JPS5983984A - Silicon nitride sintered body and metal bonding method - Google Patents

Silicon nitride sintered body and metal bonding method

Info

Publication number
JPS5983984A
JPS5983984A JP19331982A JP19331982A JPS5983984A JP S5983984 A JPS5983984 A JP S5983984A JP 19331982 A JP19331982 A JP 19331982A JP 19331982 A JP19331982 A JP 19331982A JP S5983984 A JPS5983984 A JP S5983984A
Authority
JP
Japan
Prior art keywords
metal
silicon nitride
nitride sintered
sintered body
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19331982A
Other languages
Japanese (ja)
Other versions
JPH0339030B2 (en
Inventor
平尾 純雄
松長 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP19331982A priority Critical patent/JPS5983984A/en
Publication of JPS5983984A publication Critical patent/JPS5983984A/en
Publication of JPH0339030B2 publication Critical patent/JPH0339030B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、窒化珪素質焼結体と金属との接合方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of joining a silicon nitride sintered body and a metal.

窒化珪素質焼結体は、高耐熱性、高耐食性、高絶縁性、
あるいは高耐摩耗性などの数々の優れた特長を持ってい
るため、内燃機関等の構造部品用材料として用いること
が検討され、内燃機関の熱効率向上および軽量化等を図
ろうとする技術開発が活発に行なわれるようになってき
ている。しかしながら、窒化珪素質焼結体は機械的衝駐
および熱的衝撃が比較的弱いという欠点を持っているの
で、単独で使用するよりは金属と複合して使用する方が
各特長を生かすことができて有利なこともある。また、
ターボチャージャ用タービンロータおよびインペラのよ
うに、一方は耐熱性が要求されるが、他方は耐熱性を要
求されないという部品もある。そこで、窒化珪素質焼結
体と金属とを接合する技術が不可欠となってくる、 従来、セラミックスと金属との接合方法としては1例え
ば81図に示すように、円柱状セラミックスlと円柱状
金属2とを接合するにあたり、金属2にスリーブ3を形
成し、セラミックス1をスリーブ3内に嵌合して焼きば
めする方法があった。
Silicon nitride sintered bodies have high heat resistance, high corrosion resistance, high insulation properties,
In addition, because it has many excellent features such as high wear resistance, its use as a material for structural parts of internal combustion engines, etc. is being considered, and technological development is active to improve the thermal efficiency and reduce weight of internal combustion engines. This is becoming more and more common. However, silicon nitride sintered bodies have the disadvantage of being relatively weak in mechanical impact and thermal shock, so it is better to use them in combination with metals than to use them alone to take advantage of each feature. Sometimes it can be advantageous to do so. Also,
There are some parts, such as a turbine rotor and an impeller for a turbocharger, that require heat resistance on one side, but not on the other. Therefore, a technology for joining silicon nitride sintered bodies and metals is essential. Conventionally, as a method for joining ceramics and metals, as shown in Fig. 81, for example, a cylindrical ceramic l and a cylindrical metal 2, there is a method in which a sleeve 3 is formed on the metal 2, and the ceramic 1 is fitted into the sleeve 3 and shrink-fitted.

しかしながら、このような焼きばめする方法では、セラ
ミックス1とスリーブ3の加工寸法精度を±51Lm以
下にして、厳密な締め代が得られるように管理しなけれ
ばならならず、諦め代が大きすぎるとセラミックスlが
破壊し、締め代が小さすぎると接合強度が小さくなるた
め、締め代を厳密にすることにより加工コストが」二貸
するという欠点を有し、また、セラミックス1と金属2
とが同径である場合には、セラミックスl側の接合部を
小径にするだめの段部1aを設けなければならず、この
段部1aが破壊の起点となりやずいという問題点があっ
た。
However, in this shrink fitting method, the machining dimensional accuracy of the ceramic 1 and the sleeve 3 must be controlled to be ±51 Lm or less to obtain a strict interference margin, and the margin of error is too large. If the interference is too small, the joining strength will be reduced, so if the interference is too small, processing costs will increase.
If the two have the same diameter, it is necessary to provide a step 1a to reduce the diameter of the joint on the ceramic l side, which poses a problem in that this step 1a is likely to become a starting point for fracture.

・方、アルミナセラミックスを中心とする酸化物系のセ
ラミックスについては、例えばM o −Mn法を用い
てセラミックス表面にメタライズ層をつくり、その表面
の保護のためにNiメンキを施した後金属とろう接する
といった方法はあるが、窒化珪素質焼結体を冶金的に接
合する方法については未だ確立された方法がないのが現
状であるという問題点を有していた。
-On the other hand, for oxide-based ceramics such as alumina ceramics, for example, a metallized layer is created on the ceramic surface using the Mo-Mn method, and after Ni coating is applied to protect the surface, the metal is removed. Although there are methods for joining silicon nitride sintered bodies metallurgically, the problem is that there is currently no established method for metallurgically joining silicon nitride sintered bodies.

本発明は、従来のこれらの問題点を解消するためになさ
れたもので、作業性が良好で、かつ接合強度の優れた窒
化珪素質焼結体−金属の接合体を得ることができる窒化
珪素質焼結体と金属との接合方法を提供することを目的
とする。
The present invention was made in order to solve these conventional problems, and it is possible to obtain a silicon nitride sintered body-metal bonded body with good workability and excellent bonding strength. The purpose of the present invention is to provide a method for joining a quality sintered body and metal.

すなわち、本発明は、窒化珪素質焼結体と金属の各々の
接合面の一方または両方に、一実施態様においては主と
して窒化珪素質焼結体の接合面に、活性金属もしくは該
活性金属の水素化物を含むペーストを塗布し、前記窒化
珪素質焼結体と金属の各々の接合面でろう接することを
@徴とする接合方法である。
That is, the present invention provides an active metal or hydrogen of the active metal on one or both of the joint surfaces of the silicon nitride sintered body and the metal, and in one embodiment, mainly on the joint surface of the silicon nitride sintered body. This is a joining method characterized by applying a paste containing a compound and brazing the silicon nitride sintered body and metal at their joint surfaces.

以下、本発明を図面に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第2図は本発明による窒化珪素質焼結体と金属との接合
部分の一部拡大断面図である。窒化珪素質焼結体lと金
属2とをろう接するにあたり、活性金属たとえばTi、
Zrもしくはそれらの水素化物の粉末を有機質溶媒と混
合してペースi・状とし、このペースト4を窒化珪素質
焼結体1の金属2との接合面に塗布する。次いで窒化珪
素質焼結体1と金属2との間にろう材5を介在させ、非
醇化性雰囲気中において、ろう材5の融点以上好ましく
は20〜200’C以上に加熱して一回の加熱操作でろ
う接する。
FIG. 2 is a partially enlarged sectional view of a joint portion between a silicon nitride sintered body and a metal according to the present invention. When soldering the silicon nitride sintered body l and the metal 2, an active metal such as Ti,
Powder of Zr or its hydride is mixed with an organic solvent to form a paste 4, and this paste 4 is applied to the joint surface of the silicon nitride sintered body 1 with the metal 2. Next, a brazing filler metal 5 is interposed between the silicon nitride sintered body 1 and the metal 2, and the brazing filler metal 5 is heated in a non-melting atmosphere to a temperature higher than the melting point of the brazing filler metal 5, preferably 20 to 200°C or higher, and heated once. Brazing is performed by heating operation.

この場合、健全な接合体を得るには、窒化珪素質焼結体
1の相対密度が93%以上であることがより好ましい。
In this case, in order to obtain a sound bonded body, it is more preferable that the relative density of the silicon nitride sintered body 1 is 93% or more.

すなわち、−実施結果によれば、相対密度が92.8%
未満となると、ろう接接に窒化珪素質焼結体lに亀裂を
生ずることが多くなるからである。また、金属2として
は、ろう材5より融点の高いすべての鉄系合金に対して
本発明を適用することが可能であり、鉄系合金以外のも
のにも適用可能である。さらに、ペースト4に含まれる
活性金属もしくはそれらの水素化物は、ろう接する際に
使用する所要量のろう材に対して重量比で0,02〜2
0%にすることがより望ましい。この理由は、0.02
重量%未満であれば、窒化珪素質焼結体1中のSiがろ
う材5中へ拡散しにくくなり、十分な接合強度が得られ
ず、一方、20重量%を超過すると余剰の活性金属が接
合部に残留するためにかえって接合強度が小さくなるこ
とによる。
That is, - according to the implementation results, the relative density is 92.8%
If it is less than this, cracks will often occur in the silicon nitride sintered body l during soldering. Further, as the metal 2, the present invention can be applied to all iron-based alloys having a higher melting point than the brazing filler metal 5, and can also be applied to metals other than iron-based alloys. Furthermore, the active metals or their hydrides contained in the paste 4 have a weight ratio of 0.02 to 2
It is more desirable to set it to 0%. The reason for this is 0.02
If it is less than 20% by weight, Si in the silicon nitride sintered body 1 will be difficult to diffuse into the brazing filler metal 5, and sufficient bonding strength will not be obtained.On the other hand, if it exceeds 20% by weight, excess active metal will This is due to the fact that the bonding strength is reduced because it remains in the bonded portion.

また、本発明による接合方法は、活性金属たとえばTi
、Zrもしくはそれらの水素化物を有機質溶媒に混合し
てペースト状にし、刷毛またはスプレー等により、窒化
珪素質焼結体lと金属2の各々の接合面の一方または両
方、より望ましくは主として窒化珪素質焼結体1の接合
面に塗布してろう接するものである。
Furthermore, the bonding method according to the present invention can be applied to active metals such as Ti.
, Zr or their hydrides are mixed in an organic solvent to form a paste, and by brushing or spraying, one or both of the bonding surfaces of the silicon nitride sintered body 1 and the metal 2, more preferably mainly silicon nitride. It is applied to the joining surface of the quality sintered body 1 and brazed.

さらに、強固な接合強度を得るには、窒化珪素質焼結体
1中のStがろう材5に十分拡散するように、真空中ま
に不活性ガス中で所定のろう接温度により所定時間保持
することが望ましい。たとえば、ろう材5が銀ろうの場
合にはろう材5の融点以」−の温度で10分以上加熱保
持するのが好ましい。
Furthermore, in order to obtain strong bonding strength, the silicon nitride sintered body 1 must be held at a predetermined brazing temperature in an inert gas for a predetermined time so that the St in the silicon nitride sintered body 1 is sufficiently diffused into the brazing filler metal 5. It is desirable to do so. For example, when the brazing filler metal 5 is silver solder, it is preferable to heat and hold it at a temperature equal to or higher than the melting point of the brazing filler metal 5 for 10 minutes or more.

次に、本発明の実施例について具体的に説明する。Next, examples of the present invention will be specifically described.

まず、第3図に示すように、平行部1bを有する直径1
0mmの丸棒状窒化珪素質焼結体1と、同じく平行部2
bを有しかつ第1表に示す材質からなる直径10闘の丸
棒状金属2とを用意し、次いで、窒化珪素質焼結体lと
金属2とを第1表に示すような接合条件により各々ろう
接を行った。
First, as shown in FIG. 3, a diameter 1 with a parallel portion 1b is
0 mm round bar-shaped silicon nitride sintered body 1 and parallel part 2
A round rod-shaped metal 2 having a diameter of 10mm and having a diameter of 10 mm and made of the material shown in Table 1 is prepared, and then the silicon nitride sintered body l and the metal 2 are bonded under the bonding conditions shown in Table 1. Each was soldered.

すなわち、本実施例においては、粒径が200メツシユ
以下のTi、Zr、TiH2およびZrH2をそれぞれ
個別に有機質溶媒と混合してペーストを作成し、このペ
ーストを各々窒化珪素質焼結体1の接合面に塗布した。
That is, in this example, Ti, Zr, TiH2, and ZrH2 each having a particle size of 200 mesh or less are individually mixed with an organic solvent to create a paste, and this paste is used to bond each silicon nitride sintered body 1. applied to the surface.

このとき、上記T1、Zr、TiH2およびZrH2の
塗布量は、使用するろう材に対して第1表に示す比率と
なるように定めた。次いで窒化珪素質焼結体lの接合面
に厚さ0.1關の箔状の銀ろう(JISBAg−7(5
6%Ag−22%Cu−17%Zn−5%Sn)または
BAg−8(72%Ag−28%Cu)相当材)を重ね
、さらに金属2をその接合面で突き合わせた。次いで、
第1表に示すように、真空雰囲気中(l 0−3tor
r以下)または5%H2/N2の不活性雰囲気中におい
て、同じく第1表に示するう接温度と保持時間でろう接
を行った。また、比較のために活性金属としてTiH2
を使用し、ろう材との比率が0.01%とな木ようにペ
ーストを塗布した場合についても試験/ した。
At this time, the coating amounts of T1, Zr, TiH2, and ZrH2 were determined to be the ratios shown in Table 1 to the brazing filler metal used. Next, a foil-shaped silver solder (JISBAg-7 (5) with a thickness of about 0.1
6%Ag-22%Cu-17%Zn-5%Sn) or BAg-8 (72%Ag-28%Cu) equivalent material) were stacked, and metal 2 was further abutted at the joint surfaces. Then,
As shown in Table 1, in a vacuum atmosphere (l 0-3tor
Brazing was performed in an inert atmosphere of 5% H2/N2 at the welding temperature and holding time shown in Table 1. Also, for comparison, TiH2 is used as an active metal.
Tests were also conducted on the case where the paste was applied with a brazing filler metal ratio of 0.01%.

このように、種々の条件の下でろう接して得られた接合
体に対して捩り試験および走査型電子顕微鏡による観察
を行った。第2表は各接合体試験片についての捩り試験
結果を示すものである。このとき、捩り強度は各接合体
につき3個ずつ捩り試験を行って平均を取ったもので、
′次に示す式により算出した。
The joints obtained by soldering under various conditions were subjected to a torsion test and observed using a scanning electron microscope. Table 2 shows the torsion test results for each bonded body test piece. At this time, the torsional strength was determined by performing a torsion test on three pieces of each joint and taking the average.
'Calculated using the following formula.

ただし、τ:捩り強度、T:捩りトルク、第2表から明
らかなように、本発明法によりろう接を行った試験片N
o、  1〜5はいずれも捩り強度が約8Kgf 7m
m2以上と高く、さらに破壊を生ずる場所はセラミック
ス部本体であった。これに対して比較例N006は捩り
強度がほどんど出す、しかも接合界面ではくすした。従
って、本発明によれば、捩り強度の勝れた接合体を得る
ことか可能となる。
However, τ: torsional strength, T: torsional torque, as is clear from Table 2, the test piece N was soldered by the method of the present invention.
o, 1 to 5 all have torsional strength of approximately 8Kgf 7m
The area where the damage occurred was as high as m2 or more, and the ceramic part was the main body. On the other hand, Comparative Example No. 006 exhibited almost no torsional strength, and moreover, it deteriorated at the bonding interface. Therefore, according to the present invention, it is possible to obtain a joined body with excellent torsional strength.

した結果を第4図に示し、成分分析した結果を第5図(
a)(b)に示す。図から明らかなようにSiは窒化珪
素質焼結体1の接合面からろう材5の層へ拡散している
ことが分かる。これは、Si3N4がTiと反応してい
るものと思われ、このSiを含む反応層がSi3N4表
面に形成され、これがろう材と接合する上で強力な接着
力を示す原因となるものと推定される。
The results of the analysis are shown in Figure 4, and the results of the component analysis are shown in Figure 5 (
Shown in a) and (b). As is clear from the figure, Si is diffused from the joint surface of the silicon nitride sintered body 1 to the layer of the brazing filler metal 5. This is thought to be due to Si3N4 reacting with Ti, and a reaction layer containing this Si is formed on the Si3N4 surface, which is presumed to be the cause of the strong adhesive force when bonded to the brazing material. Ru.

このように本実施例によれば、窒化珪素質焼結体の接合
面に活性金属あるいはこれらの水素化物を含むペースト
を塗布することにより、ろう接する際に、窒化珪素質焼
結体からのStの拡散が促進され、接合強度の向上に寄
与する。
As described above, according to this embodiment, by applying a paste containing an active metal or a hydride of these to the joint surface of the silicon nitride sintered body, St from the silicon nitride sintered body is removed during soldering. diffusion is promoted, contributing to improved bonding strength.

第6図は本発明の他の実施例を示す図であって、ターボ
チャージャ部品に適用した場合を示している。第6図に
示すように、高温側のタービン羽根車11と軸12とを
セラミックスで一体成形すると共に、低温側の圧rr6
機イフィンペラと輔14とを金属たとえばインペラ13
はアルミニウム、軸14は5US304で作製する。こ
の場合、インペラ13と金属軸14とは、金属軸14に
設けた細径部15を圧縮機インペラ13に嵌挿し、ワッ
シャ16を介してナツト17で固定して組)′/、てた
ものである。上記金属軸14には内面テーパ状のスリー
ブ18を形成すると共に、セラミックス軸12には前記
テーパ状のスリーブ18のテーパと同程度のテーパ状を
なすテーパ突部19を形成し、テーパ突部19の外周部
にはろう材空隙溝19aを部分的に形成する。
FIG. 6 is a diagram showing another embodiment of the present invention, in which the present invention is applied to a turbocharger component. As shown in FIG. 6, the turbine impeller 11 on the high temperature side and the shaft 12 are integrally molded with ceramics, and the pressure on the low temperature side is rr6.
The impeller 14 and the impeller 14 are made of metal, for example, the impeller 13.
is made of aluminum, and the shaft 14 is made of 5US304. In this case, the impeller 13 and the metal shaft 14 are assembled by fitting the narrow diameter portion 15 provided on the metal shaft 14 into the compressor impeller 13 and fixing it with a nut 17 via a washer 16). It is. The metal shaft 14 is formed with a sleeve 18 having a tapered inner surface, and the ceramic shaft 12 is formed with a tapered protrusion 19 having the same taper shape as the tapered sleeve 18. A filler metal gap groove 19a is partially formed in the outer peripheral portion of the filler metal gap groove 19a.

セラミックス軸12と金属軸14とを接合するに際して
は、セラミックス軸12のテーバ突部19のろう材空隙
溝19aに、活性金属の水素化物(TiHz)と有機買
溶奴とを混合したペーストを塗r+s Lだ後、前記テ
ーパ突部19を金属軸14のスリーブ18内に挿入し、
挿入した状態で形成された間隙20にろう材(BAg−
8)21を挿入した。次いで真空(10−3torr以
下)中で850°QX15minのろう接条件にでろう
接をした。その結果、健全な継手が得られた。
When joining the ceramic shaft 12 and the metal shaft 14, a paste containing a mixture of an active metal hydride (TiHz) and an organic welding compound is applied to the brazing filler metal gap groove 19a of the Taber protrusion 19 of the ceramic shaft 12. After r+s L, insert the tapered protrusion 19 into the sleeve 18 of the metal shaft 14,
A brazing filler metal (BAg-
8) 21 was inserted. Next, soldering was carried out under the conditions of 850 DEG QX 15 min in a vacuum (10<-3 >torr or less). As a result, a sound joint was obtained.

以上の説明から明らかなように、本発明によれば、窒化
珪素質焼結体と金属の各々の接合面の一力または両方に
、活性金属もしくはそれらの水素化物を含むペーストを
塗布した後、前記窒化珪素質焼結体と金属の各々の接合
面でろう接するようにしたから、ろう接接の接合部にお
いては前記活性金属を介してS【の拡散が促進されてい
るため強固な接合体を得ることが可能となり、その効果
に顕著なものがある。
As is clear from the above description, according to the present invention, after applying a paste containing an active metal or a hydride thereof to one or both of the joint surfaces of the silicon nitride sintered body and the metal, Since the silicon nitride sintered body and the metal are brazed at each joint surface, diffusion of S is promoted through the active metal at the soldered joint, resulting in a strong joint. It has become possible to obtain this, and its effects are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の接合方法による接合体の断面説引回、第
2図は本発明による窒化珪素質焼結体と・金属との接合
部の拡大断面説明図、第3図は本発明の実施例において
接合した窒化珪素質焼結体および金属の斜視説明図、第
4図は第3図の接合体の接合部のミクロ組織写真、第5
図(a) (b)は各々5i−Tiの成分分布および5
t−Cuの成分分布を示す写真、第6図は本発明の他の
実施例を示すタービンロータおよびインペラの断面説明
図である。 1・・・窒化珪素質焼結体、2・・・金属、4・・・ペ
ースト、5・・・ろう材、12・・・セラミックス軸、
14・・・金属軸、21・・・ろう材。 特許出願人  日産自動車株式会社 代理人弁理士 小  塩   豊
Fig. 1 is a cross-sectional diagram of a bonded body formed by a conventional bonding method, Fig. 2 is an enlarged cross-sectional explanatory view of a joint between a silicon nitride sintered body and a metal according to the present invention, and Fig. 3 is a cross-sectional diagram of a bonded body according to the present invention. A perspective explanatory view of the silicon nitride sintered body and metal joined in the example, FIG. 4 is a microstructure photograph of the joint part of the joined body of FIG. 3, and FIG.
Figures (a) and (b) show the component distribution of 5i-Ti and 5i-Ti, respectively.
A photograph showing the component distribution of t-Cu and FIG. 6 are explanatory cross-sectional views of a turbine rotor and an impeller showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Silicon nitride sintered body, 2... Metal, 4... Paste, 5... Brazing metal, 12... Ceramic shaft,
14... Metal shaft, 21... Brazing metal. Patent applicant Yutaka Oshio, patent attorney representing Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)窒化珪素質焼結体と金属とを接合するにあたり、
前記窒化珪素質焼結体と金属の各々の接合面の一方また
は両方に、活性金属もしくは該活性金属の水素化物を含
むペーストを塗布した後、前記窒化珪素質焼結体と金属
の各々の接合面でろう接することを特徴とする窒化珪素
質焼結体と金属との接合方法。
(1) When joining a silicon nitride sintered body and a metal,
After applying a paste containing an active metal or a hydride of the active metal to one or both of the bonding surfaces of the silicon nitride sintered body and the metal, the silicon nitride sintered body and the metal are bonded. A method for joining a silicon nitride sintered body and a metal, characterized by surface brazing.
JP19331982A 1982-11-05 1982-11-05 Silicon nitride sintered body and metal bonding method Granted JPS5983984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19331982A JPS5983984A (en) 1982-11-05 1982-11-05 Silicon nitride sintered body and metal bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19331982A JPS5983984A (en) 1982-11-05 1982-11-05 Silicon nitride sintered body and metal bonding method

Publications (2)

Publication Number Publication Date
JPS5983984A true JPS5983984A (en) 1984-05-15
JPH0339030B2 JPH0339030B2 (en) 1991-06-12

Family

ID=16305921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19331982A Granted JPS5983984A (en) 1982-11-05 1982-11-05 Silicon nitride sintered body and metal bonding method

Country Status (1)

Country Link
JP (1) JPS5983984A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077186A (en) * 1983-09-30 1985-05-01 株式会社東芝 Ceramic sintered body with metallized surface
JPH01119570A (en) * 1988-07-14 1989-05-11 Toshiba Corp Ceramic-metal composite mechanical part
JP2594475B2 (en) * 1990-04-16 1997-03-26 電気化学工業株式会社 Ceramic circuit board
JPH09181423A (en) * 1990-04-16 1997-07-11 Denki Kagaku Kogyo Kk Ceramic circuit board
USRE38560E1 (en) 1991-05-23 2004-08-03 Koninklijke Philips Electronics N.V. Adjustable dual-detector image data acquisition system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165056A (en) * 1974-12-03 1976-06-05 Inst Problem Materialovedenia Kenmazaino metaraizeeshon oyobi korotsuke yogokin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165056A (en) * 1974-12-03 1976-06-05 Inst Problem Materialovedenia Kenmazaino metaraizeeshon oyobi korotsuke yogokin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077186A (en) * 1983-09-30 1985-05-01 株式会社東芝 Ceramic sintered body with metallized surface
JPH0159238B2 (en) * 1983-09-30 1989-12-15 Tokyo Shibaura Electric Co
JPH01119570A (en) * 1988-07-14 1989-05-11 Toshiba Corp Ceramic-metal composite mechanical part
JP2594475B2 (en) * 1990-04-16 1997-03-26 電気化学工業株式会社 Ceramic circuit board
JPH09181423A (en) * 1990-04-16 1997-07-11 Denki Kagaku Kogyo Kk Ceramic circuit board
USRE38560E1 (en) 1991-05-23 2004-08-03 Koninklijke Philips Electronics N.V. Adjustable dual-detector image data acquisition system

Also Published As

Publication number Publication date
JPH0339030B2 (en) 1991-06-12

Similar Documents

Publication Publication Date Title
JPS60226464A (en) Joint structure of ceramic and metal
JPH0562034B2 (en)
JPH0367985B2 (en)
US7658315B2 (en) Process of brazing superalloy components
US6131797A (en) Method for joining ceramic to metal
JP3095490B2 (en) Ceramic-metal joint
JPS5983984A (en) Silicon nitride sintered body and metal bonding method
JPH03279277A (en) Joint structure of turbine rotor
JP3398204B2 (en) Brazing filler metal for aluminum alloys and aluminum alloy products
JPH07223090A (en) Brazing filler metal for joining aluminum alloy with copper, and composite material joined thereby
JPS616181A (en) Method of soldering ceramic and metal aluminum
JP2004066324A (en) Brazing method between aluminum-based metal and different metal
JPS5891088A (en) Method of bonding ceramic and metal
JP3719439B2 (en) Heterogeneous metal composite
JPS6191073A (en) Structure for bonding ceramic axis and metal axis
JPS58188561A (en) Production of sintered hard alloy tool
JPH042354B2 (en)
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JPH06263554A (en) Jointed substrate of ceramics-metal
JPH06263553A (en) Joined body of carbonaceous material to metal
CN111496417B (en) Ti-Ni-Nb-Zr brazing material of Nb-Si-based ultrahigh-temperature structural material and brazing connection process
JP2747865B2 (en) Joint structure between ceramics and metal
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JPS6081070A (en) Bonded structure of sic sintered body and metal member
JPS6090878A (en) Ceramic and matal bonding method