JPS5984056A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS5984056A
JPS5984056A JP19628282A JP19628282A JPS5984056A JP S5984056 A JPS5984056 A JP S5984056A JP 19628282 A JP19628282 A JP 19628282A JP 19628282 A JP19628282 A JP 19628282A JP S5984056 A JPS5984056 A JP S5984056A
Authority
JP
Japan
Prior art keywords
compressor
pressure
supply voltage
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19628282A
Other languages
Japanese (ja)
Inventor
大橋 祥記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP19628282A priority Critical patent/JPS5984056A/en
Publication of JPS5984056A publication Critical patent/JPS5984056A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧縮機、凝縮器、減圧装置、蒸発器等によシ形
成され、庫内温度検出装置等を用いて圧縮機を運転−停
止制御することによシ所定の冷却を行なう例えば冷蔵庫
等の冷凍装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is formed by a compressor, a condenser, a pressure reducing device, an evaporator, etc., and the compressor is controlled to start and stop using an internal temperature detection device, etc. In particular, it relates to improvements in refrigeration equipment, such as refrigerators, which perform predetermined cooling.

従来例の構成とその問題点 従来よりこの種の冷凍装置においては圧縮機の運転中に
おける凝縮器内には高温高圧に圧縮された冷媒が多1に
存在しておシ、停d一時には減圧装置が高低圧回路の圧
力をバランスさせる均圧管として作用し、前記高温高圧
の冷媒が蒸発器に流入するため蒸発器は加熱される。従
って後続の圧縮機の再起動後には前記した高温冷媒の流
入による蒸発器の加熱分を含めて再び冷却する必要が生
じ結果的には冷却のための消費電力を過剰に要すること
が知られている。前記欠点に対する改良策として凝縮器
用[1と蒸発器入口との間に屯磁弁笠の冷媒制御弁を設
けζ圧縮機運転時に流路を開放し、圧縮機停止時に流路
を閉成して蒸発器に流入する高温高圧冷媒を阻止するも
のが知られている。しかし、この種の改良型冷凍装置は
圧縮機の停止と同時に電磁弁も閉じ、停止中も電磁弁に
より高圧回路全体を高圧に保持し、低圧回路全体を低圧
に保持するものであるため、圧縮機の圧縮要素の前後圧
力が不均等になっている。従って再起動時において圧縮
機を起動するために圧縮機の電動機に過大なI・ルクを
必要とし、条件によっては例えば供給電源電圧が悪く所
望の電動機トルクが得られない場合等には起動不可能と
なることもある。
Conventional structure and its problems Conventionally, in this type of refrigeration system, there is a lot of high-temperature, high-pressure compressed refrigerant in the condenser when the compressor is in operation, and the pressure is reduced when the compressor is in operation. The device acts as a pressure equalizing pipe that balances the pressures of the high and low pressure circuits, and the high temperature and high pressure refrigerant flows into the evaporator, thereby heating the evaporator. Therefore, after restarting the subsequent compressor, it is necessary to cool the evaporator again, including the heating of the evaporator due to the inflow of high-temperature refrigerant, which is known to result in excessive power consumption for cooling. There is. As an improvement measure for the above-mentioned drawbacks, a refrigerant control valve with a tunic valve cap was installed between the condenser [1] and the evaporator inlet, and the flow path was opened when the compressor was operating, and the flow path was closed when the compressor was stopped. It is known to block high temperature, high pressure refrigerant from flowing into the evaporator. However, in this type of improved refrigeration system, the solenoid valve closes at the same time as the compressor stops, and even during the stop, the solenoid valve maintains the entire high-pressure circuit at high pressure and the entire low-pressure circuit at low pressure. The pressure between the front and rear of the compressor element of the machine is uneven. Therefore, in order to start the compressor when restarting, the compressor motor requires an excessive amount of I-lux, and depending on the conditions, for example, if the power supply voltage is poor and the desired motor torque cannot be obtained, it may not be possible to start the compressor. Sometimes it becomes.

発明の目的 本発明は上記の点に鑑み、再起動時における高低圧間の
圧力差を縮少し、圧縮機の再起動性を向上させることに
ある。
OBJECTS OF THE INVENTION In view of the above points, it is an object of the present invention to reduce the pressure difference between high and low pressures at the time of restart, thereby improving restartability of the compressor.

発明の構成 本発明は供給電源電圧の高イ]人に応じて電磁弁を閉成
するまでの遅延時間を可変する様な遅延装置を設けるこ
とにより、再起動時における高低間の圧力差を小さくす
るものである。
Structure of the Invention The present invention reduces the pressure difference between high and low voltages at the time of restart by providing a delay device that changes the delay time until the solenoid valve closes depending on the person using the high power supply voltage. It is something to do.

実施例の説明 以下本発明を家庭用冷蔵庫に適用した一実施例を示す図
面に従い説明する。
DESCRIPTION OF EMBODIMENTS An embodiment in which the present invention is applied to a household refrigerator will be described below with reference to the drawings.

図において1は圧縮機、2は凝縮器、3は減圧装@(こ
こでは毛細管)、4は蒸発器であり、6は冷媒制御弁(
以下電磁弁5という)である。電磁弁6は凝縮器2の出
口と毛細管3の入口の間に接続されている。また圧縮機
1は冷蔵庫の庫内温度を検出する温度検出装置eからの
信号にょ9接点を開閉するリレー7と接続されており、
まだ電磁弁5け、接点の閉成動作が前記リレー7と同期
し開放動作は前記リレ・−7が開放した時点より供給電
源電圧に応じた時間だけ遅延して接点を開放する様に制
御回路にて構成したリレー8と直列に接続されている。
In the figure, 1 is a compressor, 2 is a condenser, 3 is a pressure reducing device (here, a capillary tube), 4 is an evaporator, and 6 is a refrigerant control valve (
(hereinafter referred to as the solenoid valve 5). A solenoid valve 6 is connected between the outlet of the condenser 2 and the inlet of the capillary tube 3. The compressor 1 is also connected to a relay 7 that opens and closes 9 contacts based on a signal from a temperature detection device e that detects the internal temperature of the refrigerator.
There are still 5 solenoid valves, and the control circuit is configured so that the closing operation of the contact is synchronized with the relay 7, and the opening operation is delayed by a time corresponding to the supply power voltage from the time when the relay 7 opens. The relay 8 is connected in series with the relay 8 configured as shown in FIG.

次に前記リレー7及び8の開閉を制御する制御回路につ
いて詳細に説明する。
Next, a control circuit for controlling the opening and closing of the relays 7 and 8 will be explained in detail.

6は前述の様に冷蔵庫の庫内温度検出装置で、コンパレ
ータ9.抵抗R1,R2,R3および庫内の一部に設け
られたサーミスタ1oで構成している。
6 is the refrigerator internal temperature detection device as described above, and comparator 9. It consists of resistors R1, R2, R3 and a thermistor 1o provided in a part of the refrigerator.

この温度検出装置6は抵抗R2,R3で決まるB点の電
位に対して抵抗R1とサーミスタ1oの温度により変化
する抵抗値RTHとで決まるA点の電位が高い場合、コ
ンパレータ9の出力は1゛′に低い場合は11 oII
になるように動作する。このコンパレータ9の出口はト
ランジスタ等の駆動手段(区示せず)を介してリレー7
を開閉する信号を送るよう接続するとともにOR回路1
1の一方の入力に接続されている。OR回路11の出力
はトランジスタ等の駆動手段(図示せず)を介してリレ
ー8を開閉する信号を送るよう構成している。
This temperature detection device 6 detects that when the potential at point A, which is determined by resistor R1 and the resistance value RTH that changes depending on the temperature of the thermistor 1o, is higher than the potential at point B, which is determined by resistors R2 and R3, the output of comparator 9 is 1. 11 oII if it is low to '
It works so that it becomes. The output of this comparator 9 is connected to a relay 7 via a driving means (not shown) such as a transistor.
OR circuit 1
is connected to one input of 1. The output of the OR circuit 11 is configured to send a signal for opening and closing the relay 8 via a driving means (not shown) such as a transistor.

12はパルス源で、パルスを発生させるよう構成されて
おシ、その出力はAND回路13の一方の入力と接続し
ておりAND回路13のもう一方の入力は温度検出装置
6のコンパレータ9の出力とインバータ14を介して接
続している。又AND回路13の出力は遅延用タイマー
15及び16と接続している。ことでタイマー15の設
定時間T1とタイマー16の設定時間T1<T2になる
様選定されている。タイマー15の出力はAND回路7
の一方の入力に接続され、AND回路17は圧縮機1へ
供給される電源電圧の検出装置18の出カイ言号とでA
NDをとりR−Sフリップフロップ19ヘセツト信号を
送るよう接続されている。この電源電圧検出装置18は
電源電圧が設定値v1(v)以上では出力′°1”を、
以下では°0°′を出す。又一方タイマー16の出力は
R−Sフリップフロップ20にセット信号を送るよう接
続されている。
A pulse source 12 is configured to generate pulses, and its output is connected to one input of an AND circuit 13, and the other input of the AND circuit 13 is the output of the comparator 9 of the temperature detection device 6. and is connected via an inverter 14. Further, the output of the AND circuit 13 is connected to delay timers 15 and 16. Therefore, the setting time T1 of the timer 15 and the setting time T1 of the timer 16 are selected such that T1<T2. The output of timer 15 is output from AND circuit 7
The AND circuit 17 is connected to one input of the A
ND and is connected to send a set signal to the R-S flip-flop 19. This power supply voltage detection device 18 outputs an output of '°1' when the power supply voltage is higher than the set value v1 (v).
In the following, we will use °0°'. On the other hand, the output of the timer 16 is connected to the R-S flip-flop 20 to send a set signal.

R=Sフリップフロップ19及び2oのそれぞれのQ出
力はともにインバータ21を介してOR回路11のもう
一方の入力に接続されOR回路11の出力は前述した様
にリレー8を開閉する信号を送るように接続されている
。又タイマー15及び16、R−Sフリップフロップ1
9及び20のリセット端子には温度検出装置6のコンパ
レータ9の出力からリセット信号が送られる様接続され
ている。
The Q outputs of the R=S flip-flops 19 and 2o are both connected to the other input of the OR circuit 11 via the inverter 21, and the output of the OR circuit 11 sends a signal to open and close the relay 8 as described above. It is connected to the. Also, timers 15 and 16, R-S flip-flop 1
The reset terminals 9 and 20 are connected so that a reset signal is sent from the output of the comparator 9 of the temperature detection device 6.

次にかかる構成における動作状況を説明する。Next, the operational status of this configuration will be explained.

冷蔵庫の庫内温度が所定値より上昇している場合は、庫
内温度検出装置6においてサーミスタ10の抵抗値RT
Hが小さくなりA電位がB電位より高くなるだめ、コン
パレータ9の出力はII 111となりトランジスタ等
(図示せず)の駆動手段を介してリレー7を閉成し圧縮
機1が運転される。又コンパレータ9の出力が1である
からOR回路11の一方の入力もMlllとなって他方
の入力に関係な(OR回路11の出力は°°1゛°とな
る。このためトランジスタ等の駆動手段を介してリレー
8も同時に閉成されて電磁弁6も通電され冷媒流路を開
放し庫内が冷却される。その後庫内が一定温度にまで冷
却されればサーミスタ10の抵抗値RTHが大きくなり
A電位がB電位より低くなるため、コンパレータ9の出
力は°゛0”となってリレー7の接点を開放する信号を
送って圧縮機1は停止する。一方電磁弁5への通電を制
御するリレー8の方はOR回路11の出力信号が′0゛
″とならない限シは接点を開放せず、電磁弁5への通電
はそのまま継続される。即ち庫内温度検出装置6のコン
パレータ9の出力信号がII oIIとなって圧縮機1
が停止すると同時にインバータ14を介してのAND回
j’f!513への入力がパ1°″となってパルス源1
2のパルス信号はタイマー16及び16に同時にカウン
ト開始される。ここでタイマー15の設定時間T1とタ
イマー16の設定時間T2はT1〈T2の関係にあるた
めタイマー15のカウントが早く終了し出力”°1”を
AND回路17に送るが、この時供給電源電圧がVl(
v)以上であれば電源電圧検出装置1日の出力が′1°
′となっていてツブ70ツグ19にセット信号を送る。
When the internal temperature of the refrigerator is higher than a predetermined value, the internal temperature detection device 6 detects the resistance value RT of the thermistor 10.
As H becomes smaller and the A potential becomes higher than the B potential, the output of the comparator 9 becomes II 111, which closes the relay 7 through a driving means such as a transistor (not shown), and the compressor 1 is operated. In addition, since the output of the comparator 9 is 1, one input of the OR circuit 11 becomes Mllll and is unrelated to the other input (the output of the OR circuit 11 becomes °°1゛°. Therefore, driving means such as a transistor The relay 8 is also closed at the same time, and the solenoid valve 6 is also energized, opening the refrigerant flow path and cooling the inside of the refrigerator.Afterwards, when the inside of the refrigerator is cooled to a certain temperature, the resistance value RTH of the thermistor 10 increases. Since the potential A becomes lower than the potential B, the output of the comparator 9 becomes °0", which sends a signal to open the contacts of the relay 7, and the compressor 1 is stopped. Meanwhile, the energization to the solenoid valve 5 is controlled. The relay 8 does not open its contacts unless the output signal of the OR circuit 11 becomes ``0'', and the electromagnetic valve 5 continues to be energized. The output signal becomes II oII and compressor 1
At the same time as the inverter 14 stops, the AND circuit j'f! The input to 513 becomes P1°'' and pulse source 1
The second pulse signal causes the timers 16 and 16 to start counting simultaneously. Here, since the set time T1 of the timer 15 and the set time T2 of the timer 16 have a relationship of T1<T2, the count of the timer 15 ends early and the output "°1" is sent to the AND circuit 17, but at this time the supply power supply voltage is Vl(
v) If it is above, the daily output of the power supply voltage detection device is '1°
' and sends a set signal to Tsubu 70 and Tsugu 19.

一方供給電源電圧がV 1(v)以下であれば電源電圧
検出装置18の出力は′”0゛でありA N D回路1
7の出力は′0“′となるためタイマー15の設定時間
T1に達してもR−Sフリップフロップ19にはセット
信号が送られない。この場合は更に時間が好過してタイ
マー16の設定時間T2に達するとり’(マー16が直
49 R−Sフリップフロップ2゜にセット信号を送る
。この)厳にして供給電源電圧によって19或いは20
のいづれかのR−Sフリップフロップに送られたセット
信号によりQ出力II 111を発生し、インバータ2
1を通じることによってOR回路11への入力は′0゛
′となり、且つ温度検出装置6のコンパレータ9がら送
られるOR回路11のもう一方の入力も++ oIIと
なっているためOR回路11の出力は°o゛″となシリ
レー8は開放され従って電磁弁6は閉成される。即ち供
給電源電圧が設定値V1(v)よシ高い場合は電磁弁6
の閉成遅延時間は短い方のT1を選択し、供給電源型1
■が設定値V1(v)より低い場合は電磁弁6の開成遅
延時間は長い方のT2を選択するようにして、供給電圧
に応じて電磁弁6の遅延時間を可変させるとか出来る。
On the other hand, if the supplied power supply voltage is less than V1 (v), the output of the power supply voltage detection device 18 is ``0'', and the A N D circuit 1
Since the output of 7 becomes '0'', no set signal is sent to the R-S flip-flop 19 even if the set time T1 of the timer 15 is reached.In this case, time passes further and the set time of the timer 16 is reached. When T2 is reached (the marker 16 directly sends a set signal to the 49 R-S flip-flop 2°), either 19 or 20 depending on the supply voltage.
The Q output II 111 is generated by the set signal sent to one of the R-S flip-flops, and the inverter 2
1, the input to the OR circuit 11 becomes '0'', and the other input of the OR circuit 11 sent from the comparator 9 of the temperature detection device 6 also becomes ++oII, so the output of the OR circuit 11 is °o゛'', the series relay 8 is opened and the solenoid valve 6 is closed. That is, if the supply voltage is higher than the set value V1 (v), the solenoid valve 6 is closed.
Select the shorter T1 for the closing delay time of the power supply type 1.
When (2) is lower than the set value V1(v), the longer opening delay time of the solenoid valve 6, T2, is selected, so that the delay time of the solenoid valve 6 can be varied according to the supply voltage.

次に圧縮機1の停止後の冷却システム内の圧力推移につ
いて従来例と比較しながら第3図を用いて説明する。実
線は従来例冷凍装置の高圧P1及び低圧P2のシステム
圧力推移を示し、破線は本発明実施例のうち供給電源電
圧が予め設定した電圧■1より高い場合(v>Vl)の
高圧P1/及び低IJ=P2’の冷却ンステム内の圧力
推移を示す。又一点鎖線は本発明実施例のうち供給電源
電圧が予め設定した電圧v1  より低い場合(V<V
l)の高圧p 11/及び低圧P2′の冷却システムの
圧力推移を示す。図面よシ明らかな様に圧縮機1の停止
後供給電源電圧が所定値v1  よシ高い電圧を維持し
ている場合(V>Vl)は比較的短い時間T1だけ電磁
弁5の開放を継続し、供給電源電圧が所定値v1より低
い場合(V<Vl)はT1より長い時間T2(T1〈T
2)の間電磁弁6の開放を継続するため、凝縮器2内の
高圧側の冷媒が夫々の時間の間借圧側の蒸発器4内に流
入して高圧側の圧力を成る程度低Fさせ、又逆に低圧側
の圧力を成る程度」二列させた後に電磁弁5を閉成する
。したがって、再起動時の高低圧圧力差は従来例の(p
l−p2)に比べて供給電圧■が設定電圧v1より高い
場合は(p1/ −P2/ )供給電圧Vが設定電圧V
1より低い場合は(P1″−P2′)と供給電源電圧が
低い方が高低圧差圧がより一層縮少されることになり供
給電圧に応じて圧縮機1の再起動性をそれぞれ保証する
ことができる。
Next, the pressure transition within the cooling system after the compressor 1 is stopped will be explained using FIG. 3 while comparing it with the conventional example. The solid line shows the system pressure transition of high pressure P1 and low pressure P2 of the conventional refrigeration system, and the broken line shows the system pressure transition of high pressure P1 and low pressure P2 in the embodiment of the present invention when the supply voltage is higher than the preset voltage 1 (v>Vl). It shows the pressure transition in the cooling system with low IJ=P2'. Furthermore, the dashed line indicates the case where the supply power voltage is lower than the preset voltage v1 (V<V
1) shows the pressure profile of the cooling system for the high pressure p 11/ and the low pressure P2' of l); As is clear from the drawing, when the supply voltage after the compressor 1 is stopped remains at a voltage higher than the predetermined value v1 (V>Vl), the solenoid valve 5 continues to be opened for a relatively short time T1. , when the supply voltage is lower than the predetermined value v1 (V<Vl), the time T2 (T1<T
During 2), in order to keep the solenoid valve 6 open, the refrigerant on the high pressure side in the condenser 2 flows into the evaporator 4 on the borrowing pressure side for each time period, thereby lowering the pressure on the high pressure side to a certain extent, On the other hand, the solenoid valve 5 is closed after the pressure on the low pressure side is increased to a certain level. Therefore, the pressure difference between high and low pressures at restart is lower than that of the conventional example (p
l-p2) If the supply voltage ■ is higher than the set voltage v1, (p1/ -P2/) the supply voltage V becomes the set voltage V
If it is lower than 1 (P1''-P2'), the lower the supply voltage, the more the high-low pressure differential will be reduced, and the restartability of the compressor 1 will be guaranteed according to the supply voltage. I can do it.

必朗の効果 以上の説明から明らかな様に本発明は凝縮器と蒸発器の
間に冷媒制御弁を設け、この冷媒制御弁を圧縮機の運転
中は開路するとともに圧縮機の停止より、供給電源電圧
が予め定めた設定電圧■1より高いか低いかによって遅
延時間を選択して閉路させるもので、圧縮機停止後、冷
媒制御弁が閉成される寸での間に冷却システム内の高圧
圧力を低下させ、低下圧力は上昇させることにより最終
的に圧縮機の再起動時に於ける高低圧圧力差を従来のも
のに比べて縮少させ不ことが可能になり、圧縮機の再起
動を容易に出来る。
As is clear from the above explanation, the present invention provides a refrigerant control valve between the condenser and the evaporator, and this refrigerant control valve is opened when the compressor is operating, and when the compressor is stopped, the refrigerant control valve is opened. The circuit is closed by selecting a delay time depending on whether the power supply voltage is higher or lower than a predetermined set voltage. By lowering the pressure and increasing the reduced pressure, it becomes possible to finally reduce the difference between high and low pressures when restarting the compressor compared to conventional methods, making it possible to restart the compressor. It's easy to do.

又、供給電源電子が予め定めた設定電圧71以上の場合
は短い遅延時間(場合によっては遅延時間無しにしても
町)、■1以下の場合は起動トルクが小さくなるため遅
延時間を長くとって高低圧Fj:、力差を史に縮少させ
るため、供給電圧に応じて適当な遅延時間が選択出来る
ことになり起動トルクが比較的確保される71以上の電
圧条件の場合も一体に一定の遅延時間をとる場合のJ:
うに無用な高圧冷媒を蒸発器内に流入させて不必要に冷
却効率を損うことがない、即ち供給電圧事情に応じて夫
に再起動確実な圧力条件を力えるために圧縮機停止後の
電磁弁の開成遅延時間を自動的に必要な時間に選定する
ことが出来、冷却効率への影響を極力抑えて(遅延時間
の設定によっては無影響で)電圧事情が悪い場合でも確
実なる圧縮機の再起動性を提供出来る効果を有するもの
である。
Also, if the power supply voltage is higher than the predetermined set voltage 71, the delay time will be short (in some cases, even if there is no delay time, the delay time will be short), and if it is lower than 1, the starting torque will be small, so the delay time will be long. High and low voltage Fj: In order to reduce the force difference, an appropriate delay time can be selected according to the supply voltage, and the starting torque is relatively secured.Even in the case of voltage conditions of 71 or higher, the J when taking delay time:
In order to prevent unnecessary high-pressure refrigerant from flowing into the evaporator and unnecessarily impairing cooling efficiency, it is necessary to restart the compressor after the compressor is stopped in order to maintain a reliable pressure condition depending on the supply voltage situation. The opening delay time of the solenoid valve can be automatically selected to the required time, minimizing the effect on cooling efficiency (or having no effect depending on the delay time setting), creating a reliable compressor even under poor voltage conditions. This has the effect of providing restartability.

尚不実施例では供給電圧を成る設定型IE V 1 よ
を数段階に区分し遅延時間の設定タイマーの数を増やす
ことによって更に細かく広範囲に遅延時間を可変させる
ことも出来るし、又供給電圧の変化によって積算時間が
リニアに変化する4こにタイマーを構成すればより一層
効率的な制御が可能である。
In the non-embodiment, the delay time can be varied more finely and over a wide range by dividing the supply voltage into several stages and increasing the number of delay time setting timers. Even more efficient control is possible by configuring four timers whose cumulative time varies linearly with changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す冷凍ザイクル図、第2
図はその電気回路図、第3図は従来例及び本発明の実施
例における圧縮機停止後の冷凍システ入内の圧力推移を
示す図である。
FIG. 1 is a frozen cycle diagram showing one embodiment of the present invention, and FIG.
The figure is an electric circuit diagram thereof, and FIG. 3 is a diagram showing the pressure transition inside the refrigeration system after the compressor is stopped in a conventional example and an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] !E縮機、;費縮器、減圧装置、蒸発器、前記Kl縮器
の出口と前記蒸発器の入口との間に介在した冷媒制御弁
を備え、庫内温度を検出する温度検出装賄にて前記圧縮
機を運転−停止制御し、前記冷媒制御弁を前記圧縮機の
運転中開成するとともに、前記圧縮機の停止後は供給電
源電圧に応じて前記冷媒制御弁を閉成するまでの遅延時
間を可変する遅延装置を備えた冷凍装置。
! E-compressor, comprising: a condenser, a pressure reducing device, an evaporator, a refrigerant control valve interposed between the outlet of the Kl condenser and the inlet of the evaporator, and temperature detection equipment for detecting the temperature inside the refrigerator. the compressor is operated and stopped, the refrigerant control valve is opened during the operation of the compressor, and after the compressor is stopped, there is a delay until the refrigerant control valve is closed according to the supply voltage. Refrigeration equipment equipped with a delay device that changes the time.
JP19628282A 1982-11-08 1982-11-08 Refrigerator Pending JPS5984056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19628282A JPS5984056A (en) 1982-11-08 1982-11-08 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19628282A JPS5984056A (en) 1982-11-08 1982-11-08 Refrigerator

Publications (1)

Publication Number Publication Date
JPS5984056A true JPS5984056A (en) 1984-05-15

Family

ID=16355205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19628282A Pending JPS5984056A (en) 1982-11-08 1982-11-08 Refrigerator

Country Status (1)

Country Link
JP (1) JPS5984056A (en)

Similar Documents

Publication Publication Date Title
JPS5915782A (en) Temperature controller for refrigerator
JPH06213548A (en) Refrigerator
JPS5984056A (en) Refrigerator
JPS5984057A (en) Refrigerator
JPS5986869A (en) Refrigerator
KR920009308B1 (en) Refrigerant flow control method and apparatus
JPS5984058A (en) Refrigerator
JPS5832118Y2 (en) Refrigeration cycle operating equipment
JPS5984055A (en) Refrigerator
JPS58187761A (en) Refrigerator
JPS629160A (en) Defroster for refrigerator
JPH07120116A (en) Cooler
US2069772A (en) Refrigeration
JPS5984059A (en) Refrigerator
JPS58221368A (en) Refrigerator
JPS5913860A (en) Refrigerator
JPS5912273A (en) Refrigerator
JPH089573Y2 (en) Refrigeration equipment
JPS6216613Y2 (en)
JPS5918346A (en) Refrigerator
JPS6039702Y2 (en) Heat pump air conditioning system
JPS59195079A (en) Refrigerator
JPS58221354A (en) Refrigerator
JPS5971963A (en) Heat pump type refrigeration cycle
JPS61134564A (en) Refrigerator