JPS5984055A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS5984055A
JPS5984055A JP19628182A JP19628182A JPS5984055A JP S5984055 A JPS5984055 A JP S5984055A JP 19628182 A JP19628182 A JP 19628182A JP 19628182 A JP19628182 A JP 19628182A JP S5984055 A JPS5984055 A JP S5984055A
Authority
JP
Japan
Prior art keywords
pressure
compressor
control valve
evaporator
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19628182A
Other languages
Japanese (ja)
Inventor
大橋 祥記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP19628182A priority Critical patent/JPS5984055A/en
Publication of JPS5984055A publication Critical patent/JPS5984055A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧縮機・凝縮器・減圧装置・蒸発器等により形
成され、庫内温度検出装置等を用いて圧縮機を運転−停
止制御することにより所定の冷却を行なう例えば冷蔵庫
等の冷凍装置の改良に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention is composed of a compressor, a condenser, a pressure reducing device, an evaporator, etc., and the compressor is controlled to start and stop using an internal temperature detection device, etc. The present invention relates to improvements in refrigeration equipment, such as refrigerators, that perform predetermined cooling.

従来例の構成とその問題点 従来よりこの種の冷凍装置においては圧縮機の運転中に
おける凝縮器内には、高温高圧に圧縮された冷媒が多量
に存在しており、停止時には減圧装置が高低圧回路の圧
力をバランスさせる均圧管として作用し、前記高温高圧
の冷媒が蒸発器に流入するため蒸発器は加熱される。従
って後続の圧縮機の再起動後には前記した高温冷媒の流
入による蒸発器の加熱分を含めて再び冷却する必要が生
じ、結果的には冷却のための消費電力を過剰に要するこ
とが知られている。前記欠点に対する改良策として凝縮
器出口と蒸発器入口との間に電磁弁等の冷媒制御弁を設
け、圧縮機運転時に流路を開放し、圧縮機停止時に流路
を閉成して蒸発器に流入する高温高圧冷媒を阻止するも
のが知られている。しかしこの種の改良型冷凍装置は圧
縮機の停止と同時に電磁弁も閉じ、停止中も電磁弁によ
り高圧回路全体を高圧に保持し、低圧回路全体を低圧に
保持するものであるため、圧縮機の圧縮要素の前後圧力
が不均等になっている。従って再起動時において圧縮機
を起動するために圧縮機の電動機に過大なトルクを必要
とし、条件によっては起動不可能となることもある。一
般的に高外気温時や冷蔵庫の設置条件(特に凝縮器周囲
の設置条件)が厳しい場合はど高圧圧力が高くなり再起
動条件は厳しくなる。
Conventional configuration and its problems Conventionally, in this type of refrigeration system, a large amount of refrigerant compressed to high temperature and pressure exists in the condenser when the compressor is operating, and when the compressor is stopped, the decompression device is It acts as a pressure equalizing pipe that balances the pressure in the low pressure circuit, and the evaporator is heated because the high temperature and high pressure refrigerant flows into the evaporator. Therefore, after restarting the subsequent compressor, it becomes necessary to cool the evaporator again, including the heating of the evaporator due to the inflow of the high-temperature refrigerant, and as a result, it is known that excessive power consumption is required for cooling. ing. As an improvement measure for the above drawback, a refrigerant control valve such as a solenoid valve is installed between the condenser outlet and the evaporator inlet, and the flow path is opened when the compressor is operating, and closed when the compressor is stopped, thereby controlling the evaporator. There are known devices that prevent high-temperature, high-pressure refrigerant from flowing into the refrigerant. However, in this type of improved refrigeration system, the solenoid valve closes at the same time as the compressor stops, and even during the stop, the solenoid valve maintains the entire high-pressure circuit at high pressure and the entire low-pressure circuit at low pressure. The pressure between the front and rear of the compression element is uneven. Therefore, in order to start the compressor upon restart, the electric motor of the compressor requires excessive torque, and depending on the conditions, it may become impossible to start the compressor. Generally, when the outside temperature is high or the installation conditions of the refrigerator are severe (especially the installation conditions around the condenser), the high pressure increases and the conditions for restarting the refrigerator become severe.

発明の目的 本発明は冷却効率への影響を最小限に抑えた上で再起動
時における高低間の圧力差を小さくし、圧縮機の再起性
を向上させる。
OBJECTS OF THE INVENTION The present invention improves the restartability of a compressor by minimizing the influence on cooling efficiency and reducing the pressure difference between high and low levels at the time of restart.

発明の構成 本発明は電磁弁等の冷媒制御弁の開成開始後、冷却シス
テム内の高圧圧力が所定圧以下になるまで、圧縮機の運
転開始を遅延さすものである。
Structure of the Invention The present invention delays the start of operation of the compressor until the high pressure within the cooling system falls below a predetermined pressure after a refrigerant control valve such as a solenoid valve starts opening.

実施例の説明 以下本発明を家庭用冷蔵庫に適用した一実施例を示す図
面に従い説明する。
DESCRIPTION OF EMBODIMENTS An embodiment in which the present invention is applied to a household refrigerator will be described below with reference to the drawings.

図において1は圧縮機、2は凝縮器、3は減圧装置! 
(ここでは毛細管)、4は蒸発器であり、5は冷媒制御
弁(以下電磁弁という)である。電磁弁6は凝縮器2の
出口と毛細管3の人口の間に接続されている。また電磁
弁6は冷蔵庫の庫内温度を検出する温度検出装置6から
の信号により接点を開閉するリレー7と直列に接続され
ており、圧縮機1はリレー8を介してリレー7と直列に
接続されている。リレー8は接点の開放動作をリレー7
と同期し閉成動作は前記リレー7が閉成した時点より冷
却システムの高圧圧力が所定圧力以下になるまでの時間
だけ遅延して接点を閉成する様に制御回路にて構成され
ている。
In the diagram, 1 is a compressor, 2 is a condenser, and 3 is a pressure reducing device!
(Here, a capillary tube), 4 is an evaporator, and 5 is a refrigerant control valve (hereinafter referred to as a solenoid valve). A solenoid valve 6 is connected between the outlet of the condenser 2 and the capillary tube 3. Furthermore, the solenoid valve 6 is connected in series with a relay 7 that opens and closes its contacts based on a signal from a temperature detection device 6 that detects the internal temperature of the refrigerator, and the compressor 1 is connected in series with the relay 7 via a relay 8. has been done. Relay 8 controls the contact opening operation to relay 7.
The control circuit is configured such that the closing operation is delayed by the time from when the relay 7 is closed until the high pressure of the cooling system becomes lower than a predetermined pressure, and then closes the contact.

次に前記リレー7及び8の開閉を制御する制御回路につ
いて詳細に説明する。
Next, a control circuit for controlling the opening and closing of the relays 7 and 8 will be explained in detail.

6は前述の様に冷蔵庫の庫内温度検出装置で、コンパレ
ータ9、抵抗R1,R2,R3および庫内の一部に設け
られたサーミスタ10で構成している。
As mentioned above, reference numeral 6 denotes a temperature detection device inside the refrigerator, which is composed of a comparator 9, resistors R1, R2, R3, and a thermistor 10 provided in a part of the inside of the refrigerator.

この温度検出装置6は抵抗R21R3で決まるB点の電
位に対して抵抗R1とサーミスタ10の温度により変化
する抵抗直RTHとで決まるA点の電位が高い場合コン
パレータ9の出力は”1”に、低い場合は′0”になる
ように動作する。このコンパレータ9の出力はトランジ
スタ等の駆動手段(図示せず)を介してリレー7を開閉
する信号を送るよう接続するとともにAND回路11の
一方の入力に接続され、且つインバータ12を介シテR
−Sフリップ70ツブ13のリセット人力にも接続され
ている。14は冷却システムの高圧圧力を検出して電気
的信号に変換する圧力検出装置で高圧圧力が予め定めた
所定圧力より高い場合は出カバ1″′に、低い場合は出
力” o ”になるように動作する。この圧力検出装置
14の出力はインノ(−夕15を介して前記AND回路
11のもう一方の入力に接続されている。AND回路1
1の出力はR−Sフリップフロップ130セント入力に
接続され、R−Sフリップフロップ13のQ出力はトラ
ンジスタ等の駆動手段(図示せず)を介してリレー8を
開閉する信号を送る様構成している。
In this temperature detection device 6, when the potential at the point A determined by the resistor R1 and the resistance RTH which changes depending on the temperature of the thermistor 10 is higher than the potential at the point B determined by the resistor R21R3, the output of the comparator 9 becomes "1". If it is low, it operates to be '0'.The output of the comparator 9 is connected to send a signal to open/close the relay 7 via a driving means such as a transistor (not shown), and is also connected to one side of the AND circuit 11. connected to the input and via the inverter 12
- It is also connected to the reset manual power of the S flip 70 knob 13. Reference numeral 14 is a pressure detection device that detects the high pressure of the cooling system and converts it into an electrical signal.If the high pressure is higher than a predetermined pressure, the output cover 1'' is output, and if it is lower, the output is "o". The output of this pressure detection device 14 is connected to the other input of the AND circuit 11 via the input terminal 15.
The output of R-S flip-flop 13 is connected to the 130 cent input of R-S flip-flop 13, and the Q output of R-S flip-flop 13 is configured to send a signal to open and close relay 8 via driving means (not shown) such as a transistor. ing.

次にかかる構成における動作状況を説明する。Next, the operational status of this configuration will be explained.

冷蔵庫の庫内温度が所定値より低下している場合は、庫
内温度検出装置6において、サーミスタ10の抵抗値R
THが大きくなりA電位がB電位より低くなるため、コ
ンパレータ9の出力はパ0′″となり、リレー7は開放
されている。又同時にインバータ12で反転した信号”
 1 ”はR−Sフリップフロップ13にリセット信号
を送ることになるためQ出力はII Ollとなりリレ
ー8も開放される。
When the internal temperature of the refrigerator is lower than a predetermined value, the internal temperature detection device 6 detects the resistance value R of the thermistor 10.
As TH increases and the A potential becomes lower than the B potential, the output of the comparator 9 becomes 0'', and the relay 7 is open.At the same time, the signal inverted by the inverter 12
1'' sends a reset signal to the R-S flip-flop 13, so the Q output becomes II Oll and the relay 8 is also opened.

即ち電磁弁6は閉成されて冷媒流路を閉止し、これと同
時に圧縮機1も停止する。その後庫内が一定温度にまで
上昇すればサーミスタ10の抵抗値RTHが小さくなり
A電位がB電位より高くなるため、コンパレータ9の出
力はII I IIとなってトランジスタ等の駆動手段
を通じてリレー7を閉成し、電磁弁5に通電して冷媒流
路を開放し、高圧圧力は徐々に低下し始め、低圧圧力は
上昇し始める。一方、この時の高圧圧力は未だ予め定め
た圧力検出装置14の所定圧力以上であるため圧力検出
装置14の出力は′1″でありインノ(−夕16を介し
て” O”に反転することによりAND回路11の出力
はIt O#即ちR−Sフリップフロップのセット入力
も”0″となるため、Q出力も“0″のままを維持し、
リレー8も開放状態を維持する。
That is, the solenoid valve 6 is closed to close the refrigerant flow path, and at the same time, the compressor 1 is also stopped. After that, when the temperature inside the refrigerator rises to a certain level, the resistance value RTH of the thermistor 10 becomes smaller and the A potential becomes higher than the B potential, so the output of the comparator 9 becomes II I II, and the relay 7 is activated through a driving means such as a transistor. The solenoid valve 5 is closed and the solenoid valve 5 is energized to open the refrigerant flow path, and the high pressure starts to gradually decrease and the low pressure starts to increase. On the other hand, since the high pressure at this time is still higher than the predetermined pressure of the pressure detection device 14, the output of the pressure detection device 14 is ``1'' and is reversed to ``O'' through the output 16. Therefore, the output of the AND circuit 11 is It O#, that is, the set input of the R-S flip-flop is also "0", so the Q output also remains "0",
Relay 8 also remains open.

即ち圧縮機1は停止状態を継続する。その後型に高圧圧
力が低下して圧力検出装置14の予め定めた所定圧力以
下になると圧力検出装置14の出力は’ o ” Pこ
なりインバータ15を介してのAND回路11への入力
はu 1nとなるため、この時点で初めてAND回路1
1の出力が” 1 ”となりR−Sフリップフロップ1
3にセット信号が送られR−Sフリップフロップ13の
出力Qは” 1 ”となってトランジスタ等の駆動手段
を介してリレー8が閉成し圧縮機11が運転を開始する
。即ち上記の手順で電磁弁5の開放開始より、高圧圧力
が所定圧力以下に到達するまでの時間圧縮機1の運転開
始を遅延する。又圧縮機1の運転開始後は高圧圧力がす
ぐさま上昇し圧力検出装置14の設定圧力を超えて出力
が“′1″′に反転し、インバータ15を介してのAN
D回路11への入力が°“o ”になってAND回路1
1の出力は°′0”になるがR−Sフリップ70ツブ1
3のQ出力はリセット端子(R端子)に信号°゛1”が
入力されないかぎり出力°“1”を継続するためリレー
8はそのまま閉成された圧縮機1は運転を継続する。そ
の後庫内が十分冷却されて温度検出装置6が所定温度を
検出すると前述した様に電磁弁5が閉成すると同時に圧
縮機1が停止し、以後前述した動作を繰返す。
That is, the compressor 1 continues to be in a stopped state. After that, when the high pressure in the mold decreases to below the predetermined pressure of the pressure detection device 14, the output of the pressure detection device 14 becomes 'o'P, and the input to the AND circuit 11 via the inverter 15 becomes u1n. Therefore, for the first time at this point, AND circuit 1
1 becomes “1” and R-S flip-flop 1
3, the output Q of the R-S flip-flop 13 becomes "1", the relay 8 is closed via a driving means such as a transistor, and the compressor 11 starts operating. That is, in the above procedure, the start of operation of the compressor 1 is delayed for a period of time from when the electromagnetic valve 5 starts opening until the high pressure reaches a predetermined pressure or less. Furthermore, after the compressor 1 starts operating, the high pressure increases immediately and exceeds the set pressure of the pressure detection device 14, and the output is reversed to "1".
The input to D circuit 11 becomes °“o” and AND circuit 1
The output of 1 becomes °'0'', but the R-S flip 70 tube 1
Since the Q output of No. 3 continues to be "1" unless the signal "1" is input to the reset terminal (R terminal), the compressor 1 continues to operate with the relay 8 closed. When the compressor 1 is sufficiently cooled and the temperature detection device 6 detects a predetermined temperature, the solenoid valve 5 closes and the compressor 1 stops as described above, and the above-described operation is repeated thereafter.

次に冷却システム内の圧力推移について従来例ズ と比較しながら第3図5説明する。実線は従来例の高圧
及び低圧のシステム圧力推移を示し、破線は本発明実施
例の高圧及び低圧のシステム圧力推移を示す。第3図よ
り明らかな様に温度検出装置が出力” 1 ”となって
電磁弁5が開放した後、高圧圧力が所定圧力(Plo)
以下iこなるまで圧縮機1の起動を待機させているため
、その間に凝縮器2内の冷媒が低圧側の蒸発器4内に流
入して高圧側の圧力を所定圧力(P1’)−tで低下さ
せ、又逆に低圧側の圧力を成る程度(P2′まで)上昇
させるため、遅延後の圧縮機1の再起動時における高低
圧圧力差は従来例の高低圧力差(Pl−P2)に較べて
(pl−p2’ )と縮少され、圧縮機1の再起動圧力
条件は緩和される。
Next, the pressure transition within the cooling system will be explained with reference to FIG. 3 while comparing it with the conventional example. The solid line shows the high-pressure and low-pressure system pressure changes of the conventional example, and the broken line shows the high-pressure and low-pressure system pressure changes of the embodiment of the present invention. As is clear from Fig. 3, after the temperature detection device outputs "1" and the solenoid valve 5 opens, the high pressure reaches the predetermined pressure (Plo).
Since the compressor 1 is kept on standby until the following i is reached, the refrigerant in the condenser 2 flows into the evaporator 4 on the low pressure side and the pressure on the high pressure side is increased to a predetermined pressure (P1') - t. In order to reduce the pressure on the low pressure side and conversely increase the pressure on the low pressure side to a certain extent (up to P2'), the high and low pressure difference when restarting the compressor 1 after the delay is the same as the high and low pressure difference (Pl - P2) of the conventional example. (pl-p2'), and the restart pressure condition of the compressor 1 is relaxed.

発明の効果 以上の説明から明らかな様に本発明は凝縮器と蒸発器の
間に冷媒制御弁を設け、この冷媒制御弁の開成中は圧縮
機も停止させるとともに、冷媒制制弁の開放開始より高
圧圧力か予め設定した圧力に低下するまでの短時間遅延
させて圧縮機を運転開始させる圧力検出装置等の遅延装
置を有するもので、冷媒制御弁開放後、圧縮機が運転さ
れるまでの間に冷却システム内の高圧圧力を再起動可能
な所望値まで低下させ、低圧圧力は逆に上昇させること
により最終的に圧縮機の再起動時に於ける高低圧圧力差
を従来のものに比べて縮少させることが可能となり、圧
縮機の再起動を容易に出来る。
Effects of the Invention As is clear from the above explanation, the present invention provides a refrigerant control valve between the condenser and the evaporator, and while the refrigerant control valve is open, the compressor is also stopped and the refrigerant control valve starts opening. It has a delay device such as a pressure detection device that starts the compressor after a short delay until the pressure drops to a higher pressure or a preset value. In the meantime, the high pressure in the cooling system is lowered to a desired value that can be restarted, and the low pressure is increased, ultimately reducing the difference in high and low pressure when the compressor is restarted compared to the conventional one. This allows the compressor to be easily restarted.

また一般に外気温度条件や、冷蔵庫等の設置条件(特に
凝縮器周囲の設置条件)により冷却システムの高圧圧力
は様々に変化し、外気温度が高い場合や、凝縮器周囲の
放熱条件の悪い設置条件の場合は高圧圧力も上昇して圧
縮機の再起動条件も厳しくなっているが、この場合再起
動に支障のない高圧圧力に低下するまで圧縮機を自動的
に停止維持させて確実な再起動性を提供することが出来
る一方、外気温度が低い場合や、凝縮器周囲の放熱条件
が良い設置条件の場合は高圧圧力も低いため予め設定し
た高圧圧力に到達するまでの時間が短かくなる。したが
って圧縮機の遅延時間を短かく出来、条件によっては遅
延時間を不必要とすることも出来、無用に高圧冷媒を蒸
発器内へ流入させて冷却効率を損なうことなく、再起動
確実な圧力条件を与えるために必要最小限の遅延時間を
自動的に選定することが出来、様々な条件に対して常に
冷却効率への影響を最小限に抑えて(条件によっては無
影響で)確実なる圧縮機の再起動性を提供出来る効果を
有するものである。
In general, the high pressure of the cooling system varies depending on the outside temperature conditions and the installation conditions of the refrigerator, etc. (especially the installation conditions around the condenser). In this case, the high pressure increases and the conditions for restarting the compressor become stricter, but in this case, the compressor is automatically stopped and maintained until the pressure drops to a high level that does not pose a problem for restarting, ensuring a reliable restart. On the other hand, when the outside air temperature is low or when the installation conditions are such that the heat dissipation conditions around the condenser are good, the high pressure is also low, so the time it takes to reach the preset high pressure is shortened. Therefore, the delay time of the compressor can be shortened, and depending on the conditions, the delay time can be made unnecessary, and the restart can be performed under certain pressure conditions without causing unnecessary flow of high-pressure refrigerant into the evaporator and reducing cooling efficiency. It is possible to automatically select the minimum delay time necessary to give This has the effect of providing restartability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す冷凍サイクル図、第2
図はその電気回路図、第3図は従来例及び本発明の実施
例における冷却システム内の圧力推移を示す図である。 1・・・・・・圧縮機、2・・・・・・凝縮器、3・・
・・・・減圧装置、4・・・・・・蒸発器、5・・・・
・・冷媒制御弁、6・・・・・・庫内温度検出装置、1
4・・・・・・高圧圧力検出装置(遅延装置)。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 第3図 未41昨吟開(m訊〕
Fig. 1 is a refrigeration cycle diagram showing one embodiment of the present invention;
The figure is an electric circuit diagram thereof, and FIG. 3 is a diagram showing pressure changes within the cooling system in a conventional example and an embodiment of the present invention. 1... Compressor, 2... Condenser, 3...
... pressure reducing device, 4 ... evaporator, 5 ...
...refrigerant control valve, 6...interior temperature detection device, 1
4...High pressure detection device (delay device). Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 3 Un41 Yesterday's investigation

Claims (1)

【特許請求の範囲】[Claims] 圧縮機・凝縮器・減圧装置・蒸発器・前記凝縮器の出口
と前記蒸発器の入口との間に介在した冷媒制御弁を備え
、庫内温度を検出する温度検出装置にて前記冷媒制御弁
を開閉制御すると共に、この冷媒制御弁の閉成中は圧縮
機を停止させ、かつ前記冷媒制御弁の開放開始後は冷却
システムの高圧側圧力が所定圧力以下になるまで前記圧
縮機を停止維持した後運転開始させる遅延装置を有した
冷凍装置。
The refrigerant control valve is equipped with a compressor, a condenser, a pressure reducing device, an evaporator, and a refrigerant control valve interposed between the outlet of the condenser and the inlet of the evaporator. In addition to controlling opening and closing, the compressor is stopped while the refrigerant control valve is closed, and after the refrigerant control valve starts opening, the compressor is kept stopped until the high pressure side pressure of the cooling system becomes equal to or less than a predetermined pressure. Refrigeration equipment with a delay device that starts operation after
JP19628182A 1982-11-08 1982-11-08 Refrigerator Pending JPS5984055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19628182A JPS5984055A (en) 1982-11-08 1982-11-08 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19628182A JPS5984055A (en) 1982-11-08 1982-11-08 Refrigerator

Publications (1)

Publication Number Publication Date
JPS5984055A true JPS5984055A (en) 1984-05-15

Family

ID=16355188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19628182A Pending JPS5984055A (en) 1982-11-08 1982-11-08 Refrigerator

Country Status (1)

Country Link
JP (1) JPS5984055A (en)

Similar Documents

Publication Publication Date Title
US3695054A (en) Control circuit for an air conditioning system
JPS5984055A (en) Refrigerator
JPS5984057A (en) Refrigerator
US2572582A (en) Safety control for liquid-cooled devices
JPS5984058A (en) Refrigerator
JPS58187761A (en) Refrigerator
JPS5984059A (en) Refrigerator
US2718120A (en) Defrosting refrigeration cycle
JPS6159163A (en) Controller for quantity of refrigerant circulated in refrigerant heating type air conditioner
JPH089573Y2 (en) Refrigeration equipment
JPS5986869A (en) Refrigerator
JPS5918346A (en) Refrigerator
JPS5847628B2 (en) Refrigerant flow control device
JPS5913860A (en) Refrigerator
JPS5984056A (en) Refrigerator
JPS61134564A (en) Refrigerator
JPS5912273A (en) Refrigerator
JPS5830511B2 (en) Air conditioner control device
JPS61213573A (en) Temperature regulator for inside of box of refrigerator
JPS61217655A (en) Refrigerant circuit for refrigerator
JPS63238366A (en) Refrigeration cycle device
JPS59153076A (en) Controller for operation of air conditioner
JPS58221354A (en) Refrigerator
JPS5899655A (en) Refrigerator
JPS60240977A (en) Freezing refrigerator