、疲労寿命が短くなり、また経年変化も生じ易く
、測定精度が低下するという欠点がある。Second, since the strain gauges 5G30a and the like are bonded to the inner circumferential surface of the circular hole 4a, that is, the arcuate surface, it is difficult to bond the strain gauges 5G30a and the like, and it is difficult to place the strain gauges 5G30a and the like in precise positions. In addition to the problem that it is difficult to bond, there are also drawbacks such as shortened fatigue life because it is bonded in a pre-curved state, and easy to change over time, reducing measurement accuracy.
第3には、受感部4の外形が大型化し易いという欠点が
ある。Thirdly, there is a drawback that the outer shape of the sensing section 4 tends to increase in size.
即ち、くびれ部6,7の形状(断面)は細い(断面積が
小さい)方が、受感部4をその円孔4aが円形状から楕
円形状になるように変形させるのに良いのであるが、該
くびれ部6,7の断面積は、定格荷重によって規制され
る限度以下に小さくできない。そのため、縦ひずみと横
ひずみの比率がほぼ等しくなるようにするには、円孔4
aの直径を大きくする以外に方法がない。ところが、円
孔4aを大きくすると、荷重を支える受感部4の左右両
側部4b 、4cの断面積も定格荷重によって規制され
る大きさにしなければならないから必然的に受感部4の
外形が大型化してしまうという欠点につながるのである
。That is, the thinner the shape (cross-section) of the constrictions 6 and 7 (the smaller the cross-sectional area), the better for deforming the sensing part 4 so that its circular hole 4a changes from a circular shape to an elliptical shape. , the cross-sectional area of the constrictions 6, 7 cannot be made smaller than the limit regulated by the rated load. Therefore, in order to make the ratio of longitudinal strain and transverse strain almost equal, circular hole 4
There is no other way than to increase the diameter of a. However, if the circular hole 4a is made larger, the cross-sectional area of the left and right sides 4b and 4c of the sensing section 4 that supports the load must also be made to a size that is regulated by the rated load, so the external shape of the sensing section 4 will inevitably change. This leads to the disadvantage of increasing the size.
(c) 目的
本発明は、上述の事情に鑑みなされたもので、その目的
とするところは、大きなひずみ出力が得られ、しかも荷
重−ひずみ特性が良好な直線性を示し、横荷重や偏荷重
に対し殆んど影響を受けることがなく、ひずみゲージの
添着作業が容易で、経年変化や疲労破壊を生じ難く、そ
の上、第6図、第7図に示す参考例に比べかなり小形の
荷重変換器を提供することにある。(c) Purpose The present invention was made in view of the above-mentioned circumstances, and its purpose is to obtain a large strain output, exhibit good linearity in load-strain characteristics, and suppress lateral loads and unbalanced loads. It is hardly affected by strain gauges, the work of attaching strain gauges is easy, aging and fatigue failure are less likely to occur, and in addition, the load is much smaller than the reference examples shown in Figures 6 and 7. The purpose is to provide a converter.
(d) 構成
このような目的を達成させるべく、第1の発明(特許請
求の範囲第1項に記載の発明)は、荷重軸に沿って荷重
導入部、受感部および荷重支持部が順に連なり、前記荷
重導入部に印加された被測定荷重を電気量に変換して検
出する荷重変換器において、前記受感部と前記荷重導入
部および前記荷重支持部との間にそれぞれ前記受感部よ
りも前記荷重軸に直交する断面積が小さく且つ前記荷重
軸と同軸の伝達部を形成し、柱状をなす前記受感部の互
いに反対側の側面から前記荷重軸に直交する軸方向に沿
って前記荷重軸近傍に達する1対の座ぐり穴を穿設する
ことによって該1対の座ぐり穴の底部間に起歪部を形成
し、前記起歪部の前記荷重軸方向に受感軸を向けて縦ひ
ずみ検出用のひずみゲージを添着すると共に、前記起歪
部の前記荷重軸と直交する方向に受感軸を向けて横ひず
み検出用のひずみゲージを添着し、前記横ひずみ検出用
のひずみゲージの添着部位におけるひずみ量と前記縦ひ
ずみ検出用のひずみゲージの添着部位におけるひずみ量
の比がポアソン比以上となるように前記起歪部の断面形
状を形成し、前記ひずみゲージによって前記荷重導入部
に印加された被測定荷重の大きさを電気量に変換して検
出するように構成したものであり、また、第2の発明(
特許請求の範囲第2項記載の発明)は、荷重軸に沿って
荷重導入部、受感部および荷重支持部が順に連なり、前
記荷重導入部に印加された被測定荷重を電気量に変換し
て検出する荷重変換器において、前記受感部と前記荷重
導入部および前記荷重支持部との間にそれぞれ前記受感
部よりも前記荷重軸に直交する断面積が小さく且つ前記
荷重軸と同軸の伝達部を形成し、柱状をなす前記受感部
の互いに反対側の側面から前記荷重軸に直交する軸方向
に沿って前記荷重軸近傍に達する1対の座ぐり穴を穿設
することによって該1対の座ぐり穴の底部間に起歪部を
形成し、前記起歪部の前記荷重軸方向に受感軸を向けて
縦ひずみ検出用のひずみゲージを添着すると共に、前記
起歪部の前記荷重軸と直交する方向に受感軸を向けて横
ひずみ検出用のひずみゲージを添着し、前記起歪部にお
ける前記横ひずみ検出用ひずみゲージの添着部位の側方
近傍に、前記横ひずみ検出用のひずみゲージの添着部位
におけるひずみ量と前記縦ひずみ検出用のひずみゲージ
の添着部位におけるひずみ量の比がポアソン比以上とな
るように調整する小径の調整孔を穿設し、前記ひずみゲ
ージによって前記荷重導入部に印加された被測定荷重を
電気量に変換して検出するように構成したものである。(d) Structure In order to achieve such an object, the first invention (the invention set forth in claim 1) has a structure in which a load introduction part, a sensing part, and a load support part are sequentially arranged along a load axis. In a load converter that converts the load to be measured applied to the load introduction part into an electrical quantity and detects the load, the sensing part is connected between the sensing part and the load introduction part and the load support part, respectively. The cross-sectional area perpendicular to the load axis is smaller than that and forms a transmitting part coaxial with the load axis, and is transmitted along an axial direction perpendicular to the load axis from mutually opposite sides of the columnar sensing part. By drilling a pair of counterbore holes reaching near the load axis, a strain-generating portion is formed between the bottoms of the pair of counterbore holes, and a sensing axis is formed in the direction of the load axis of the strain-generating portion. A strain gauge for detecting longitudinal strain is attached with the sensitive axis facing the direction perpendicular to the load axis of the strain generating part, and a strain gauge for detecting transverse strain is attached with the sensitive axis facing in the direction perpendicular to the load axis of the strain generating part. The cross-sectional shape of the strain-generating portion is formed such that the ratio of the amount of strain at the attached portion of the strain gauge to the amount of strain at the attached portion of the strain gauge for longitudinal strain detection is equal to or higher than Poisson's ratio, and the strain gauge is used to measure the load. It is configured to convert the magnitude of the load to be measured applied to the introduction part into an electrical quantity and detect it, and also according to the second invention (
In the invention described in claim 2, a load introduction section, a sensing section, and a load support section are successively connected along a load axis, and the load to be measured applied to the load introduction section is converted into an electrical quantity. In the load transducer that detects the load, the sensing part, the load introducing part, and the load supporting part each have a smaller cross-sectional area perpendicular to the load axis than the sensing part and are coaxial with the load axis. A pair of counterbore holes are formed from opposite sides of the pillar-shaped sensing part to form a transmission part and reach near the load axis along an axial direction perpendicular to the load axis. A strain-generating portion is formed between the bottoms of a pair of counterbore holes, and a strain gauge for longitudinal strain detection is attached with the sensing axis of the strain-generating portion facing in the direction of the load axis. A strain gauge for transverse strain detection is attached with the sensitive axis directed in a direction perpendicular to the load axis, and the transverse strain detection strain gauge is attached to the strain generating portion in the vicinity of the side of the attachment portion of the strain gauge for transverse strain detection. A small-diameter adjustment hole is drilled to adjust the ratio of the strain amount at the attachment site of the strain gauge for vertical strain detection to the strain amount at the attachment site of the strain gauge for longitudinal strain detection to be equal to or higher than Poisson's ratio. The load to be measured applied to the load introduction part is converted into an electrical quantity and detected.
以下、本発明に係る実施例を、添付図面を参照しつつ説
明する。Embodiments of the present invention will be described below with reference to the accompanying drawings.
第1図、第2図および第3図は、いずれも本発明に係る
荷重変換器の一実施例の構成を示すもので、第1図は、
正面図、第2図は、第1図A−A線矢視方向断面図、第
3図は、第1図B−B線矢視力向断面図である。FIG. 1, FIG. 2, and FIG. 3 all show the configuration of an embodiment of the load converter according to the present invention, and FIG.
A front view, FIG. 2 is a cross-sectional view taken along the line A--A in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line B--B in FIG.
第1図〜第3図において、荷重変換器8は、荷重導入部
9と受感部10と荷重支持部としての台座部11とが上
から順に連設され、全体が1つの材料(丸棒)を削成す
ることによって一体に形成されている。In FIGS. 1 to 3, the load converter 8 has a load introducing section 9, a sensing section 10, and a pedestal section 11 as a load supporting section arranged in sequence from above, and is made entirely of one material (a round bar). ) is formed in one piece by cutting away.
受感部10と荷重導入部9および台座部11−の各連設
部には、それぞれ受感部10、荷重導入部9および台座
部11の各断面積よりも小さな断面積とすべく、互いに
180°反対側の側周面から所定の厚み、即ち定格荷重
が印加されたとき充分に耐え得る断面積を確保し得る厚
みを残すような深さまで摺割加工を施して伝達部として
のくびれ部12および13を形成しである。The sensing part 10, the load introduction part 9, and the pedestal part 11- are connected to each other so that the cross-sectional area is smaller than that of the sensing part 10, the load introduction part 9, and the pedestal part 11, respectively. The constricted part as a transmission part is cut from the side circumferential surface on the 180° opposite side to a depth that leaves a predetermined thickness, that is, a thickness that can ensure a cross-sectional area that can sufficiently withstand when the rated load is applied. 12 and 13 are formed.
受感部10の正面中央部には、荷重軸X上と受感部10
の荷重軸X方向中央部を通る、即ち荷重軸又とこの荷重
軸Xに直交する軸Yとの交点を円中心とする1対の座ぐ
り穴14および15を、受感部1oの180°反対側の
外側周面から荷重軸X近傍に達する深さまで穿設するこ
とによって該1対の座ぐり穴14−,15の底部間に所
定の一様の厚みを有する起歪部16を形成する。At the center of the front of the sensing section 10, there are lines on the load axis
A pair of counterbore holes 14 and 15 whose circular center is the intersection of the load axis and the axis Y perpendicular to the load axis X, passing through the center in the direction of the load axis A strain-generating portion 16 having a predetermined uniform thickness is formed between the bottoms of the pair of counterbore holes 14-, 15 by drilling from the outer peripheral surface on the opposite side to a depth reaching near the load axis X. .
上記円形状起歪部16の両面(座ぐり穴14゜15の底
面)には、荷重軸X上であって、荷重導入部9寄りおよ
び台座部1]寄りの部位にそれぞれ荷重軸X方向に受感
軸を向けて、表裏各1対(合計2対)の縦ひずみ検出用
のひずみゲージ5G1a 、5G2aおよび5G1b
、5G2bを接着、蒸着、スパッタリング、その他の手
段によって添着する。On both sides of the circular strain-generating portion 16 (bottoms of the counterbore holes 14 and 15), on the load axis Strain gauges 5G1a, 5G2a, and 5G1b for longitudinal strain detection, one pair each on the front and back (total 2 pairs), with the sensitive axis facing
, 5G2b is applied by gluing, vapor deposition, sputtering, or other means.
一方、荷重軸Xに対し対称部位に、それぞれ荷重軸又と
直交する軸線Z方向に受感軸を向けて、表裏各1対(合
計2対)の横ひずみ検出用のひずみゲージ5G3a 、
5G4aおよびゲージ5G3b、SG4.bを添着する
。On the other hand, a pair of strain gauges 5G3a for detecting transverse strain (two pairs in total), one pair each on the front and back sides (two pairs in total), are placed at symmetrical positions with respect to the load axis X, with their sensing axes facing the axis Z direction perpendicular to the load axis.
5G4a and gauge 5G3b, SG4. Attach b.
上述の起歪部16における横ひずみ検出用のひずみゲー
ジ5G3a 、5G3bおよび5G4a。Strain gauges 5G3a, 5G3b, and 5G4a for detecting lateral strain in the above-mentioned strain generating section 16.
5G4bの添着部位の側方(受感軸に直交する方向の両
側)近傍に、上記縦ひずみ検出用のひずみゲージ5G1
a 、5G2aおよび5Gib、5G2bの添着部位と
、上記槽ひずみ検出用のひずみゲージ5G3a 、5G
4aおよび5G3b 、5G4bの添着部位におけるひ
ずみ量がほぼ同程度となるように、起歪部断面(特に、
この場合、幅寸法)を調整する小径の調整孔17.18
および19.20を穿設しである。A strain gauge 5G1 for detecting the longitudinal strain is installed near the side of the attached part of 5G4b (on both sides in the direction orthogonal to the sensitive axis).
a, 5G2a, 5Gib, and 5G2b attachment parts, and the strain gauges 5G3a and 5G for detecting the strain in the tank.
4a, 5G3b, and 5G4b, the cross section of the strain-generating part (in particular,
In this case, the small diameter adjustment hole 17.18 for adjusting the width dimension)
and 19.20.
第4図は、上述した実施例におけるひずみゲージをもっ
て構成したホイートストンブリッジ回路を示す回路図で
ある。FIG. 4 is a circuit diagram showing a Wheatstone bridge circuit configured with the strain gauges in the embodiment described above.
同図において、縦ひずみ検出用のひずみゲージ5G1a
と5G2aおよび5G1bと5G2bは、ブリッジの一
方の対辺にそれぞれ分散して接続し、横ひずみ検出用の
ひずみゲージ5G3aと5G4aおよび5G3bと5G
4bは、上記一方のブリッジの対辺に隣り合う他方の対
辺にそれぞれ分散して接続しである。In the same figure, strain gauge 5G1a for detecting longitudinal strain
and 5G2a, 5G1b, and 5G2b are connected separately to one opposite side of the bridge, and strain gauges 5G3a, 5G4a, 5G3b, and 5G for transverse strain detection are connected separately to one opposite side of the bridge.
4b are distributed and connected to the other opposite side adjacent to the opposite side of the one bridge.
次に、このように構成された本実施例の作用を説明する
。Next, the operation of this embodiment configured as described above will be explained.
荷重導入部9に印加された被測定荷重およびこれに抗す
るように台座部11から伝達される反力は、それぞれく
びれ部12および13を介することによって荷重(力)
が小領域に集中され、それぞれ、座ぐり穴14および1
5の上方部および下方部に作用する結果、その座ぐり穴
14および15が円形状から楕円形状に変形するように
受感部10が変形する。The load to be measured applied to the load introducing section 9 and the reaction force transmitted from the pedestal section 11 to resist the load are converted into loads (forces) through the constricted sections 12 and 13, respectively.
are concentrated in small areas, counterbore holes 14 and 1, respectively.
As a result, the sensing portion 10 is deformed such that its counterbore holes 14 and 15 are deformed from a circular shape to an elliptical shape.
すると、縦ひずみ検出用のひずみゲージSG1a 、5
G2aおよびひずみゲージ5G1b。Then, strain gauge SG1a, 5 for longitudinal strain detection
G2a and strain gauge 5G1b.
5G2bは、縦ひずみのみを主として受け、他方の横ひ
ずみ検出用のひずみゲージ5G3a 、5G4aおよび
5G3b 、5G4bは、横ひずみを主として受ける。5G2b mainly receives only longitudinal strain, and the other strain gauges 5G3a, 5G4a and 5G3b, 5G4b mainly receive lateral strain.
従ってこの実施例の場合も、座ぐり穴14,15が円形
状から楕円形状となるように受感部10が変形する。こ
の限りにおいては、第6図、第7図に示す参考例と同様
である。従って、本実施例のものも、荷重−ひずみ特性
が、良好な直線性を示すことはいうまでもなし1゜本実
施例が参考例と異なる点は、第1に、受感部]Oに正面
から背面に貫通する円孔を穿設せず、所定の肉厚の起歪
部16を残すように互し1に反対側の側周面(つまり、
正面と背面)から同じ深さの座ぐり穴14,15を穿設
した点にあり、第2に、起歪部16における横ひずみ検
出用のひずみゲージ5G3aと5G3bおよびSG4.
a、5G4bの添着部位の側方近傍に、それぞれ調整孔
17.18および19.20を穿設しである点にある。Therefore, also in the case of this embodiment, the sensing portion 10 is deformed so that the counterbore holes 14 and 15 change from a circular shape to an elliptical shape. In this respect, it is the same as the reference example shown in FIGS. 6 and 7. Therefore, it goes without saying that the load-strain characteristics of this example also show good linearity. Without drilling a circular hole penetrating from the front to the back, the side peripheral surfaces opposite to each other 1 (that is,
Counterbore holes 14 and 15 of the same depth are bored from the front and rear sides), and secondly, strain gauges 5G3a and 5G3b and SG4.
Adjustment holes 17.18 and 19.20 are respectively drilled in the lateral vicinity of the attachment portions a and 5G4b.
上記第1および第2の相異点があることにより、本実施
例のものは、外形の小形化が実現し得るのである。Due to the above-mentioned first and second differences, this embodiment can realize a smaller external shape.
即ち、参考例のものは、既述したような理由から大きな
ひずみ出力を得ようとすると、くびれ部6.7に対し円
孔4aが大きくなり、受感部4全体が大きくなるので、
必然的に大形化を甘受せざるを得なかったが、本実施例
のものは、くびれ部12.13の断面積は、参考例の場
合と同様、定格荷重によって規定されるものの、座ぐり
穴14゜]、5の直径は、縦ひずみと横ひずみが同程度
となる条件を満す値より小径とし得ることに大きな特徴
がある。That is, in the reference example, when trying to obtain a large strain output for the reasons already mentioned, the circular hole 4a becomes larger with respect to the constriction part 6.7, and the sensing part 4 as a whole becomes larger.
However, in this example, although the cross-sectional area of the constricted portion 12.13 is determined by the rated load as in the reference example, the counterbore is A major feature is that the diameter of the hole 14°], 5 can be made smaller than the value that satisfies the condition that the longitudinal strain and the transverse strain are comparable.
その理由は、座ぐり穴14,15の穴径を上記条件値よ
り小さくすることにより、横ひずみが縦ひずみよりも小
さくなるが、調整孔17.18および1.9.20の直
径または、孔間隔りを最適の値に設定することにより、
縦ひずみおよび横ひずみを生ずる起歪部16における断
面積を変えることができ、従って、横ひずみを縦ひずみ
に近づけ、両者がほぼ同じ値となるようにできるのであ
る。The reason for this is that by making the hole diameters of the counterbore holes 14 and 15 smaller than the above condition values, the transverse strain becomes smaller than the longitudinal strain, but the diameter of the adjustment holes 17.18 and 1.9.20 By setting the spacing to the optimal value,
It is possible to change the cross-sectional area of the strain-generating portion 16 that causes longitudinal strain and transverse strain, and therefore, it is possible to bring transverse strain closer to longitudinal strain so that both have approximately the same value.
そのため、座ぐり穴14.,15が小径にできるので、
その両端部21.22を定格荷重に充分耐え得る断面積
としても、受感部10全体として小形化が実現される。Therefore, the counterbore hole 14. , 15 can be made small in diameter, so
Even if both ends 21 and 22 have a cross-sectional area that can sufficiently withstand the rated load, the sensing section 10 as a whole can be made smaller.
また、上記実施例は、ひずみゲージ5G1a〜5G4b
が、荷重軸Xに沿い且つ薄肉の起歪部1−6上に添着し
であるため、横荷重や偏荷重が荷重導入部9に印加され
、受感部10が曲りを受けても、…口ずの中立軸(この
場合荷重軸)近くに添着されたひずみゲージは、いずれ
も殆んど伸縮することがなく、横荷重や偏荷重の成分の
出力は、生じにくい。仮に、僅かに生じたとしても第4
図に示すホイートストンブリッジ回路によって電気的に
キャンセルされ、荷重軸方向の荷重成分のみに応じた電
気信号を得ることができる。Further, in the above embodiment, strain gauges 5G1a to 5G4b
is attached along the load axis X and on the thin strain-generating part 1-6, so even if a lateral load or an uneven load is applied to the load introducing part 9 and the sensing part 10 is bent... Strain gauges attached near the neutral axis (in this case, the load axis) of the humidifier hardly expand or contract, and outputs of lateral load and unbalanced load components are unlikely to occur. Even if a small amount occurs, the fourth
This is electrically canceled by the Wheatstone bridge circuit shown in the figure, and it is possible to obtain an electrical signal corresponding only to the load component in the load axis direction.
また、この実施例における起歪部16は、平面状を呈し
ているため、ひずみゲージの添着が容易であり、所定の
位置に正確に添着できるという利点があるほか、参考例
に示すように湾曲した面に添着した場合に比べ、疲労寿
命が長く、長期に亘って安定した精度で荷重検出を行う
ことができる。In addition, since the strain-generating portion 16 in this embodiment has a planar shape, it is easy to attach the strain gauge, and it has the advantage that it can be attached accurately at a predetermined position. It has a longer fatigue life than when it is attached to a surface that has been stained, and load detection can be performed with stable accuracy over a long period of time.
尚、本発明は、上述し且つ図示した実施例にのみ限定さ
れるものではなく、その要旨を逸脱しない範囲で種々の
変形実施が可能である。It should be noted that the present invention is not limited to the embodiments described and illustrated above, and various modifications can be made without departing from the gist thereof.
例えば、受感部は円柱状のものに限らず、角柱(多角柱
)状でも楕円柱状のものであってもよい。For example, the sensing portion is not limited to a cylindrical shape, and may be a prismatic (polygonal prism) shape or an elliptical columnar shape.
マタ、座ぐり穴14,15は、円形状穴に限らず、楕円
状、長円状の穴であってもよい。The counterbore holes 14 and 15 are not limited to circular holes, but may be elliptical or oblong holes.
また、横ひずみ検出用のひずみゲージ5G3a。Also, strain gauge 5G3a for transverse strain detection.
5G3bおよび5G4a 、5G4bの側方近傍に穿設
する調整孔17.18および19,20は、円孔に限ら
ず、角孔、楕円孔等でもよく、要は。The adjustment holes 17, 18, 19, 20 drilled near the sides of 5G3b and 5G4a and 5G4b are not limited to circular holes, but may be square holes, elliptical holes, etc., in short.
調整孔17と18および調整孔19と2oとの間の間隔
りを適当な値として、縦ひずみと横ひずみの比が、極力
1に近づくように調整できるものであればよい。It is only necessary that the distance between the adjustment holes 17 and 18 and the adjustment holes 19 and 2o be set to appropriate values so that the ratio of longitudinal strain to transverse strain can be adjusted as close to 1 as possible.
従って、この意味において、調整孔17〜2゜を穿設す
る代りに、起歪部16の板厚を異ならせるようにしても
よい。Therefore, in this sense, instead of drilling the adjustment holes 17 to 2 degrees, the plate thickness of the strain generating portion 16 may be made to be different.
即ち、一般に縦ひずみより横ひずみの方が小さいので、
例えば、縦ひずみ検出用のひずみゲージ5G1a 、5
Glbおよび5G2a 、5G2bを添着する部位の肉
厚より、横ひずみ検出用のひずみゲージ5G3a 、5
G3bおよび5G4a。In other words, since transverse strain is generally smaller than longitudinal strain,
For example, strain gauges 5G1a, 5 for detecting longitudinal strain
From the wall thickness of the part where Glb and 5G2a and 5G2b are attached, strain gauges 5G3a and 5 for transverse strain detection are used.
G3b and 5G4a.
SG4.bを添着する部位の起歪部16の肉厚を薄く形
成すればよい。また、調整孔17〜20を穿設すること
と、起歪部16の板厚を異ならせることを併用してもよ
い。SG4. The thickness of the strain-generating portion 16 at the portion to which b is attached may be made thinner. Further, drilling the adjustment holes 17 to 20 and varying the plate thickness of the strain-generating portion 16 may be used together.
(e) 効果
以上、詳述したところから明らかなように、本発明によ
れば、大きなひずみ出力が得られ、しかも荷重−ひずみ
特性が良好な直線性を示し、横荷重や偏荷重に対して殆
んど影響を受けることがなく、荷重軸方向の荷重に正確
に対応した電気出力が得られ、さらにはひずみゲージの
添着作業が容易で経年変化や疲労破壊を生じ難く長期に
亘って安定した精度を確保でき、その上、第6図、第7
図に示す参考例に比べ、かなり/IX型の荷重変換器を
提供することができる。(e) Effects As is clear from the above detailed description, according to the present invention, a large strain output can be obtained, and the load-strain characteristics exhibit good linearity, and are resistant to lateral loads and unbalanced loads. It is almost unaffected by electrical output that accurately corresponds to the load in the axial direction of the load, and it is also easy to attach strain gauges, making it stable over a long period of time without causing deterioration or fatigue failure. Accuracy can be ensured, and in addition, Figures 6 and 7
Compared to the reference example shown in the figure, it is possible to provide a considerably/IX type load transducer.
第1図〜第3図は、本発明に係る荷重変換器の一実施例
の構成を示すもので、このうち第1図は、正面図、第2
図は、第1図A−A線矢視方向断面図、第3図は、第1
図B−B線矢視方向断面図、第4図は、同実施例中に使
用されているひずみゲージをもって構成した荷重検出用
ホイー1〜ストンブリッジ回路の一例を示す回路図、第
5図は、従来の中実の柱状タイプの荷重変換器の構成を
示す正面図、第6図および第7図は、参考例に係る荷重
変換器の外観構成を示す正面図および側面図である。
8・・・・荷重変換器、 9・・・・・荷重導入部
、10・・・・・・受感部、 11・・・・・・
台座部、12.13・・・・・・くびれ部(伝達部)、
14、.15・・・・・・座ぐり穴、
16・・・・・起歪部、
17〜20・・・・・調整孔、 21.22・・・・・
側部、5G1a 、5G1b 、5G2a 、5G2b
−縦ひずみ検出用のひずみゲージ、
5G3a 、5G3b 、5G4a 、5G4b
−横ひずみ検出用のひずみゲージ、
X・・・・・・荷重軸、
Y・・・・・・荷重軸に直交する軸。
特許出願人 株式会社 共 和 電 梁下・Figures 1 to 3 show the configuration of an embodiment of the load converter according to the present invention, of which Figure 1 is a front view and Figure 2 is a front view.
The figure is a sectional view taken along the line A-A in Figure 1, and Figure 3 is a cross-sectional view of the Figure 1
4 is a circuit diagram showing an example of the load detection wheel 1 to stone bridge circuit configured with strain gauges used in the same embodiment, and FIG. , a front view showing the configuration of a conventional solid columnar type load converter, and FIGS. 6 and 7 are a front view and a side view showing the external configuration of a load converter according to a reference example. 8...Load converter, 9...Load introducing section, 10...Sensing section, 11...
Pedestal part, 12.13... Constriction part (transmission part),
14,. 15...Counterbore hole, 16...Strain generating part, 17-20...Adjustment hole, 21.22...
Side part, 5G1a, 5G1b, 5G2a, 5G2b
- Strain gauges for longitudinal strain detection, 5G3a, 5G3b, 5G4a, 5G4b
- Strain gauge for transverse strain detection, X: Load axis, Y: Axis orthogonal to the load axis. Patent applicant Kyowa Den Ryoshita Co., Ltd.
Claims (2)
持部が順に連なり、前記荷重導入部に印加された被測定
荷重を電気量に変換して検出する荷重変換器において、
前記受感部と前記荷重導入部および前記荷重支持部との
間にそれぞれ前記受感部よりも前記荷重軸に直交する断
面積が小さく且つ前記荷重軸と同軸の伝達部を形成し、
柱状をなす前記受感部の互いに反対側の側面から前記荷
重軸に直交する軸方向に沿って前記荷重軸近傍に達する
1対の座ぐり穴を穿設することによって該1対の座ぐり
穴の底部間に起歪部を形成し、前記起歪部の前記荷重軸
方向に受感軸を向けて縦ひずみ検出用のひずみゲージを
添着すると共に、前記起歪部の前記荷重軸と直交する方
向に受感軸を向けて横ひずみ検出用のひずみゲージを添
着し、前記横ひずみ検出用のひずみゲージの添着部位に
おけるひずみ量と前記縦ひずみ検出用のひずみゲージの
添着部位におけるひずみ量の比がポアソン比以上となる
ように前記起歪部の断面形状を形成し、前記ひずみゲー
ジによって前記荷重導入部に印加された被測定荷重の大
きさを電気量に変換して検出するように構成したことを
特徴とする荷重変換器。(1) A load converter in which a load introduction part, a sensing part, and a load support part are successively connected along a load axis, and the load to be measured applied to the load introduction part is converted into an electrical quantity and detected,
forming a transmission section between the sensing section, the load introducing section, and the load supporting section, each having a smaller cross-sectional area perpendicular to the load axis than the sensing section and coaxial with the load axis;
The pair of counterbore holes are formed by drilling a pair of counterbore holes that reach near the load axis along an axial direction perpendicular to the load axis from opposite side surfaces of the columnar sensing section. A strain-generating part is formed between the bottoms of the strain-generating part, and a strain gauge for longitudinal strain detection is attached with the sensitive axis directed in the direction of the load axis of the strain-generating part, and the strain gauge is perpendicular to the load axis of the strain-generating part. A strain gauge for transverse strain detection is attached with the sensitive axis directed in the direction, and the ratio of the amount of strain at the attachment site of the strain gauge for transverse strain detection to the amount of strain at the attachment site of the strain gauge for longitudinal strain detection is determined. The cross-sectional shape of the strain-generating portion is formed such that the strain is greater than or equal to Poisson's ratio, and the strain gauge is configured to convert the magnitude of the load to be measured applied to the load introducing portion into an electrical quantity and detect it. A load converter characterized by:
持部が順に連なり、前記荷重導入部に印加された被測定
荷重を電気量に変換して検出する荷重変換器において、
前記受感部と前記荷重導入部および前記荷重支持部との
間にそれぞれ前記受感部よりも前記荷重軸に直交する断
面積が小さく且つ前記荷重軸と同軸の伝達部を形成し、
柱状をなす前記受感部の互いに反対側の側面から前記荷
重軸に直交する軸方向に沿って前記荷重軸近傍に達する
1対の座ぐり穴を穿設することによって該1対の座ぐり
穴の底部間に起歪部を形成し、前記起歪部の前記荷重軸
方向に受感軸を向けて縦ひずみ検出用のひずみゲージを
添着すると共に、前記起歪部の前記荷重軸と直交する方
向に受感軸を向けて横ひずみ検出用のひずみゲージを添
着し、前記起歪部における前記横ひずみ検出用ひずみゲ
ージの添着部位の側方近傍に、前記横ひずみ検出用のひ
ずみゲージの添着部位におけるひずみ量と前記縦ひずみ
検出用のひずみゲージの添着部位におけるひずみ量の比
がポアソン比以上となるように調整する小径の調整孔を
穿設し、前記ひずみゲージによって前記荷重導入部に印
加された被測定荷重を電気量に変換して検出するように
構成したことを特徴とする荷重変換器。(2) A load converter in which a load introduction part, a sensing part, and a load support part are successively connected along a load axis, and the load to be measured applied to the load introduction part is converted into an electrical quantity and detected,
forming a transmission section between the sensing section, the load introducing section, and the load supporting section, each having a smaller cross-sectional area perpendicular to the load axis than the sensing section and coaxial with the load axis;
The pair of counterbore holes are formed by drilling a pair of counterbore holes that reach near the load axis along an axial direction perpendicular to the load axis from opposite side surfaces of the columnar sensing section. A strain-generating part is formed between the bottoms of the strain-generating part, and a strain gauge for longitudinal strain detection is attached with the sensitive axis directed in the direction of the load axis of the strain-generating part, and the strain gauge is perpendicular to the load axis of the strain-generating part. A strain gauge for transverse strain detection is attached with the sensitive axis directed in the direction, and the strain gauge for transverse strain detection is attached in the vicinity of the side of the attachment portion of the strain gauge for transverse strain detection in the strain generating part. A small-diameter adjustment hole is drilled to adjust the ratio of the strain amount at the portion to the strain amount at the attachment portion of the strain gauge for longitudinal strain detection to be equal to or higher than Poisson's ratio, and the strain gauge is applied to the load introduction portion. A load converter characterized in that it is configured to convert a measured load into an electrical quantity and detect it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25066487A JPH0194234A (en) | 1987-10-06 | 1987-10-06 | Load converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25066487A JPH0194234A (en) | 1987-10-06 | 1987-10-06 | Load converter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0194234A true JPH0194234A (en) | 1989-04-12 |
Family
ID=17211210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25066487A Pending JPH0194234A (en) | 1987-10-06 | 1987-10-06 | Load converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0194234A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0989690A (en) * | 1995-09-20 | 1997-04-04 | Unyusho Senpaku Gijutsu Kenkyusho | Load cell and automobile force plate using the same |
EP0800069A1 (en) * | 1996-04-01 | 1997-10-08 | Societa' Cooperativa Bilanciai - Campogalliano a Responsabilita' Limitata | Column force transducer |
EP0800064A2 (en) * | 1996-04-01 | 1997-10-08 | Hottinger Baldwin Messtechnik Gmbh | Rod-shaped load cell |
JP2007504465A (en) * | 2003-09-05 | 2007-03-01 | サルトリウス ハンブルク ゲゼルシャフト ミット ベシュレンクテル ハフツング | Housingless load cell |
JP2016525685A (en) * | 2013-07-26 | 2016-08-25 | ホッティンゲル・バルドヴィン・メステクニーク・ゲゼルシヤフト・ミト・ベシュレンクテル・ハフツング | Bar-shaped force transducer with simplified adjustment |
JP2016527504A (en) * | 2013-07-26 | 2016-09-08 | ホッティンゲル・バルドヴィン・メステクニーク・ゲゼルシヤフト・ミト・ベシュレンクテル・ハフツング | Rod-shaped force transducer with improved deformation characteristics |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5984130A (en) * | 1982-10-02 | 1984-05-15 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | Load cell |
-
1987
- 1987-10-06 JP JP25066487A patent/JPH0194234A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5984130A (en) * | 1982-10-02 | 1984-05-15 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | Load cell |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0989690A (en) * | 1995-09-20 | 1997-04-04 | Unyusho Senpaku Gijutsu Kenkyusho | Load cell and automobile force plate using the same |
EP0800069A1 (en) * | 1996-04-01 | 1997-10-08 | Societa' Cooperativa Bilanciai - Campogalliano a Responsabilita' Limitata | Column force transducer |
EP0800064A2 (en) * | 1996-04-01 | 1997-10-08 | Hottinger Baldwin Messtechnik Gmbh | Rod-shaped load cell |
EP0800064A3 (en) * | 1996-04-01 | 1998-08-19 | Hottinger Baldwin Messtechnik Gmbh | Rod-shaped load cell |
JP2007504465A (en) * | 2003-09-05 | 2007-03-01 | サルトリウス ハンブルク ゲゼルシャフト ミット ベシュレンクテル ハフツング | Housingless load cell |
JP2016525685A (en) * | 2013-07-26 | 2016-08-25 | ホッティンゲル・バルドヴィン・メステクニーク・ゲゼルシヤフト・ミト・ベシュレンクテル・ハフツング | Bar-shaped force transducer with simplified adjustment |
JP2016527504A (en) * | 2013-07-26 | 2016-09-08 | ホッティンゲル・バルドヴィン・メステクニーク・ゲゼルシヤフト・ミト・ベシュレンクテル・ハフツング | Rod-shaped force transducer with improved deformation characteristics |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6038933A (en) | Multi-axis load cell | |
EP0938652B1 (en) | Multi-axis load cell | |
US9395256B2 (en) | Low profile multi-axis load cell | |
US20060107761A1 (en) | Multi-axis load cell body | |
JPS6057528B2 (en) | Strain gauge load transducer | |
JPH0194234A (en) | Load converter | |
US4702329A (en) | Load cell | |
JP2009168505A (en) | Load cell | |
JP2614743B2 (en) | Load transducer | |
JP4464005B2 (en) | High rigidity load transducer | |
JPH01262431A (en) | Force sensor | |
JPS5912326A (en) | Load converter | |
JP2753483B2 (en) | Load transducer for detecting vertical force acting on road surface of automobile | |
JP6364637B2 (en) | Load transducer | |
JP2527551B2 (en) | Thin load cell | |
JP2534509B2 (en) | Thin weighing platform | |
JPH07128157A (en) | Load converter | |
JPS63238440A (en) | Converter for bending moment and torsional moment | |
JPH0127072Y2 (en) | ||
JPS6342436A (en) | Strain gauge type physical quantity-electric energy transducer | |
JPS5885127A (en) | Load transducer | |
CN219736628U (en) | Spoke type shearing sensor | |
JPS6225697Y2 (en) | ||
JP2005121603A (en) | Rotational torque detector | |
KR20010024325A (en) | Weighing Machine |