JPS5984506A - Inner tank supporting apparatus for cryogenic container - Google Patents
Inner tank supporting apparatus for cryogenic containerInfo
- Publication number
- JPS5984506A JPS5984506A JP57194677A JP19467782A JPS5984506A JP S5984506 A JPS5984506 A JP S5984506A JP 57194677 A JP57194677 A JP 57194677A JP 19467782 A JP19467782 A JP 19467782A JP S5984506 A JPS5984506 A JP S5984506A
- Authority
- JP
- Japan
- Prior art keywords
- support
- inner tank
- ultra
- supporting bar
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 claims 1
- 230000008646 thermal stress Effects 0.000 abstract description 11
- 239000004020 conductor Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 230000008602 contraction Effects 0.000 description 6
- 230000035882 stress Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 230000000452 restraining effect Effects 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 241000208140 Acer Species 0.000 description 1
- 235000006716 Broussonetia kazinoki Nutrition 0.000 description 1
- 240000006248 Broussonetia kazinoki Species 0.000 description 1
- 235000006481 Colocasia esculenta Nutrition 0.000 description 1
- 240000004270 Colocasia esculenta var. antiquorum Species 0.000 description 1
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011838 internal investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/08—Mounting arrangements for vessels
- F17C13/086—Mounting arrangements for vessels for Dewar vessels or cryostats
- F17C13/087—Mounting arrangements for vessels for Dewar vessels or cryostats used for superconducting phenomena
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/068—Special properties of materials for vessel walls
- F17C2203/0687—Special properties of materials for vessel walls superconducting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
不兄明は超1ji導装置等の極低温容器の内槽支持に保
9、時に、内槽支付都が當温と極低温との間の熱サイク
ルを受ける除の好適な内僧支付講造に関する。[Detailed Description of the Invention] [Field of Application of the Invention] Fueniai is used to support the inner tank of a cryogenic container such as an ultra-high-temperature conducting device. The present invention relates to a suitable uchizo kozo that is subjected to thermal cycling.
第1図は超也尋マグネットの支持形態を7廖す従来例に
於ける模式図である。図に於て超亀尋コイル1は、内槽
2に内威嘔れている。FIG. 1 is a schematic diagram of a conventional example in which a seven-layer magnet is supported. In the figure, the ultra-thin coil 1 is nestled in the inner tank 2.
更に、内槽は、支持柱3を介して、外槽4から支持ちれ
ている・。この支持柱は内槽側の固疋都及び外槽側の固
尾部によって、人々内槽及び外槽に連結されて居シ、父
、叉持柱は一般に中心軸線Aの軸心長さ方間に二列、第
2図の横断面内では一夕1」あた94〜8本を放射状に
配置されている。図示は4本の?ljケ示す。Furthermore, the inner tank is supported from the outer tank 4 via a support column 3. This support column is connected to the inner tank and the outer tank by a fixed part on the inner tank side and a fixed part on the outer tank side. They are arranged in two rows, and 94 to 8 pieces per 1 inch are arranged radially within the cross section of Fig. 2. Are there four shown? Show lj.
このように構成されたものに於て、内槽の内部にtAt
、体ヘリウム5を注入(注入系は図示省略ンし超電導コ
イル1を極低温に冷却保持する。コイル及び内槽が耐却
石れれば、勿崗文柱も常温と極低温の中1iil付近の
温度(平均温度ンに冷却される。In this structure, there is tAt inside the inner tank.
, inject body helium 5 (the injection system is not shown) and cool and maintain the superconducting coil 1 at an extremely low temperature.If the coil and inner tank are crushed by stones, the Mukang Wen Pillar will also be cooled around 1iil at room temperature and at an extremely low temperature. Temperature (cooled to an average temperature of
′S温時の内槽2は、極低温時の内槽2′に冷却によシ
熱収紬し、内槽側の支持固定点はCからC′へ移動する
。このため、支柱3の民さは見掛上、常温11.J8L
Rから極低温時Lcへ強制的に引伸ばされる。所が支
柱自体が冷却されることによる収縮分をL81とすると
実際には、ΔLt ”” (J’−c 1十Lsl )
L)1またけ引伸ばされることになる。従って引伸
ばされることによって支柱には、5t=ExΔLI/L
+t t なる応力が発生する。但し、Eは支柱]9
科のヤング率を示す。The inner tank 2 at a temperature of 'S' is cooled and converged into the inner tank 2' at a cryogenic temperature, and the support fixing point on the inner tank side moves from C to C'. For this reason, the appearance of the people in pillar 3 is 11. J8L
It is forcibly stretched from R to Lc at extremely low temperatures. However, if the shrinkage due to cooling of the pillar itself is L81, then in reality, ΔLt ”” (J'-c 10Lsl)
L) It will be stretched by one step. Therefore, by being stretched, the column has 5t=ExΔLI/L
A stress of +t t is generated. However, E is the pillar]9
Young's modulus of the family is shown.
上記引伸はし量(熱収縮i)は常温から極低温迄の温度
変化分に依存し、冷媒として液体ヘリウムケ使用するも
のでは、温!現変化は300[(摂氏)にも及び、熱収
縮量は多大でめシ、その熱応力も又、多大である。The above-mentioned enlargement amount (thermal contraction i) depends on the temperature change from room temperature to cryogenic temperature. The current change is as high as 300 degrees Celsius, the amount of thermal contraction is large, and the thermal stress is also large.
父、支柱の同4I!側の固定点Cが、C′へ動く量は固
定点Cの装置中rucB、A)からの距離(X。Father, the same 4I of the pillar! The amount by which the fixed point C on the side moves toward C' is the distance (X) from the fixed point C in the device rucB, A).
Y)に比例する。この種、超電4装置規模が近年、飛躍
的な大形化の順向にあシ、このために支柱が引伸ばされ
る量は最大化し、発生する応力も従って増大する。Y). In recent years, the scale of this type of superelectric device has been rapidly increasing, and as a result, the amount by which the struts are stretched is maximized, and the stress generated is also increased accordingly.
すなわち、内槽支持柱は、コイル及び内槽が、冷74]
%昇温全繰返えす度ごとに、前述の応力を繰返し受け
、その応力の太きさも装置の大形化に伴い増加し、支柱
の材料強度の限界を越える3Lうになって米だ。この事
は支柱の破断もしくは支柱の1足部分の破〜rを招き、
超電導装置の機能失墜に至る嵐犬φ態になる。In other words, the inner tank support column, the coil and the inner tank are cold 74]
Each time the temperature is increased by 50%, the above-mentioned stress is repeatedly applied, and the magnitude of the stress increases as the device becomes larger, reaching 3L, which exceeds the limit of the material strength of the support. This may lead to breakage of the support or breakage of one leg of the support.
The superconducting device enters a state of storm dog φ, which causes its functionality to fail.
本発明は、超電導装置等の極低温容器の内槽支持用支柱
が常温と極低温間の熱サイクルをIf17歴する除に夫
々の温度に於て支柱の熱応力が発生しないようにするか
、又は熱応力を軽微にしようとするものである。The present invention is designed to prevent thermal stress from occurring in the support struts at each temperature, even though the support struts for supporting the inner tank of a cryogenic container such as a superconducting device go through a thermal cycle If17 between room temperature and cryogenic temperature. Or, it is intended to reduce thermal stress.
本発明の妥点は内偵支持用の支柱に於いて、常温及び極
低温いずれの場合でも、夫々の温度に於ける支柱の自然
の長さを保つように支付し、熱応力が発生しないように
するものである。The key point of the present invention is that the support struts for internal investigation are supported in such a way that the natural length of the struts at each temperature is maintained, and thermal stress is not generated, both at room temperature and at extremely low temperatures. It is something to do.
以下、本発明の一実施例を第3図ないし47図に従って
説朗する。An embodiment of the present invention will be explained below with reference to FIGS. 3 to 47.
第3図は本発明による超電導マグネットの支持形体の模
式図である。FIG. 3 is a schematic diagram of a support configuration of a superconducting magnet according to the present invention.
本発明の特徴は、内槽支持用支柱6の外槽11111固
定点Ek以下に述べるような位置に設置することにより
、超電導マグネットが極1氏温に冷却されても、その内
槽支持用支柱6′が、熱収縮した自然の長さLc2のま
ま保持されるようにして、支柱6′の熱応力が発生しな
いようにしたことにある。The feature of the present invention is that by installing the outer tank 11111 fixing point Ek of the inner tank support strut 6 at the position described below, the inner tank support strut can be fixed even if the superconducting magnet is cooled to an extremely low temperature of 1 degree Celsius. 6' is maintained at its natural heat-shrinked length Lc2, thereby preventing thermal stress from occurring in the support column 6'.
すなわち、常温時の支柱60内槽側の固定点Cを基点と
して、常温時の支柱の長さLR2を半径とした円弧Fを
描き、矢に、極低温時の支柱の内4′油側の固定点C’
(内槽が熱収縮することに痒い、固定点が移動する
]を基点として、極低温時の支柱の長さL’c2 (支
柱が熱収縮することに伴い長さが短かくなる)を半径と
した円弧F′を描く。このように描いた両円弧の交点に
外槽側の固定点Eを設直し極低温時でも゛支柱6′の熱
応力(熱収縮拘束力)の発生を無くする。That is, with the fixing point C on the inner tank side of the strut 60 at room temperature as the base point, draw an arc F with a radius of the length LR2 of the strut at room temperature, and mark the arrow on the 4' oil side of the strut at cryogenic temperature. Fixed point C'
(The fixed point moves due to heat shrinkage of the inner tank) is the base point, and the length L'c2 of the support at cryogenic temperature (the length decreases as the support shrinks due to heat) is the radius. Draw a circular arc F'.A fixed point E on the outer tank side is installed at the intersection of both circular arcs drawn in this way to eliminate the generation of thermal stress (thermal contraction restraining force) on the column 6' even at extremely low temperatures. .
又、m4図は従来構造(第1図ンの9部の詳細図であシ
、第5図、第6図及び第7図は本発明構造(第3図]の
Esの詳a+1tI(各種ンを示す。In addition, Figure m4 is a detailed view of the 9th part of the conventional structure (Figure 1), and Figures 5, 6, and 7 are detailed views of Es of the present invention structure (Figure 3) a+1tI (various types). shows.
第4図に於て、7は座金、8はナツト、3は支柱、4は
外槽でおる。@1図に示すように内槽のrIT却に伴い
支柱が01なる傾斜をし、一般にはこういう場合両端の
固定部に無理な曲げ刀が作用する。そこで、第5因に示
すような球面を持った座金9及びナツト10を挿入する
ことにより傾斜自在となり、前記のような無理な曲げ刀
を防止出来る。In Fig. 4, 7 is a washer, 8 is a nut, 3 is a support, and 4 is an outer tank. @1 As shown in Figure 1, the support column tilts at 01 as the inner tank rITs, and in such cases, an unreasonable bending blade is generally applied to the fixed parts at both ends. Therefore, by inserting the washer 9 and the nut 10 having spherical surfaces as shown in the fifth factor, it becomes possible to freely tilt the blade, thereby preventing the above-mentioned unreasonable bending.
−刀、不発り」の王扶ポイントである外槽側固定点Hの
位置が、前記のような支柱の1然の長さLctk光分保
てるような位置に設定することが出来ない要因(例えは
、寸法的制約があったシ、他の構造物と干渉があるよう
な場合、理想的な外槽側固冗点から、若干、ずらして設
定することになる。このような固定点にした場合、コイ
ル及び内借を極低温に冷却した際、支柱は冷却され自然
のままの熱収縮を為し得す、その何%分かは熱収縮が拘
束される仁とになる。すると、その分だけ支柱が熱応力
【拘束力]を発生することが判る。- The position of the fixed point H on the outer tank side, which is the king-fu point of "Sword, misfire", cannot be set at a position that can maintain the length of the pillar Lctk light as described above (for example, If there are dimensional restrictions or there is interference with other structures, the fixing point should be slightly shifted from the ideal fixing point on the outer tank side. In this case, when the coils and inner parts are cooled to an extremely low temperature, the struts are cooled and can undergo natural thermal contraction, and a percentage of this becomes the core where the thermal contraction is restrained. It can be seen that the struts generate thermal stress (restraint force) by that amount.
このような時に、第7図に示すように支柱固定部に弾性
体(例えは皿バネ11)を挿入すれば翫熱収縮拘束分を
皿バネの弾性により吸収させることが出来る。In such a case, if an elastic body (for example, a disc spring 11) is inserted into the column fixing part as shown in FIG. 7, the heat shrinkage of the pole can be absorbed by the elasticity of the disc spring.
然し、必ずしも固定部に弾性体を挿入しなくても、支柱
の両側の1尼S(内槽2側及び外槽4側)の構造体目体
が、熱収縮拘束力に対し弾性変形能をもつ。第8図に於
て、常温時の外槽4及び内槽2を実線で示す。内槽が極
低温に冷却され、かつ、支柱13が冷却されると夫々熱
収縮する。内槽及び支柱が自然のままに熱収縮出来るよ
うな場合、内槽は2′で示す位置にあり、外槽は常温時
と変らない4で示す位置にある。然るに、前述のように
、支柱13の熱収縮が自然のままにならず、何%かが拘
束を受けるような間係にある時は拘束される熱収縮分に
ついて、拘束力が働らき支柱、内槽及び外槽の引張シ合
いになシ相互に変形し、外槽は4”、内槽は2“のよう
に多角形変ノーし、支柱13も内外槽のst生刀により
引張られた状態で#!r層<。従って、内・外槽及び支
柱の拘束力が夫人許容範囲内になるような外槽側の固定
位置を逃足設置すれば内外槽側の構造体の弾性変位を利
用し、熱収縮拘束力を吸収した内槽支持装置が得られる
。However, even without necessarily inserting an elastic body into the fixing part, the structural bodies of the two sides of the column (inner tank 2 side and outer tank 4 side) have the ability to elastically deform against the heat shrinkage restraining force. Motsu. In FIG. 8, the outer tank 4 and the inner tank 2 at room temperature are shown by solid lines. When the inner tank is cooled to an extremely low temperature and the struts 13 are cooled, they each undergo thermal contraction. When the inner tank and support can be naturally heat-shrinked, the inner tank is at the position 2', and the outer tank is at the position 4, which is the same as at room temperature. However, as mentioned above, when the heat shrinkage of the strut 13 does not remain natural and some percentage of the strut 13 is restrained, a restraining force acts on the restrained heat shrinkage and the strut, As the inner tank and outer tank are pulled together, they deform each other, and the outer tank becomes polygonal with a shape of 4" and the inner tank with a shape of 2".The strut 13 is also pulled by the st straight sword of the inner and outer tanks. # in state! r layer<. Therefore, if you install a fixed position on the outer tank side so that the restraint force of the inner and outer tanks and columns is within the allowable range, the elastic displacement of the structure of the inner and outer tanks can be used to reduce the heat shrinkage restraint force. An absorbed inner tank support device is obtained.
又、第6図は第5図の例のように、支柱の傾斜(第3図
のθi)した場合の固定部に於ける無理な曲げ刀の作用
を防止するために、球■座を持った座、19及びナツト
10を弾性体(皿)(ネ11)に加えて挿入したもので
ある。In addition, as in the example in Figure 5, Figure 6 shows an example in which a ball seat is used to prevent the bending blade from acting unreasonably on the fixed part when the support is tilted (θi in Figure 3). A seat 19 and a nut 10 are inserted in addition to the elastic body (plate 11).
本発明によれば極低温容器の内槽支持装置に於いて、そ
の支柱はじめ、支柱を固定する内槽及び外槽が、極低温
時に過大な熱応力によシ破断じ、ひいては超電等装置等
、王様の機能を失墜させる事態を防止出来、適正安全な
極低温容器の内槽支持装置が得られる。According to the present invention, in an inner tank support device for a cryogenic container, the pillars, the inner tank and the outer tank to which the pillars are fixed can break due to excessive thermal stress at extremely low temperatures, which can lead to superelectric devices, etc. It is possible to prevent a situation where the function of the king is impaired, and to obtain an appropriately safe inner tank support device for a cryogenic container.
第1図は従来の超電導マグネットの支持形体図、第2図
は第1図の横PIR面図、第3図は本発明の超′亀導マ
グネ5ットの支持形体図、第4図はm1図の支柱固定部
の構造例の静細図、第5因ないし第7図は第3図の支柱
固定部の各種変形例の詳細図、第8図は支柱が熱収縮の
拘束を受ける場合の変形説明図である。
1・・・超電導コイル、2.2’ 、2“・・・内槽、
3゜3’ 、6.6’ 、13・・・支柱、4.4“・
・・外槽、5・・・液体ヘリウム(冷媒)、9・・・球
面座金、10第 1図
第 3図
第4図 第5図
燭も 6 58
タロ 7 図芽δ 口Figure 1 is a diagram of the support configuration of a conventional superconducting magnet, Figure 2 is a horizontal PIR view of Figure 1, Figure 3 is a diagram of the support configuration of the superconducting magnet 5 of the present invention, and Figure 4 is a diagram of the support configuration of a conventional superconducting magnet. Fig. m1 is a static drawing of a structural example of the column fixing part, Figures 5 to 7 are detailed diagrams of various modifications of the column fixing part in Fig. 3, and Fig. 8 is a case in which the column is restrained by heat shrinkage. It is a modification explanatory diagram of. 1... Superconducting coil, 2.2', 2"... Inner tank,
3゜3', 6.6', 13... Support, 4.4".
...Outer tank, 5...Liquid helium (refrigerant), 9...Spherical washer, 10 Fig. 1 Fig. 3 Fig. 4 Fig. 5 Candle also 6 58
Taro 7 Maple δ Mouth
Claims (1)
が固定され、他端が前台己内槽を民囲する外1’1M壁
に固定される複献本の支柱ケ放射状に配設し、’ 1i
ll記内借をrjtl記外槽内外槽内の間隔を介して支
持固定するものに於て、前記支柱の外槽側の固定位1直
を次に述べるような位置、に設置したことを特徴とする
極低温容器用内槽支持装置。 2、特許請求の範囲第1項に於て、低温時の内槽側(1
足点を基点として描く円弧の半径と′品温時の内槽世り
固定点を基点として描く円弧の半径との関係を、シ1(
訂請求の範囲第1項に述べた関係に比し倣少長さ分たけ
相対的に増減させた時の両円弧の交点に外槽側の固定点
を設置し、前記相対的に増減させ/こ倣少長さ分を支柱
固定側の構造体の弾性液位を以って補填するようにした
ことを特徴とするtメ低温容器用内槽支愕装置。 3、イケ計詞釆の範囲第1項又は第2塊に於ける支柱の
両端の固定点の両方又はいずれか一方に球面座を設けた
ことを特徴とする極低温容器用内槽支持装置。 4、荷WitFJ求の範囲第1項または第2項に於ける
支柱の両端の固定点の両刀又はいずれか1に弾性体ケ介
して支持したことを瞥徴とする極低温容器用内槽支持装
置。[Scope of Claims] 1. A support column with one end fixed at the outer circumference riII of the inner tank containing the cryogenic liquid and the other end fixed to the outer 1'1M wall surrounding the inner tank. Arranged radially, '1i
In the device in which the inner and outer tanks are supported and fixed through the space between the inner and outer tanks, the support is characterized in that the first fixed position on the outer tank side of the support is installed at the position described below. Inner tank support device for cryogenic containers. 2. In claim 1, the inner tank side at low temperature (1
1 (
A fixing point on the outer tank side is installed at the intersection of both circular arcs when the distance is relatively increased or decreased by the length of the short profile compared to the relationship stated in the first claim, and the relative increase or decrease is An inner tank support device for a low-temperature vessel, characterized in that this short length is compensated for by the elastic liquid level of a structure on the side where the support is fixed. 3. An inner tank support device for a cryogenic container, characterized in that a spherical seat is provided at both or either one of the fixing points at both ends of the support in the first term or the second block of the range of the cool measure button. 4. Inner tank support for a cryogenic container whose indication is that it is supported via an elastic body on both ends of the fixed points of the support or any one of the fixed points at both ends in the range of load WitFJ requirements Item 1 or Item 2 Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57194677A JPS5984506A (en) | 1982-11-08 | 1982-11-08 | Inner tank supporting apparatus for cryogenic container |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57194677A JPS5984506A (en) | 1982-11-08 | 1982-11-08 | Inner tank supporting apparatus for cryogenic container |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5984506A true JPS5984506A (en) | 1984-05-16 |
Family
ID=16328452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57194677A Pending JPS5984506A (en) | 1982-11-08 | 1982-11-08 | Inner tank supporting apparatus for cryogenic container |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5984506A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006319319A (en) * | 2005-03-24 | 2006-11-24 | Bruker Biospin Ag | Thermally compensated cryostat structure having centering mechanism |
CN113199944A (en) * | 2021-06-17 | 2021-08-03 | 西南交通大学 | Force transmission structure of superconducting electric suspension magnet |
-
1982
- 1982-11-08 JP JP57194677A patent/JPS5984506A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006319319A (en) * | 2005-03-24 | 2006-11-24 | Bruker Biospin Ag | Thermally compensated cryostat structure having centering mechanism |
CN113199944A (en) * | 2021-06-17 | 2021-08-03 | 西南交通大学 | Force transmission structure of superconducting electric suspension magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002528342A (en) | Angular momentum control system for satellite using flywheel supported by superconductor magnetic bearing | |
CN107204226B (en) | Low-temperature container of superconducting magnet | |
US4781034A (en) | Cryogenic support system | |
JP2018534759A (en) | Support structure for HTS magnet | |
JPS5984506A (en) | Inner tank supporting apparatus for cryogenic container | |
JPH04226005A (en) | Mr magnet longitudinal support system | |
JPH04252005A (en) | Radial supporting system for mr magnet | |
JPH04252004A (en) | Supporting body for axial-direction heat shielding part of mr magnet | |
JPS6288379A (en) | Cryogenic apparatus | |
JP3349539B2 (en) | Insulated support device | |
JP3000106B2 (en) | Cryostat | |
JP2633876B2 (en) | Nuclear fusion device | |
US3216263A (en) | Superconducting gyroscopic apparatus | |
Tamura et al. | Design and optimization of support posts for cryogenic components in FFHR | |
Karen et al. | Meissner effect torsion suspension | |
JP2691111B2 (en) | Superconducting magnet structure | |
JPS5827384A (en) | Cryostat | |
JPH06267740A (en) | Cryostat for superconductive magnet | |
JPH0653036A (en) | Thermal insulant for low temperature | |
JP2002145579A (en) | Aseismatic support device for tower crane | |
JPH0722232A (en) | Supporting structure for superconducting electromagnet | |
Richardson et al. | Neon liquefaction system for high Tc experiments | |
JP2005111058A (en) | Superconducting magnet for nuclear magnetic resonance imaging device | |
JPH03266401A (en) | Oxide superconducting magnet | |
Charakhchyan et al. | The 11-YEAR Cosmic Ray Cycle Relevant to Solar Activity Indices |