JPH0339030B2 - - Google Patents

Info

Publication number
JPH0339030B2
JPH0339030B2 JP57193319A JP19331982A JPH0339030B2 JP H0339030 B2 JPH0339030 B2 JP H0339030B2 JP 57193319 A JP57193319 A JP 57193319A JP 19331982 A JP19331982 A JP 19331982A JP H0339030 B2 JPH0339030 B2 JP H0339030B2
Authority
JP
Japan
Prior art keywords
metal
silicon nitride
nitride sintered
sintered body
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57193319A
Other languages
Japanese (ja)
Other versions
JPS5983984A (en
Inventor
Sumio Hirao
Masaharu Matsunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP19331982A priority Critical patent/JPS5983984A/en
Publication of JPS5983984A publication Critical patent/JPS5983984A/en
Publication of JPH0339030B2 publication Critical patent/JPH0339030B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、窒化珪素質焼結体と金属との接合方
法に関する。 窒化珪素質焼結体は、高耐熱性、高耐食性、高
絶縁性、あるいは高耐摩耗性などの数々の優れた
特長を持つているため、内燃機関等の構造部品用
材料として用いることが検討され、内燃機関の熱
効率向上および軽量化等を図ろうとする技術開発
が活発に行なわれるようになつてきている。しか
しながら、窒化珪素質焼結体は機械的衝撃および
熱的衝撃が比較的弱いという欠点を持つているの
で、単独で使用するよりは金属と複合して使用す
る方が各特長を生かすことができて有利なことも
ある。また、ターボチヤージヤ用タービンロータ
およびインペラのように、一方は耐熱性が要求さ
れるが、他方は耐熱性を要求されないという部品
もある。そこで、窒化珪素質焼結体と金属とを接
合する技術が不可欠となつてくる。 従来、セラミツクスと金属との接合方法として
は、例えば第1図に示すように、円柱状セラミツ
クス1と円柱状金属2とを接合するにあたり、金
属2にスリーブ3を形成し、セラミツクス1をス
リーブ3内に嵌合して焼きばめする方法があつ
た。 しかしながら、このような焼きばめする方法で
は、セラミツクス1とスリーブ3の加工寸法精度
を±5μm以下にして、厳密な締め代が得られる
ように管理しなければならならず、締め代が大き
すぎるとセラミツクス1が破壊し、締め代が小さ
すぎると接合強度が小さくなるため、締め代を厳
密にすることにより加工コストが上昇するという
欠点を有し、また、セラミツクス1と金属2とが
同径である場合には、セラミツクス1側の接合部
を小径にするための段部1aを設けなければなら
ず、この段部1aが破壊の起点となりやすいとい
う問題点があつた。 一方、アルミナセラミツクスを中心とする酸化
物系のセラミツクスについては、例えばMo−
Mn法を用いてセラミツクス表面にメタライズ層
をつくり、その表面の保護のためにNiメツキを
施した後金属とろう接するといつた方法はある
が、窒化珪素質焼結体を治金的に接合する方法に
ついては未だ確立された方法がないのが現状であ
るという問題点を有していた。 本発明は、従来のこれらの問題点を解消するた
めになされたもので、作業性が良好で、かつ接合
強度の優れた窒化珪素質焼結体−金属の接合体を
得ることができる窒化珪素質焼結体と金属との接
合方法を提供することを目的とする。 すなわち、本発明は、窒化珪素質焼結体と金属
の各々の接合面の少なくとも前記窒化珪素質焼結
体の接合面に、活性金属もしくは該活性金属の水
素化物を含む溶媒を混合してなる混合ペーストを
塗布し、前記窒化珪素質焼結体と金属の各々の接
合面でろう材を用いてろう接することを特徴とす
る接合方法である。 以下、本発明を図面に基づいて詳細に説明す
る。 第2図は本発明による窒化珪素質焼結体と金属
との接合部分の一部拡大断面図である。窒化珪素
質焼結体1と金属2とをろう接するにあたり、活
性金属たとえばTi、Zrもしくはそれらの水素化
物の粉末を有機質溶媒と混合してペースト状と
し、この混合ペースト4を窒化珪素質焼結体1の
金属2との接合面に塗布する。次いで窒化珪素質
焼結体1と金属2との間にろう材5を介在させ、
非酸化性雰囲気中において、ろう材5の融点以上
好ましくは20〜200℃以上に加熱して一回の加熱
操作でろう接する。 この場合、健全な接合体を得るには、窒化珪素
質焼結体1の相対密度が93%以上であることがよ
り好ましい。すなわち、一実施結果によれば、相
対密度が92.8%未満となると、ろう接後に窒化珪
素質焼結体1に亀裂を生ずることが多くなるから
である。また、金属2としては、ろう材5より融
点の高いすべての鉄系合金に対して本発明を適用
することが可能であり、鉄系合金以外のものにも
適用可能である。さらに、ペースト4に含まれる
活性金属もしくはそれらの水素化物は、ろう接す
る際に使用する所要量のろう材に対して重量比で
0.02〜20%にすることがより望ましい。この理由
は0.02重量%未満であれば、窒化珪素質焼結体1
中のSiがろう材5中へ拡散しにくくなり、十分な
接合強度が得られず、一方、20重量%を超過する
と余剰の活性金属が接合部に残留するためにかえ
つて接合強度が小さくなることによる。 また、本発明による接合方法は、活性金属たと
えばTi、Zrもしくはそれらの水素化物を有機質
溶媒に混合してペースト状にし、刷毛またはスプ
レー等により、窒化珪素質焼結体1と金属2の
各々の接合面のうち少なくとも前記窒化珪素質焼
結体1の接合面に塗布した後ろう材5を用いてろ
う接するものである。 さらに、強固な接合強度を得るには、窒化珪素
質焼結体1中のSiがろう材5に十分拡散するよう
に、真空中まに不活性ガス中で所定のろう接温度
により所定時間保持することが望ましい。たとえ
ば、ろう材5が銀ろうの場合にはろう材5の融点
以上の温度で10分以上加熱保持するのが好まし
い。 次に本発明の実施例について具体的に説明す
る。 まず、第3図に示すように、平行部1bを有す
る直径10mmの丸棒状窒化珪素質焼結体1と、同じ
く平行部2bを有しかつ第1表に示す材質からな
る直径10mmの丸棒状金属2とを用意し、次いで、
窒化珪素質焼結体1と金属2とを第1表に示すよ
うな接合条件により各々ろう接を行つた。
The present invention relates to a method of joining a silicon nitride sintered body and a metal. Silicon nitride sintered bodies have many excellent features such as high heat resistance, high corrosion resistance, high insulation properties, and high wear resistance, so they are being considered for use as materials for structural parts such as internal combustion engines. BACKGROUND OF THE INVENTION Technical developments have been actively conducted to improve the thermal efficiency and reduce the weight of internal combustion engines. However, silicon nitride sintered bodies have the disadvantage of being relatively weak in mechanical and thermal shock, so it is better to use them in combination with metals than to use them alone to take advantage of each feature. It can sometimes be advantageous. Furthermore, there are parts such as a turbine rotor and an impeller for a turbocharger that require heat resistance on one side, but not on the other. Therefore, a technology for joining silicon nitride sintered bodies and metals becomes essential. Conventionally, as shown in FIG. 1, for example, when joining a cylindrical ceramic 1 and a cylindrical metal 2, a sleeve 3 is formed on the metal 2, and the ceramic 1 is bonded to the sleeve 3. There was a method of shrink-fitting it inside. However, with this shrink fitting method, the machining dimensional accuracy of the ceramics 1 and the sleeve 3 must be controlled to within ±5 μm to obtain a strict interference, and the interference may be too large. If the interference is too small, the joining strength will be reduced, so if the interference is too small, the processing cost will increase. In this case, a step 1a must be provided to reduce the diameter of the joint on the ceramics 1 side, and this step 1a tends to become a starting point for breakage, which is a problem. On the other hand, regarding oxide-based ceramics, mainly alumina ceramics, for example, Mo-
There is a method in which a metallized layer is created on the ceramic surface using the Mn method, Ni plating is applied to protect the surface, and then soldered to the metal, but silicon nitride sintered bodies are metallurgically bonded. The problem is that there is currently no established method for doing so. The present invention was made in order to solve these conventional problems, and it is possible to obtain a silicon nitride sintered body-metal bonded body with good workability and excellent bonding strength. The purpose of the present invention is to provide a method for joining a quality sintered body and metal. That is, in the present invention, a solvent containing an active metal or a hydride of the active metal is mixed at least on each joint surface of the silicon nitride sintered body and the metal. This joining method is characterized in that a mixed paste is applied and the silicon nitride sintered body and the metal are soldered at each joint surface using a brazing material. Hereinafter, the present invention will be explained in detail based on the drawings. FIG. 2 is a partially enlarged sectional view of a joint portion between a silicon nitride sintered body and a metal according to the present invention. When soldering the silicon nitride sintered body 1 and the metal 2, active metals such as Ti, Zr, or powders of their hydrides are mixed with an organic solvent to form a paste, and this mixed paste 4 is applied to the silicon nitride sintered body. It is applied to the joint surface of the body 1 with the metal 2. Next, a brazing material 5 is interposed between the silicon nitride sintered body 1 and the metal 2,
In a non-oxidizing atmosphere, the brazing material 5 is heated to a temperature higher than the melting point of the brazing material 5, preferably 20 to 200 DEG C. or higher, and brazing is performed in one heating operation. In this case, in order to obtain a sound bonded body, it is more preferable that the relative density of the silicon nitride sintered body 1 is 93% or more. That is, according to one practical result, when the relative density is less than 92.8%, cracks often occur in the silicon nitride sintered body 1 after brazing. Further, as the metal 2, the present invention can be applied to all iron-based alloys having a higher melting point than the brazing filler metal 5, and can also be applied to metals other than iron-based alloys. Furthermore, the active metals or their hydrides contained in Paste 4 are in a weight ratio relative to the required amount of brazing material used for soldering.
It is more desirable to set it to 0.02 to 20%. The reason for this is that if it is less than 0.02% by weight, the silicon nitride sintered body 1
The Si inside becomes difficult to diffuse into the brazing filler metal 5, making it impossible to obtain sufficient bonding strength.On the other hand, if it exceeds 20% by weight, excess active metal will remain in the bonding area, resulting in a decrease in bonding strength. It depends. Further, in the bonding method according to the present invention, an active metal such as Ti, Zr, or a hydride thereof is mixed with an organic solvent to form a paste, and the silicon nitride sintered body 1 and the metal 2 are bonded using a brush or spray. Among the joint surfaces, at least the joint surface of the silicon nitride sintered body 1 is coated and then brazed using a brazing material 5. Furthermore, in order to obtain strong bonding strength, the silicon nitride sintered body 1 is held at a predetermined brazing temperature for a predetermined time in an inert gas in a vacuum so that the Si in the silicon nitride sintered body 1 is sufficiently diffused into the brazing filler metal 5. It is desirable to do so. For example, when the brazing filler metal 5 is silver solder, it is preferable to heat and hold it at a temperature higher than the melting point of the brazing filler metal 5 for 10 minutes or more. Next, examples of the present invention will be specifically described. First, as shown in FIG. 3, a round bar-shaped silicon nitride sintered body 1 with a diameter of 10 mm and a parallel part 1b, and a round bar-shaped body with a diameter of 10 mm made of the material shown in Table 1 and also having a parallel part 2b. Prepare metal 2, and then
The silicon nitride sintered body 1 and the metal 2 were brazed together under the joining conditions shown in Table 1.

【表】【table】

【表】 すなわち、本実施例においては、粒径が200メ
ツシユ以下のTi、Zr、TiH2およびZrH2をそれぞ
れ個別に有機質溶媒と混合してペーストを作成
し、このペーストを各々窒化珪素質焼結体1の接
合面に塗布した。このとき、上記Ti、Zr、TiH2
およびZrH2の塗布量は、使用するろう材に対し
て第1表に示す比率となるように定めた。次いで
窒化珪素質焼結体1の接合面に厚さ0.1mmの箔状
の銀ろう(JISBAg−7(56%Ag−22%Cu−17%
Zn−5%Sn)またはBAg−8(72%Ag−28%
Cu)相当材)を重ね、さらに金属2をその接合
面で突き合わせた。次いで、第1表に示すよう
に、真空雰囲気中(10-3torr以下)または5%
H2/N2の不活性雰囲気中において、同じく第1
表に示すろう接温度と保持時間でろう接を行つ
た。また、比較のために活性金属としてTiH2
使用し、ろう材との比率が0.01%となるようにペ
ーストを塗布した場合についても試験した。 このように、種々の条件の下でろう接して得ら
れた接合体に対して捩り試験および走査型電子顕
微鏡による観察を行つた。第2表は各接合体試験
片についての捩り試験結果を示すものである。こ
のとき、捩り強度は各接合体につき3個ずつ捩り
試験を行つて平均を取つたもので、次に示す式に
より算出した。 τ=16T/π・d3 ……(1) ただし、τ:捩り強度、T:捩りトルク、d:
試験片の半径、π:円周率である。
[Table] In other words, in this example, Ti, Zr, TiH 2 and ZrH 2 with a particle size of 200 mesh or less were individually mixed with an organic solvent to create a paste, and each paste was injected into a silicon nitride sintered material. It was applied to the bonding surface of Unit 1. At this time, the above Ti, Zr, TiH 2
The amount of ZrH 2 applied was determined to be the ratio shown in Table 1 to the brazing filler metal used. Next, a 0.1 mm thick foil-shaped silver solder (JISBAg-7 (56%Ag-22%Cu-17%
Zn-5%Sn) or BAg-8 (72%Ag-28%
(Cu) equivalent material) were stacked, and metal 2 was then butted on the joint surfaces. Then, as shown in Table 1, in a vacuum atmosphere (10 -3 torr or less) or 5%
In an inert atmosphere of H 2 /N 2 , the first
Brazing was performed at the soldering temperature and holding time shown in the table. For comparison, we also tested a case where TiH 2 was used as the active metal and a paste was applied so that the ratio to the brazing material was 0.01%. The joints obtained by soldering under various conditions were subjected to a torsion test and observed using a scanning electron microscope. Table 2 shows the torsion test results for each bonded body test piece. At this time, the torsional strength was calculated by performing a torsion test on three pieces of each bonded body, taking the average, and using the following formula. τ=16T/π・d 3 ...(1) where, τ: torsional strength, T: torsional torque, d:
The radius of the test piece, π: Pi.

【表】 第2表から明らかなように、本発明法によりろ
う接を行つた試験片No.1〜5はいずれも捩り強度
が約8Kgf/mm2以上と高く、さらに破壊を生ずる
場所はセラミツクス部本体であつた。これに対し
て比較例No.6は捩り強度がほどんど出ず、しかも
接合界面ではくりした。従つて、本発明によれ
ば、捩り強度の勝れた接合体を得ることが可能と
なる。 さらに試験片No.1の窒化珪素質焼結体のろう材
との接合部分を走査型電子顕微鏡により組織観察
した結果を第4図に示し、成分分析した結果を第
5図a,bに示す。図から明らかなようにSiは窒
化珪素質焼結体1の接合面からろう材5の層へ拡
散していることが分かる。これは、Si3N4がTiと
反応しているものと思われ、このSiを含む反応層
がSi3N4表面に形成され、これがろう材と接合す
る上で強力な接着力を示す原因となるものと推定
される。 このように本実施例によれば、窒化珪素質焼結
体の接合面に活性金属あるいはこれらの水素化物
を含むペーストを塗布することにより、ろう接す
る際に、窒化珪素質焼結体からのSiの拡散が促進
され、接合強度の向上に寄与する。 第6図は本発明の他の実施例を示す図であつ
て、ターボチヤージヤ部品に適用した場合を示し
ている。第6図に示すように、高温側のタービン
羽根車11と軸12とをセラミツクスで一体成形
すると共に、低温側の圧縮機インペラ13と軸1
4とを金属たとえばインペラ13はアルミニウ
ム、軸14はSUS304で作製する。この場合、イ
ンペラ13と金属軸14とは、金属軸14に設け
た細径部15を圧縮機インペラ13に嵌挿し、ワ
ツシヤ16を介してナツト17で固定して組立て
たものである。上記金属軸14には内面テーパ状
のスリーブ18を形成すると共に、セラミツクス
軸12には前記テーパ状のスリーブ18のテーパ
と同程度のテーパ状をなすテーパ突部19を形成
し、テーパ突部19の外周部にはろう材空隙溝1
9aを部分的に形成する。 セラミツクス軸12と金属軸14とを接合する
に際しては、セラミツクス軸12のテーパ突部1
9のろう材空隙溝19aに、活性金属の水素化物
(TiH2)と有機質溶媒とを混合したペーストを塗
布した後、前記テーパ突部19を金属軸14のス
リーブ18内に挿入し、挿入した状態で形成され
た間隙20にろう材(BAg−8)21を挿入した。
次いで真空(10-3torr以下)中で850℃×15minの
ろう接条件にてろう接をした。その結果、健全な
継手が得られた。 以上の説明から明らかなように、本発明によれ
ば、窒化珪素質焼結体と金属の各々の接合面のう
ち少なくとも前記窒化珪素質焼結体の接合面に、
活性金属もしくは該活性金属の水素化物を含む溶
媒を混合してなる混合ペーストを塗布した後、前
記窒化珪素質焼結体と金属の各々の接合面でろう
材を用いてろう接するようにしたから、ろう接後
の接合部においては前記活性金属を介してSiの拡
散が促進されているため強固な接合体を得ること
が可能となり、その効果に顕著なものがある。
[Table] As is clear from Table 2, test pieces Nos. 1 to 5 soldered by the method of the present invention all had high torsional strengths of approximately 8 Kgf/mm 2 or more, and the locations where fracture occurred were caused by ceramics. It was the main body of the club. On the other hand, Comparative Example No. 6 did not exhibit much torsional strength, and moreover, it cracked at the bonding interface. Therefore, according to the present invention, it is possible to obtain a joined body with excellent torsional strength. Furthermore, the results of structural observation using a scanning electron microscope of the joint portion of the silicon nitride sintered body of test piece No. 1 with the brazing metal are shown in Figure 4, and the results of component analysis are shown in Figures 5 a and b. . As is clear from the figure, Si is diffused from the bonding surface of the silicon nitride sintered body 1 to the layer of the brazing filler metal 5. This seems to be due to Si 3 N 4 reacting with Ti, and a reaction layer containing this Si is formed on the Si 3 N 4 surface, which is the reason why it exhibits strong adhesive force when bonded to the brazing material. It is estimated that As described above, according to this embodiment, by applying a paste containing an active metal or a hydride of these to the joint surface of the silicon nitride sintered body, Si from the silicon nitride sintered body is removed during soldering. diffusion is promoted, contributing to improved bonding strength. FIG. 6 is a diagram showing another embodiment of the present invention, in which the present invention is applied to a turbocharger component. As shown in FIG. 6, the turbine impeller 11 on the high temperature side and the shaft 12 are integrally molded with ceramics, and the compressor impeller 13 and the shaft 1 on the low temperature side are integrally molded.
4 and 4 are made of metal, for example, the impeller 13 is made of aluminum, and the shaft 14 is made of SUS304. In this case, the impeller 13 and the metal shaft 14 are assembled by fitting the narrow diameter portion 15 provided on the metal shaft 14 into the compressor impeller 13 and fixing it with a nut 17 via a washer 16. The metal shaft 14 is formed with a sleeve 18 having a tapered inner surface, and the ceramic shaft 12 is formed with a tapered protrusion 19 having the same taper shape as the tapered sleeve 18. There is a filler metal gap groove 1 on the outer periphery of the
9a is partially formed. When joining the ceramic shaft 12 and the metal shaft 14, the tapered protrusion 1 of the ceramic shaft 12 is
After applying a paste containing a mixture of active metal hydride (TiH 2 ) and an organic solvent to the brazing filler metal gap groove 19a of No. 9, the tapered protrusion 19 was inserted into the sleeve 18 of the metal shaft 14. A brazing filler metal (BAg-8) 21 was inserted into the gap 20 formed in this state.
Next, soldering was performed in a vacuum (below 10 -3 torr) under brazing conditions of 850°C for 15 minutes. As a result, a sound joint was obtained. As is clear from the above description, according to the present invention, at least on the joint surface of the silicon nitride sintered body among the joint surfaces of the silicon nitride sintered body and the metal,
After applying a mixed paste made by mixing a solvent containing an active metal or a hydride of the active metal, each joint surface of the silicon nitride sintered body and the metal is brazed using a brazing material. Since the diffusion of Si is promoted through the active metal in the joint after soldering, it is possible to obtain a strong joint, and this effect is remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の接合方法による接合体の断面説
明図、第2図は本発明による窒化珪素質焼結体と
金属との接合部の拡大断面説明図、第3図は本発
明の実施例において接合した窒化珪素質焼結体お
よび金属の斜視説明図、第4図は第3図の接合体
の接合部のミクロ組織写真、第5図a,bは各々
Si−Tiの成分分布およびSi−Cuの成分分布を示
す写真、第6図は本発明の他の実施例を示すター
ビンロータおよびインペラの断面説明図である。 1……窒化珪素質焼結体、2……金属、4……
混合ペースト、5……ろう材、12……セラミツ
クス軸、14……金属軸、21……ろう材。
FIG. 1 is an explanatory cross-sectional view of a bonded body by a conventional joining method, FIG. 2 is an enlarged cross-sectional explanatory view of a joint between a silicon nitride sintered body and a metal according to the present invention, and FIG. 3 is an embodiment of the present invention. A perspective explanatory view of the silicon nitride sintered body and metal bonded together in Figure 4 is a microstructure photograph of the joint of the bonded body in Figure 3, Figures 5 a and b are each
A photograph showing the Si-Ti component distribution and the Si-Cu component distribution, and FIG. 6 are explanatory cross-sectional views of a turbine rotor and an impeller showing another embodiment of the present invention. 1...Silicon nitride sintered body, 2...Metal, 4...
Mixed paste, 5... Brazing metal, 12... Ceramic shaft, 14... Metal shaft, 21... Brazing metal.

Claims (1)

【特許請求の範囲】[Claims] 1 窒化珪素質焼結体と金属とを接合するにあた
り、前記窒化珪素質焼結体と金属の各々の接合面
のうち少なくとも前記窒化珪素質焼結体の接合面
に、活性金属もしくは該活性金属の水素化物を含
む溶媒を混合してなる混合ペーストを塗布した
後、前記窒化珪素質焼結体と金属の各々の接合面
でろう材を用いてろう接すること特徴とする窒化
珪素質焼結体と金属との接合方法。
1. When joining a silicon nitride sintered body and a metal, an active metal or the active metal is applied to at least the joint surface of the silicon nitride sintered body among the respective joint surfaces of the silicon nitride sintered body and the metal. A silicon nitride sintered body is characterized in that after applying a mixed paste formed by mixing a solvent containing a hydride, the silicon nitride sintered body and the metal are brazed at each joint surface using a brazing material. and metal joining method.
JP19331982A 1982-11-05 1982-11-05 Silicon nitride sintered body and metal bonding method Granted JPS5983984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19331982A JPS5983984A (en) 1982-11-05 1982-11-05 Silicon nitride sintered body and metal bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19331982A JPS5983984A (en) 1982-11-05 1982-11-05 Silicon nitride sintered body and metal bonding method

Publications (2)

Publication Number Publication Date
JPS5983984A JPS5983984A (en) 1984-05-15
JPH0339030B2 true JPH0339030B2 (en) 1991-06-12

Family

ID=16305921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19331982A Granted JPS5983984A (en) 1982-11-05 1982-11-05 Silicon nitride sintered body and metal bonding method

Country Status (1)

Country Link
JP (1) JPS5983984A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077186A (en) * 1983-09-30 1985-05-01 株式会社東芝 Ceramic sintered body with metallized surface
JPH01119570A (en) * 1988-07-14 1989-05-11 Toshiba Corp Ceramic-metal composite mechanical part
JPH09181423A (en) * 1990-04-16 1997-07-11 Denki Kagaku Kogyo Kk Ceramic circuit board
JP2594475B2 (en) * 1990-04-16 1997-03-26 電気化学工業株式会社 Ceramic circuit board
USRE38560E1 (en) 1991-05-23 2004-08-03 Koninklijke Philips Electronics N.V. Adjustable dual-detector image data acquisition system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165056A (en) * 1974-12-03 1976-06-05 Inst Problem Materialovedenia Kenmazaino metaraizeeshon oyobi korotsuke yogokin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5165056A (en) * 1974-12-03 1976-06-05 Inst Problem Materialovedenia Kenmazaino metaraizeeshon oyobi korotsuke yogokin

Also Published As

Publication number Publication date
JPS5983984A (en) 1984-05-15

Similar Documents

Publication Publication Date Title
JPS62104696A (en) Metallic ceramics junction body and metallic ceramics coupling body formed by using said body
JPH0516382B2 (en)
JPS60226464A (en) Joint structure of ceramic and metal
CN106141494B (en) Solder and preparation method and soldering processes for soldering Mo Re alloys foil
US7658315B2 (en) Process of brazing superalloy components
EP0376092B1 (en) Ceramic turbocharger rotor
US4580714A (en) Hard solder alloy for bonding oxide ceramics to one another or to metals
PL172589B1 (en) Structural component and method of making same
US6131797A (en) Method for joining ceramic to metal
JPH0339030B2 (en)
JPS616181A (en) Method of soldering ceramic and metal aluminum
CN114178738A (en) Active solder for brazing ceramic and stainless steel and solder paste
JPS5891088A (en) Method of bonding ceramic and metal
JPS63169348A (en) Amorphous alloy foil for jointing ceramics
JPH042354B2 (en)
JPH06263553A (en) Joined body of carbonaceous material to metal
JP2747865B2 (en) Joint structure between ceramics and metal
JPS6191073A (en) Structure for bonding ceramic axis and metal axis
JP3316578B2 (en) Method for producing joined body of ceramic member and aluminum member
JPS6228067A (en) Joining method for ceramics
JPH02124780A (en) Coupling structure of ceramic rotor and metallic shaft
JPS59174581A (en) Method of bonding aluminum to alumina
JPS59207885A (en) Method of bonding ceramic member to metal member
JPS63201070A (en) Ceramic joining method
JPH02263771A (en) Turbine rotor made of ceramics