JPS58221354A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS58221354A
JPS58221354A JP10449582A JP10449582A JPS58221354A JP S58221354 A JPS58221354 A JP S58221354A JP 10449582 A JP10449582 A JP 10449582A JP 10449582 A JP10449582 A JP 10449582A JP S58221354 A JPS58221354 A JP S58221354A
Authority
JP
Japan
Prior art keywords
pressure
compressor
defrosting
evaporator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10449582A
Other languages
Japanese (ja)
Inventor
大橋 祥記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP10449582A priority Critical patent/JPS58221354A/en
Publication of JPS58221354A publication Critical patent/JPS58221354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は圧縮機、凝縮器、減圧装置、蒸発器により構成
され、かつヒータにて除霜運転を行なう冷蔵庫等の冷凍
装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a refrigeration device such as a refrigerator, which is composed of a compressor, a condenser, a pressure reducing device, and an evaporator, and which performs defrosting operation with a heater.

従来の冷蔵庫に用いられる冷却システムは第1図に示す
如く圧縮機1.凝縮器2.減圧装置4゜蒸発器6を環状
にパイプで配設したものである。
A cooling system used in a conventional refrigerator includes a compressor 1, as shown in FIG. Condenser 2. A pressure reducing device 4° evaporator 6 is arranged in a ring shape with pipes.

そして、圧縮機1を断続運転して温度調節を行なう場合
、圧縮機停止時には減圧装置4は単なる均圧管として働
き、凝縮器2内の高温、高圧冷媒が減圧装置4を介して
低温、低圧の蒸発器5内に流入して庫内に対して大きな
熱負荷となるとともに高圧側冷媒の減少により次の圧縮
機始動時の蒸発器への冷媒供給が遅くなる等冷却効率上
の欠点を有していた。
When the compressor 1 is operated intermittently to adjust the temperature, the pressure reducing device 4 acts as a mere pressure equalizing pipe when the compressor is stopped, and the high-temperature, high-pressure refrigerant in the condenser 2 is transferred to the low-temperature, low-pressure refrigerant through the pressure reducing device 4. The refrigerant flows into the evaporator 5, creating a large heat load on the inside of the refrigerator, and has drawbacks in terms of cooling efficiency, such as a decrease in refrigerant on the high-pressure side, which slows down the refrigerant supply to the evaporator when the next compressor is started. was.

これに対して上記欠点に対する改良策として第1図の如
く凝縮器2の出口と減圧装置4との間に電磁弁3を設け
、圧縮機運転時に通電し弁流路を開略し、圧縮機停止時
に前記電磁弁3を非通電とし弁流路を閉路して蒸発器6
に流入する高温高圧冷媒を阻止することを可能にしてい
る。一方、この種の改良型冷凍装置に於ける除霜運転に
ついては第2図の如くタイマー7の切替接点7bがNC
側にあって冷却運転をしている圧縮機1の運転時間が所
定時間になり、かつ開閉による圧縮機1を断続運転させ
庫内温度を制御するサーモスクソト6の閉成時で、タイ
マー7の切替接点7bがN。
In order to improve this problem, as shown in Fig. 1, a solenoid valve 3 is installed between the outlet of the condenser 2 and the pressure reducing device 4, and when the compressor is in operation, it is energized to open the valve flow path and stop the compressor. When the electromagnetic valve 3 is de-energized and the valve flow path is closed, the evaporator 6
This makes it possible to prevent high-temperature, high-pressure refrigerant from flowing into the tank. On the other hand, regarding the defrosting operation in this type of improved refrigeration system, the switching contact 7b of the timer 7 is set to NC as shown in Fig. 2.
The timer 7 is switched when the operating time of the compressor 1, which is located on the side and is in a cooling operation, reaches a predetermined time, and when the thermostat 6, which controls the temperature inside the refrigerator by causing the compressor 1 to operate intermittently by opening and closing, is closed, the timer 7 is switched. Contact 7b is N.

側に切換りヒータ8による除霜運転中、第2図の破線で
示すように前記電磁弁3に通電して弁流路を開路してお
く場合と第2図の一点鎖線で示すように前記電磁弁3を
非通電として弁流路を閉路しておく場合がある。
During the defrosting operation using the heater 8, the electromagnetic valve 3 is energized to open the valve flow path as shown by the broken line in FIG. There are cases where the solenoid valve 3 is de-energized and the valve flow path is closed.

まず除霜運転中電磁弁を開路しておく例を従来例Aとす
れば、除霜運転中の冷却システムの動作グラフは第4図
に示す通りで、同じくその時の圧力特性は第6図の破線
にて示す通りであり、除霜運転中電磁弁3が開路される
ため減圧装置が均圧管として働き、除霜開始より蒸発器
温度が概ね0℃付近になるまでは凝縮器内に滞留した高
温の高圧冷媒が蒸発器内に流入し、蒸発器加熱の補助熱
源となり除霜を促進させるが、それ以後は除霜ヒータに
よって蒸発器が加熱され蒸発器温度が上昇すると、低圧
側の圧力が次第に上昇して、今度は逆に加熱された低圧
側の冷媒が減圧装置4を介し1て高圧側に逆流して高低
圧全体のボリウムとして圧力バランスするため、除霜終
了後の冷却システム内の高低圧差圧P1′−P2′は極
めて小さくなり圧縮機の再起動が容易になる利点はある
が、反面、最終的にみた除霜効率は悪くなり除霜時間が
長くなるという欠点がある。
First, if we assume that conventional example A is an example in which the solenoid valve is open during defrosting operation, the operation graph of the cooling system during defrosting operation is as shown in Figure 4, and the pressure characteristics at that time are as shown in Figure 6. As shown by the broken line, the solenoid valve 3 is opened during defrosting operation, so the pressure reducing device acts as a pressure equalizing pipe, and the evaporator temperature remains in the condenser from the start of defrosting until the evaporator temperature reaches approximately 0°C. High-temperature, high-pressure refrigerant flows into the evaporator and becomes an auxiliary heat source for heating the evaporator, promoting defrosting, but after that, as the evaporator is heated by the defrost heater and the evaporator temperature rises, the pressure on the low-pressure side decreases. The refrigerant on the low-pressure side gradually rises and is heated, and then flows back to the high-pressure side via the pressure reducing device 4 and balances the pressure of the entire high and low pressure. This has the advantage that the high-low pressure differential P1'-P2' becomes extremely small, making it easier to restart the compressor, but on the other hand, it has the disadvantage that the defrosting efficiency is poor and the defrosting time becomes longer.

一方除霜運転中、電磁弁3を閉路しておく例を従来例B
とすれば、除霜運転中の冷却システムの動作グラフは第
4図の通りで、同じくその時の圧力特性は第6図の一点
鎖線に示すようであり、除霜運転中高圧側冷媒の蒸発器
への流入が阻止されるため、除霜初期の高温高圧冷媒流
入による除霜補助の働きはないものの、除霜中蒸発器内
の冷媒が少ない状態で所定温度まで上昇させることにカ
リ最終的には除霜時間が短かくて済む利点があるOしか
しながら除霜中高圧圧力は高いままで維持されるためバ
イメタルサーモスタット9の検知による除霜終了時の高
低圧圧力差P1”−P2パが大となり圧縮機を起動させ
るために圧縮機の電動機に過大なトルクを必要とし、条
件によっては起動困難となることもある。
On the other hand, conventional example B is an example in which the solenoid valve 3 is closed during defrosting operation.
Then, the operation graph of the cooling system during defrosting operation is as shown in Figure 4, and the pressure characteristics at that time are as shown by the dashed line in Figure 6. Although the inflow of high-temperature, high-pressure refrigerant at the initial stage of defrosting does not assist in defrosting, it is ultimately possible to raise the temperature to a specified level with a small amount of refrigerant in the evaporator during defrosting. However, since the high pressure remains high during defrosting, the high and low pressure difference P1''-P2 at the end of defrosting as detected by the bimetal thermostat 9 becomes large. In order to start the compressor, the electric motor of the compressor requires excessive torque, and depending on the conditions, it may be difficult to start the compressor.

本発明はこの種の問題に着目し、凝縮器出口と減圧装置
入口との間に冷媒制御弁を設け、冷却運転時は前記冷媒
制御弁の開閉を圧縮機の運転−停止と同期せしめるとと
もに、除霜運転時は除霜開始より蒸発器温度が0℃付近
に上昇するまでのみ、冷媒制御弁を開路せしめることに
より、前記した従来例A、Hの欠点を同時に解消するも
のである。
The present invention focuses on this kind of problem, and provides a refrigerant control valve between the condenser outlet and the pressure reducing device inlet, and during cooling operation, the opening and closing of the refrigerant control valve is synchronized with the operation and stop of the compressor. During defrosting operation, the refrigerant control valve is opened only from the start of defrosting until the evaporator temperature rises to around 0° C., thereby simultaneously solving the drawbacks of conventional examples A and H described above.

以下図面により冷蔵庫に採用して本発明の一実施例につ
いて説明する。第1図に於いて1は圧縮機、2は凝縮器
、3は電磁弁、4は毛細管、6は蒸発器で、それぞれ連
結されて環状の冷却サイクルが形成されている。又、図
3に於いて6はサーモスタットで、圧縮機1を断続運転
させて庫内温度を制御する。了は前記圧縮機1の運転時
間を積算して周期的に除霜ヒ〜り8に通電して蒸発器6
の除霜を行なわせるタイマーであり、駆動用電動機7a
と切替接点7bにより構成されている。9は除霜終了検
知用のバイメタルサーモスタットであり、又1oは蒸発
器5の一部に設けられたもう一つのバイメタルサーモス
タットで概ね0℃以上で接点が開放するように設定され
ており、一端を前記サーモスタット6を介して電源に、
他端を前記電磁弁3と直列に接続して電源に接続されて
おり、且つ冷却運転中は回路的に短絡されるよう構成さ
れている。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is a compressor, 2 is a condenser, 3 is a solenoid valve, 4 is a capillary tube, and 6 is an evaporator, each of which is connected to form an annular cooling cycle. Further, in FIG. 3, 6 is a thermostat, which controls the temperature inside the refrigerator by causing the compressor 1 to operate intermittently. After that, the operating time of the compressor 1 is accumulated and the defrost heater 8 is periodically energized to cool the evaporator 6.
This is a timer for defrosting the drive motor 7a.
and a switching contact 7b. 9 is a bimetal thermostat for detecting the end of defrosting, and 1o is another bimetal thermostat installed in a part of the evaporator 5, whose contacts are set to open at approximately 0°C or higher, and one end is to the power supply via the thermostat 6;
The other end is connected in series with the electromagnetic valve 3 and connected to a power source, and is configured to be short-circuited during cooling operation.

かかる構成において次に作用を説明する。タイマー7の
切替接点7bがN、C側(N、C/)側にあり温度調節
用サーモスタット6が閉成している場合は、バイメタル
サーモスタット10の開閉にかかわりなく、切替接点7
bのN 、 C/接点を介したバイメタルサーモスタッ
ト10の短絡回路11により、電磁弁3に通電され、電
磁弁3が開路して圧縮機1が運転され庫内が冷える。そ
して一定温度になれば温度調節用サーモスタッ)6が開
放し通電が断たれて電磁弁3が閉じ圧縮機1が停止する
。これにより圧縮機1の停止時、高圧側冷媒は電磁弁3
に遮断されて毛細管4を介して蒸発器5への流入がなく
なるため、圧縮機1の停止中の蒸発器6への熱負荷の流
入は防止される。また前記圧縮機1の運転時間がタイマ
ー7の駆動用電動機7aによって一定時間積算されると
、切替接点がN−C(N−0勺−+N 、’ o (N
 @O’) K切替tられて圧縮機1が停止すると同時
にノくイメタルサーモスタット9を介して除霜ヒータ8
に通電され除霜を開始す・る0この時タイマー駆動用電
動機7aはバイメタルサーモスタット9によって短絡さ
れて停止するが、電磁弁3は切替接点7bがN・σ→N
・0′に切替わることによって短絡状態を解除されたバ
イメタルサーモスタット10を介して通電が続けられ、
弁流路を開路し続ける。このことにより凝縮器2内に滞
留した高温の高圧冷媒が蒸発器6内に流入し蒸発器6を
加熱する補助熱源となり除霜を促進させる。その後除霜
が進み蒸発器6の温度が0℃付近にまで上昇すると、ノ
くイメタルサーモスタット10が動作して接点を開放し
電磁弁3への通電を遮断して、弁流路を閉路する。
The operation of this configuration will be explained next. When the switching contact 7b of the timer 7 is on the N, C side (N, C/) side and the temperature control thermostat 6 is closed, the switching contact 7b is on the N, C side (N, C/) side, regardless of whether the bimetal thermostat 10 is open or closed.
The solenoid valve 3 is energized by the short circuit 11 of the bimetal thermostat 10 via the N and C contacts of b, the solenoid valve 3 is opened, the compressor 1 is operated, and the inside of the refrigerator is cooled. When the temperature reaches a certain level, the temperature regulating thermostat 6 is opened, the current is cut off, the solenoid valve 3 is closed, and the compressor 1 is stopped. As a result, when the compressor 1 is stopped, the high pressure side refrigerant is transferred to the solenoid valve 3.
Since the inflow into the evaporator 5 through the capillary tube 4 is interrupted, the heat load is prevented from inflowing into the evaporator 6 while the compressor 1 is stopped. Further, when the operating time of the compressor 1 is accumulated for a certain period of time by the drive motor 7a of the timer 7, the switching contact is
@O') At the same time when the K is switched and the compressor 1 is stopped, the defrosting heater 8 is turned on via the metal thermostat 9.
At this time, the timer drive motor 7a is short-circuited by the bimetal thermostat 9 and stops, but the switching contact 7b of the solenoid valve 3 changes from N to N.
・Electrification continues through the bimetal thermostat 10, which has been released from the short-circuit state by switching to 0',
Keep the valve flow path open. As a result, the high-temperature high-pressure refrigerant remaining in the condenser 2 flows into the evaporator 6 and becomes an auxiliary heat source for heating the evaporator 6, promoting defrosting. After that, as defrosting progresses and the temperature of the evaporator 6 rises to around 0°C, the metal thermostat 10 operates to open the contacts, cut off the power to the solenoid valve 3, and close the valve flow path. .

この時高低圧の圧力は低い圧力で一旦ノ(ランスする。At this time, the high and low pressures are temporarily released at a low pressure.

この状態で更に除霜が進むと除霜ヒータ8によって加熱
され、圧力が上昇する蒸発器6内の冷媒は凝縮器2内に
逆流することがないため除霜効率が良くなり除霜時間が
短かくて済む。そして、最終的に蒸発器6の温度が所定
温度まで上昇すると、バイメタルサーモスタット9が開
放して除霜ヒータ8の発熱が停止すると同時にタイマー
駆動用電動機7aに通電が開始されて運転を始める。
As defrosting progresses further in this state, the refrigerant in the evaporator 6, which is heated by the defrost heater 8 and its pressure increases, does not flow back into the condenser 2, improving the defrosting efficiency and shortening the defrosting time. That's all. When the temperature of the evaporator 6 finally rises to a predetermined temperature, the bimetal thermostat 9 is opened and the defrosting heater 8 stops generating heat, and at the same time, the timer drive motor 7a is energized and starts operating.

その後一定の待機時間を経過するとタイマー7のカム板
等の作用によって切替接点7bがN−0(N −0’)
→N −C(N −C’ )に切替えられて電磁弁3を
開路すると同時に圧縮機1が起動し冷却運転を再開する
。このだめ除霜中の冷却システムの圧力変化は第5図の
実線で示すように、除霜開始より蒸発器温度が0℃に上
昇するまでの間は従来例Aと全く同じ圧力変化を示して
おり、低い圧力で一旦高低圧がほぼバランスする。(第
6図の23点)その後バイメタルサーモスタット1oの
開成により電磁弁3が閉路されると低圧側は除霜ヒータ
8の加熱により圧力は上昇するが、高圧側への逆流が阻
止されているため、高圧側圧力は低い圧力のまま推移し
、結果的に除霜終了後、圧縮機1の再始動時(第4図の
本発明例)には高低圧の圧力が逆転し、高圧側圧力Pく
低圧側圧〃P2の関係となっているために圧縮行程にお
ける所要トルクは小さくて済み、容易に圧縮機1を起動
させることが出来る。第4図は各側の冷却システムの圧
力変化に対応したタイマー7、除霜ヒータ8、電磁弁3
、圧縮機1の各動作、停止を示している。
After that, after a certain waiting time has elapsed, the switching contact 7b changes to N-0 (N-0') due to the action of the cam plate of the timer 7, etc.
→N-C (N-C') and at the same time as the solenoid valve 3 is opened, the compressor 1 is started and the cooling operation is resumed. As shown by the solid line in Figure 5, the pressure change in the cooling system during defrosting shows exactly the same pressure change as in conventional example A from the start of defrosting until the evaporator temperature rises to 0°C. Once the pressure is low, the high and low pressures are almost balanced. (Point 23 in Figure 6) After that, when the bimetal thermostat 1o is opened and the solenoid valve 3 is closed, the pressure on the low pressure side increases due to the heating of the defrosting heater 8, but the backflow to the high pressure side is blocked. , the high-pressure side pressure remains low, and as a result, when the compressor 1 is restarted after defrosting (the example of the present invention shown in Fig. 4), the high-low pressure is reversed, and the high-pressure side pressure P Since the relationship is such that the low side pressure P2 is low, the required torque in the compression stroke is small, and the compressor 1 can be started easily. Figure 4 shows the timer 7, defrost heater 8, and solenoid valve 3 that correspond to pressure changes in the cooling system on each side.
, each operation and stop of the compressor 1 are shown.

以上の実施例から明らかな様に、本発明は凝縮器と毛細
管等の減圧器の間に電磁弁等の冷媒制御弁を設け、圧縮
機の運転、停止に同期して前記冷媒制御弁を開閉させ、
除霜時は除霜開始より蒸発器温度が0℃付近に上昇する
までの間のみ冷媒制御弁を開路させるものである。した
がって、従来電磁弁を設けた冷凍装置については除霜中
電磁弁を開路にするか閉路にするかで各々一長一短があ
ったが、本発明の除霜中の冷媒制御弁の制御により、除
霜開始より蒸発器温度が0℃付近に達するまでは、高温
の高圧側冷媒を除霜ヒータの補助熱源として有効に利用
して除霜を促進させ、それ以後は冷媒制御弁を閉路する
ことによって除霜ヒータによって加熱された冷媒を高圧
側に逃がさずに除霜効率を上げるため、全体的な除霜時
間は従来例より短縮させることが出来る。又一方除霜終
了後の圧縮機の再起動に対しても、蒸発器温度0℃付近
の低い圧力で一旦はぼバランスした高低圧圧力は、その
後低圧側の加熱、高圧側との遮断の条件のもとに圧力が
逆転して高圧側の方が低い圧力となるだめ容易に再起動
を行なうことが出来る。
As is clear from the above embodiments, the present invention provides a refrigerant control valve such as a solenoid valve between a condenser and a pressure reducer such as a capillary tube, and opens and closes the refrigerant control valve in synchronization with the operation and stop of the compressor. let me,
During defrosting, the refrigerant control valve is opened only from the start of defrosting until the evaporator temperature rises to around 0°C. Therefore, conventional refrigeration equipment equipped with a solenoid valve had advantages and disadvantages depending on whether the solenoid valve was opened or closed during defrosting, but with the control of the refrigerant control valve during defrosting of the present invention, defrosting From the start until the evaporator temperature reaches around 0℃, the high-temperature, high-pressure refrigerant is effectively used as an auxiliary heat source for the defrost heater to accelerate defrost, and after that, defrost is performed by closing the refrigerant control valve. Since the defrosting efficiency is increased without letting the refrigerant heated by the frost heater escape to the high pressure side, the overall defrosting time can be shortened compared to the conventional example. On the other hand, when the compressor is restarted after defrosting, the high and low pressures, which are once roughly balanced at low pressure with the evaporator temperature around 0°C, are then heated on the low pressure side and cut off from the high pressure side. Under this condition, the pressure reverses and the pressure on the high pressure side becomes lower, making it easy to restart.

このように本発明は従来例両者の欠点を解消すると同時
にそれぞれの長所を生かすことが出来実用上の効果は極
めて高いものである。
As described above, the present invention can eliminate the drawbacks of both conventional examples and at the same time take advantage of the advantages of each, and has extremely high practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例及び本発明の一実施例を示す冷却システ
ム配管図、第2図及び第3図は第1図に対応するそれぞ
れ従来例及び本発明の電気回路図、第4図および第′6
図は従来例及び本発明の除霜時における冷却システムの
動作グラフとそれに対応する圧力変化を示すグラフであ
る。
FIG. 1 is a cooling system piping diagram showing a conventional example and an embodiment of the present invention, FIGS. 2 and 3 are electrical circuit diagrams of the conventional example and the present invention corresponding to FIG. 1, and FIG. 4 and FIG. '6
The figure is a graph showing the operation graph of the cooling system during defrosting of the conventional example and the present invention, and the corresponding pressure change.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、凝縮器、減圧器、蒸発器を順次接続して構成し
、かつ庫内温度を感知するサーモスタットにて前記圧縮
機を運転−停止制御し、さらにヒータにて前記蒸発器の
除霜を行なうと共に前記凝縮器出口と蒸発器入口との間
に冷媒制御弁を設け、この冷媒制御弁を前記圧縮機の運
転−停止と同期して開閉するとともに、除霜運転中は除
霜開始より蒸発器温度が0℃付近に上昇するまでの間の
み前記冷媒制御弁を開放するように構成した冷凍装置0
A compressor, a condenser, a pressure reducer, and an evaporator are connected in sequence, and a thermostat that senses the internal temperature controls the operation and stopping of the compressor, and a heater defrosts the evaporator. At the same time, a refrigerant control valve is provided between the condenser outlet and the evaporator inlet, and this refrigerant control valve is opened and closed in synchronization with the operation and stop of the compressor. Refrigeration device 0 configured to open the refrigerant control valve only until the temperature of the refrigerator rises to around 0°C.
JP10449582A 1982-06-16 1982-06-16 Refrigerator Pending JPS58221354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10449582A JPS58221354A (en) 1982-06-16 1982-06-16 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10449582A JPS58221354A (en) 1982-06-16 1982-06-16 Refrigerator

Publications (1)

Publication Number Publication Date
JPS58221354A true JPS58221354A (en) 1983-12-23

Family

ID=14382104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10449582A Pending JPS58221354A (en) 1982-06-16 1982-06-16 Refrigerator

Country Status (1)

Country Link
JP (1) JPS58221354A (en)

Similar Documents

Publication Publication Date Title
JPS58221354A (en) Refrigerator
JPH09318165A (en) Electric refrigerator
JPH07146014A (en) Refrigeration cycle control method in liquid cooling device, and liquid cooling device
JP2646704B2 (en) Heat pump type air conditioner
JPS58221368A (en) Refrigerator
JPS5971960A (en) Heat pump type refrigeration cycle
JPS6346350B2 (en)
JPS59138863A (en) Refrigerator
JPS58221367A (en) Refrigerator
JPS5912273A (en) Refrigerator
JP2858914B2 (en) Refrigerator control device
JPS629160A (en) Defroster for refrigerator
JPS58187761A (en) Refrigerator
JP2567710B2 (en) Cooling device operation control device
JPS6361584B2 (en)
JPS5984058A (en) Refrigerator
JPS5913859A (en) Refrigerator
JPS60597Y2 (en) Refrigerator defrost device
JPS6036844Y2 (en) Heat pump refrigeration equipment
JPS5833067A (en) Refrigerator
JPS5819020B2 (en) Cooling system
JPH0395360A (en) Heating and cooling apparatus
JPS61180848A (en) Air conditioner
JPS59208356A (en) Refrigerator
JPS6129657A (en) Refrigerator