JPS5983772A - Etching method of aluminum foil - Google Patents

Etching method of aluminum foil

Info

Publication number
JPS5983772A
JPS5983772A JP19239082A JP19239082A JPS5983772A JP S5983772 A JPS5983772 A JP S5983772A JP 19239082 A JP19239082 A JP 19239082A JP 19239082 A JP19239082 A JP 19239082A JP S5983772 A JPS5983772 A JP S5983772A
Authority
JP
Japan
Prior art keywords
foil
aluminum foil
etching
corrosion
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19239082A
Other languages
Japanese (ja)
Other versions
JPH0238665B2 (en
Inventor
Makoto Teramatsu
寺松 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON CHIKUDENKI KOGYO KK
Nihon Chikudenki Kogyo KK
Original Assignee
NIPPON CHIKUDENKI KOGYO KK
Nihon Chikudenki Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON CHIKUDENKI KOGYO KK, Nihon Chikudenki Kogyo KK filed Critical NIPPON CHIKUDENKI KOGYO KK
Priority to JP19239082A priority Critical patent/JPS5983772A/en
Publication of JPS5983772A publication Critical patent/JPS5983772A/en
Publication of JPH0238665B2 publication Critical patent/JPH0238665B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To easily obtain an etched foil excellent in mechanical strength without reducing its surface-enlarging magnification, by performing the treatment of etching an Al foil useful as the electrode of a capacitor while applying many fine lines onto the surface of said foil. CONSTITUTION:Many fine lines 2 resistant to corrosion are applied onto the surface of an Al foil in parallel with each other, for instance, along the logitudinal, i.e. rolling, direction of the foil 1, and the etching treatment is performed under this condition. Hence, an etched surface having many deep rugged parts where a dissolution amount is large is formed on the surface part onto which the lines 2 are not applied, while an etched surface having many shallow rugged parts where either dissolution is not brought about or a dissolution amount is small is formed on the part onto which the lines 2 are applied. By this constitution, tensile strength along the rolling direction of the foil and bending strength along a direction perpendicular to said rolling direction are made large.

Description

【発明の詳細な説明】 本願は、引張強度並びに折曲げ強度[秀11、コンデン
サ素子の春暖工程における切断などの障害音回避するこ
とのできるエツチング箔?侍ようとするアルミニウム箔
のエツチング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to tensile strength and bending strength [Example 11, Etched foil that can avoid noises such as cutting during the spring-warming process of capacitor elements. This article relates to an etching method for aluminum foil.

周知のように、電解コンデンサの電極に使用されるアル
ミニウム箔は、拡面倍軍を高めるために表面′?L:腐
食するエツチング処理が行ゎオ]る。
As is well known, the aluminum foil used for the electrodes of electrolytic capacitors is coated with a surface layer to increase surface area magnification. L: Corrosive etching treatment is performed.

ところて゛エツチング処理されたのちのアルミニウム箔
は引vbり強度、折曲げ強度等の機械的強度がj1イ貢
によって低下し、そのためコンデンサ素子〒自輩J巻暇
装誼により巷咽る場合などKji−3いて、端子の取伺
は部分や巻芯部分で切断する等の不都合な問題があり、
エツチング方法のグF究者等は如伺にして博いアルミニ
ウム箔に磯イ・廣的強ルlt偵うことなく大きな板面倍
率が得られるかについて苦’Jrしている現状にある。
However, mechanical strength such as tensile strength and bending strength of the aluminum foil after being etched decreases due to the stress on the capacitor element. 3, there are inconvenient problems such as cutting the terminal at the part or core part,
Researchers of etching methods are currently struggling to determine whether it is possible to obtain a large plate surface magnification without using extremely strong aluminum foils.

ポ「る点に鑑み1本願発明考も種胃囁死結果、拡+i倍
査〒低下させることなく機械的強度に秀ね、たエツチン
グ箔が容易に得られるエツチング方法に成功し、こ\に
そのエツチング方法?提案するものであり、その4参徴
とするところは、アルミニウム箔の野面に腐食に抵抗す
る多数の細線L:MfJシたのち、エツチング処理を行
うものである。−即ちエツチング処理されるアルミニウ
ム箔の表裏両面或いはその論うね刀1一方の而に、腐食
に抵抗してその浸食の開始を遅らせる細線全多数施し、
この状態でエツチング処理を行うことによって、細線の
廁さねていかい部分に溶S貴の大きい深い凹凸全多数有
する腐食面才形成すると共に、細線の施さAまた部分[
は殆んど溶解しない〃1或いは溶解針の少がい浅い凹凸
?多数有する腐食面を形成せしめ、全体として拡面倍皐
r損うことなく機械的強度に秀ねたエツチング箔會得よ
うとするものである。
In view of this point, the present invention was also successful in developing an etching method that can easily obtain an etching foil that has excellent mechanical strength without reducing its magnification and magnification. The etching method is proposed, and the four main features are that a large number of thin lines L:MfJ that resist corrosion are formed on the surface of the aluminum foil, and then the etching process is performed. A large number of fine wires are applied to both the front and back surfaces of the aluminum foil to be treated, or to one side thereof, to resist corrosion and delay the onset of corrosion.
By performing etching treatment in this state, a corroded surface with a large number of deep irregularities with large molten steel is formed on the long and sharp parts of the thin wire, and the fine wire is also
Hardly dissolves〃1 Or shallow unevenness with few dissolving needles? The purpose is to form an etched foil having a large number of corroded surfaces, and to obtain an etched foil having excellent mechanical strength without compromising the overall area expansion.

腐食に抵抗する細線?施す方法としては種々あるが、最
も簡単な方法として印刷法があり、印刷インクの殆んど
は腐食液に対するめ1性が悪く腐食の進行7遅らせるの
で、この方法が本願発明の実71IliK 4Mめて有
効であり、このはη・に、レーザー光線によって〃n熱
することKより酸化細線葡施す方法や、ローラによる加
圧作用に工って細線を施す方法などがあり、前者は加熱
によって生じた酸化物が腐食に抵抗し、後者は加圧変化
によるアルミニウム組織の変化が腐食に抵抗する。そし
てこの腐食に抵抗する細線はエツチング処理後に恰刀1
も補助筒の如き強度の大きい部分をエツチング箔中に残
す作用rなし、その結果エツチング後のアルミニウム箔
が機械的強度に秀ねたものとなるのである。
Fine wire that resists corrosion? There are various methods for applying the coating, but the simplest method is the printing method.Most printing inks have poor resistance to corrosive liquids and slow the progress of corrosion. There are two methods of applying oxidized fine wires to η, such as applying heat using a laser beam, and applying pressure using rollers. The oxide resists corrosion, and the latter resists corrosion due to changes in the aluminum structure due to changes in pressure. After etching, this corrosion-resistant thin wire is
Also, there is no effect of leaving strong parts such as auxiliary cylinders in the etched foil, and as a result, the aluminum foil after etching has excellent mechanical strength.

細線の幅、間隔及び配置の態様等は、波面倍率及び機械
的強度の設定に関連して適宜選択さね、第1図はアルミ
ニウム箔(1)の長手力量即ち圧延方向に沿って多数の
細線(21紫平行状に施して成る場合7示しており、こ
の構成によれば、圧延方向に2ける引張強度及び圧延方
向と直角方向における折曲げ強度が強くなり従って通常
コンデンサ累子に巻取られる電極箔は、圧延方向に平行
して所要幅でス11ット切断されるため、アルミニウム
箔に細線k /flj構成として最も好ましいものであ
る。
The width, spacing, arrangement, etc. of the thin wires are selected as appropriate in relation to the setting of the wavefront magnification and mechanical strength. (21 is shown in Fig. 7 in which it is formed in a purple parallel shape. With this structure, the tensile strength in the rolling direction and the bending strength in the direction perpendicular to the rolling direction are increased, and therefore, it is usually wound around a capacitor. Since the electrode foil is cut into strips of the required width in parallel to the rolling direction, it is most preferable as a thin wire k/flj configuration on the aluminum foil.

第2図はアルミニウム箔(1)に多数の細11i1jl
(217斜秋に施した場合を、捷た第3図はアルミニウ
ム箔(1)に多数の細線(21をX状に交叉するように
施した場合を夫々示しており、この構成σ)もの、も、
引づ長り強度及び折曲げ強度に秀11た効果を有する。
Figure 2 shows a large number of thin 11i1jl on aluminum foil (1).
(Figure 3 shows the case in which the aluminum foil (1) is applied in an X-shaped manner, with a large number of thin lines (21) intersecting each other in an X-shape, and this configuration σ). too,
It has excellent tensile strength and bending strength.

さらにまた第4図は圧延方向と直角方向に多数の細線(
21ヲ平行状に施した場合の構成r示してぢり、この構
成においては、アルミニウム箔(11會圧延方回と直角
方向で所要幅に切断して電4:@箔?得る場合に有効で
ある。
Furthermore, Figure 4 shows a large number of thin lines (
21 is shown in the configuration when it is applied in a parallel manner. In this configuration, it is effective to obtain aluminum foil (11 sheets of aluminum foil by cutting it to the required width in a direction perpendicular to the rolling direction). be.

第5図(イ)及び(ロ)は、エツチング後のアルミニウ
ム箔の拡大断面図7示して2つ、同図(イ)にアルミニ
ウム箔(月の片面のみに細線(2)τ施した場合r、−
!り同図(ロ)はアルミニウム箔(1)の両面にオ州線
(21ケ施した場合才夫々示している。
Figures 5 (a) and (b) show two enlarged cross-sectional views of the aluminum foil after etching. ,−
! Figure (b) shows the result when 21 lines (21 lines) are applied to both sides of the aluminum foil (1).

ところで腐食に対して抵抗するaJ 1111 ’c施
すことにより、該細線【施さない場合に得らねるアルミ
ニウム箔の拡面倍惠が一見低下する〃・σ)如く感を与
えるが、実験の結果によれば、コンデンサ容量比におい
て殆んど差が生じないことが判明した。
By the way, applying aJ 1111'c, which resists corrosion, gives the impression that the surface expansion ratio of the aluminum foil, which cannot be obtained if it is not applied, is reduced at first glance, but the experimental results It was found that there was almost no difference in capacitance ratio.

その理由は、細線部の占める割合が全体のifD積の数
パーセントで充分であること、lト田線都で減じた腐食
溶解量が細線のない他の部分で補なうことができること
Vr、よるものと思料される。甘た#11線?施した場
合のアルミニウムの腐食溶解量と、細線を施さない場合
のそねとが同一であるとするとき、腐食されずに残った
部分の平均断面積ははy等しくなるので、機械的強度に
も差が生じないかの如き感盆与えるが、実験の結果によ
れば、機械的強度に著しい差が生じることが判明した。
The reason for this is that the proportion occupied by the thin wires is only a few percent of the total ifD product, and that the amount of corrosion and dissolution reduced in the Toda line can be compensated for by other parts without thin wires. It is thought that it depends on the situation. Sweet #11 line? Assuming that the amount of corrosion and dissolution of aluminum when applying fine wire is the same as the amount of corrosion when fine wire is not applied, the average cross-sectional area of the part that remains uncorroded is equal to y, so the mechanical strength However, according to the results of experiments, it was found that there was a significant difference in mechanical strength.

その理由に、細線が施されていない部分の腐食は深く、
従って該部分は脆弱で裂は易く、巣位断面積あたりいた
めであると思年斗される。
The reason for this is that the areas where the fine wires are not coated are deeply corroded.
Therefore, it is thought that this part is fragile and easily cracks, and is likely to be damaged due to the cross-sectional area of the nest.

次に芙施例について詳述する。Next, the example will be explained in detail.

試料l 厚さ100μ・純度99.99%、焼鈍ずみのアルミニ
ウム箔を塩化物溶解中で慣用されている電解エツチング
箔によりエツチング処理ケ行い、ρ)つ溶解$Jt菫茫
約38%となるように制御し1次いで水洗処理したのち
、硼e液中で375V&C$Jいて化成したもの 試料2 試料lVcおいて、エツチング処理を行う前に2、5 
mm1W] Imで、0.25閣幅のマジックインクに
より細線をアルミニウム箔の圧延方向に平行にかつその
片面に施したもの 試料3 試料2において、細線を両面に施したもの本実線例に2
いて、容量測定は、電解液中で電橋による測定で行って
等価厘列静電容量を求め・そのtfiに面積(d)2徐
してμZa値を算出した。
Sample 1 An annealed aluminum foil with a thickness of 100 μm and a purity of 99.99% was etched using a commonly used electrolytic etching foil in a chloride solution, so that the etching temperature was approximately 38%. Sample 2: Sample 2: Sample 2: After being washed with water and chemically treated in borium e-liquid at 375 V&C
mm1W] Im, with a thin line made with magic ink of 0.25 mm width parallel to the rolling direction of aluminum foil on one side Sample 3 Sample 2 with thin lines made on both sides Sample 2
The capacitance was measured using an electric bridge in the electrolytic solution to obtain the equivalent column capacitance, and the μZa value was calculated by multiplying the area (d) by 2 to the Tfi.

また引張り強度の測定は、圧延方向に平行に長さ10c
fn、幅lαにスリット切断したエツチング箔に対し圧
延方向に引張り力?与え、毎秒0,25〜の割合で引張
り力全増加して破断時のに911fk求め。
In addition, the tensile strength was measured at a length of 10cm parallel to the rolling direction.
fn, tensile force in the rolling direction for etching foil cut into slits with width lα? The total tensile force is increased at a rate of 0.25~ per second to obtain 911 fk at the time of break.

その引張り強度Wcm 11を算出した。更に折曲げ強
度については、上記した引張り強度測定試料と等しい試
料rその長さ方向に対し45度角に曲げ、このときの曲
げの面は1IIIi1+の曲率半径とし、長さ方向に引
張り力250 g加え、〃)つ曲げ方は、始め45度角
に曲げた状態から元に戻どし、次いで反対方向に45度
伸開げ、再び元に戻す掃作’It回とし、その折曲部が
切断する甘での回数を求めた。その結果下記の通りであ
る。
Its tensile strength Wcm 11 was calculated. Furthermore, regarding the bending strength, a sample r identical to the tensile strength measurement sample described above was bent at an angle of 45 degrees with respect to its length direction, the bending surface at this time had a radius of curvature of 1IIIi1+, and a tensile force of 250 g was applied in the length direction. In addition, the bending method is to first bend it at a 45 degree angle, return it to its original position, then extend it 45 degrees in the opposite direction, and then sweep it back to its original position. The number of times it was cut was calculated. The results are as follows.

記 容量μシ4 引張り強度% 折曲げ強度試料1の場合 
 0.72    1% 23試料2の場合  0.7
2    1.5    10試料3の場合  0.7
1    1% 8    19上記した実験結果々)
ら明ら刀・なように、本願発明によれば、従来方法によ
るエツチング箔と比較して容重、がはソ同一であるにも
不拘、得られる機械的強度は非常に大きく%特に折曲げ
強度の改善が著しいため自動巻敗磯によるコンデンサ素
子の巻取り作業運びVC取扱い作業に極めて有利である
ことが理解される。
Storage capacity μshi4 Tensile strength % For bending strength sample 1
0.72 1% 23 Sample 2 0.7
2 1.5 For 10 samples 3 0.7
1 1% 8 19 Experimental results mentioned above)
As can be seen from the above, according to the present invention, even though the weight and weight are the same, the obtained mechanical strength is very large, especially the bending strength. It is understood that this is extremely advantageous for winding of capacitor elements and handling of VC using an automatic winding machine.

なお数次にわたる実験の結果I/c↓れば、さきに述べ
たように印刷によって細線?施す方法が最も藺止で実用
的であり、この場合に用いられる印刷インクは、水性で
も油性でも充分な効果が得らねることを知得した。発明
者は尚初極めて強い耐腐食性のインクで、刀)つ厚く塗
布してアルミニウム箔に細線を施す必非があるものと思
慮していたが。
In addition, as a result of several experiments, if I/c↓, as mentioned earlier, is there a thin line due to printing? It has been learned that this method is the most effective and practical, and that the printing ink used in this case, whether water-based or oil-based, does not provide sufficient effects. The inventor thought that it would be necessary to apply a thick coat of extremely strong corrosion-resistant ink to create fine lines on the aluminum foil.

実験の結果によれば、耐腐食性の極めて弱いインクで、
〃箋つ薄い)脅の細線でも充分な効果が得られた。そね
は腐食の進行がその尚初では緩徐で、その#に2いて勺
速に進行するものであり、インクによって施さねた細線
部が本格的に腐食進行する以前に、細紹葡流さない部分
の腐食が終了してし甘うためであると思料畑れる。
According to the experimental results, the ink has extremely low corrosion resistance.
Even a thin line of threat was quite effective. Corrosion progresses slowly at the beginning, but progresses rapidly in the early stages, and the fine lines that have not been applied with the ink should not be washed away before the corrosion progresses in earnest. It is thought that this is because the corrosion of the parts has finished and it is too late.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は夫々本願発明の実施例におけるエツ
チング箔の部分平面図、第5図はエツチング箔の拡大断
面図である。 図中(1)はアルミニウム箔、(2:は細線である。
1 to 4 are partial plan views of etching foils in embodiments of the present invention, and FIG. 5 is an enlarged sectional view of the etching foils. In the figure, (1) is an aluminum foil, and (2: is a thin line).

Claims (1)

【特許請求の範囲】 (11アルミニウム箔の表面にUi食に抵抗する多数の
細線會施したのち、エツチング処理全行うこと?特徴と
したアルミニウム箔のエツチング方法。 (21i 11i1J Th−アルミニウム箔の圧延方
向に平行して施して成る特許請求の範囲第1項記載のア
ルミニウム箔のエツチング方法。 (3)細線會、アルミニウム箔の圧延方向に対し傾斜状
に施して成る特許請求の範囲第IJJ記戦のアルミニウ
ム?(4のエツチング方法。 (41+tlB mk −アルミニウム箔の片面に施し
て成る特許請求の範囲第1項、第2麹または第3項記載
のアルミニウム箔のエツチング方法。 (5)π(11線r、アルミニウム箔の両面に流して成
る特許請求の範囲第1項、第2項−iたは第3項記載の
アルミニウム箔のエツチング方法。
[Scope of Claims] (11 Performing the entire etching process after applying a large number of fine wires to resist Ui corrosion on the surface of the aluminum foil? A method for etching aluminum foil characterized by: (21i 11i1J Th-Rolling of aluminum foil (3) The method of etching aluminum foil according to claim 1, which is performed in parallel to the rolling direction of the aluminum foil. Aluminum? A method for etching aluminum foil according to claim 1, 2-i or 3, wherein the wire r is flowed onto both sides of the aluminum foil.
JP19239082A 1982-11-04 1982-11-04 Etching method of aluminum foil Granted JPS5983772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19239082A JPS5983772A (en) 1982-11-04 1982-11-04 Etching method of aluminum foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19239082A JPS5983772A (en) 1982-11-04 1982-11-04 Etching method of aluminum foil

Publications (2)

Publication Number Publication Date
JPS5983772A true JPS5983772A (en) 1984-05-15
JPH0238665B2 JPH0238665B2 (en) 1990-08-31

Family

ID=16290500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19239082A Granted JPS5983772A (en) 1982-11-04 1982-11-04 Etching method of aluminum foil

Country Status (1)

Country Link
JP (1) JPS5983772A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6839224B2 (en) 1998-10-02 2005-01-04 Cardiac Pacemakers, Inc. Smaller electrolytic capacitors for implantable defibrillators
US7043300B2 (en) 1998-10-02 2006-05-09 Cardiac Pacemakers, Inc. High-energy electrolytic capacitors for implantable defibrillators
US7180727B2 (en) 2004-07-16 2007-02-20 Cardiac Pacemakers, Inc. Capacitor with single sided partial etch and stake
US7301753B2 (en) 2005-05-09 2007-11-27 Cardiac Pacemakers, Inc. Method and apparatus for a capacitor with flexible bus
US7352560B2 (en) 2004-07-16 2008-04-01 Cardiac Pacemakers, Inc. Method and apparatus for interconnecting electrodes with partial titanium coating
US7452473B1 (en) 2003-10-06 2008-11-18 Pacesetter, Inc. Laser marking of raw aluminum anode foil to induce uniform patterning etching
US9093683B2 (en) 2002-12-31 2015-07-28 Cardiac Pacemakers, Inc. Method and apparatus for porous insulative film for insulating energy source layers
US9620806B2 (en) 2002-12-31 2017-04-11 Cardiac Pacemakers, Inc. Batteries including a flat plate design
US9852849B2 (en) 2016-05-27 2017-12-26 Pacesetter, Inc. Using etch resist patterns and formation for facilitation of laser cutting, particle and leakage current reduction
US9969030B2 (en) 2016-05-12 2018-05-15 Pacesetter, Inc. Laser drilling of metal foils for assembly in an electrolytic capacitor
US9978529B2 (en) 2016-01-11 2018-05-22 Pacesetter, Inc. Oxide on edges of metal anode foils
US10032565B2 (en) 2000-11-03 2018-07-24 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device
US10090112B2 (en) 2016-01-15 2018-10-02 Pacesetter, Inc. Use of etch resist masked anode frame for facilitation of laser cutting, particle and leakage current reduction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137841A (en) * 1974-09-27 1976-03-30 Tokyo Shibaura Electric Co Aruminiumu mataha sonogokinseihaku no pataankahoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137841A (en) * 1974-09-27 1976-03-30 Tokyo Shibaura Electric Co Aruminiumu mataha sonogokinseihaku no pataankahoho

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7043300B2 (en) 1998-10-02 2006-05-09 Cardiac Pacemakers, Inc. High-energy electrolytic capacitors for implantable defibrillators
US6839224B2 (en) 1998-10-02 2005-01-04 Cardiac Pacemakers, Inc. Smaller electrolytic capacitors for implantable defibrillators
US10032565B2 (en) 2000-11-03 2018-07-24 Cardiac Pacemakers, Inc. Flat capacitor for an implantable medical device
US9093683B2 (en) 2002-12-31 2015-07-28 Cardiac Pacemakers, Inc. Method and apparatus for porous insulative film for insulating energy source layers
US10115995B2 (en) 2002-12-31 2018-10-30 Cardiac Pacemakers, Inc. Batteries including a flat plate design
US9620806B2 (en) 2002-12-31 2017-04-11 Cardiac Pacemakers, Inc. Batteries including a flat plate design
US7452473B1 (en) 2003-10-06 2008-11-18 Pacesetter, Inc. Laser marking of raw aluminum anode foil to induce uniform patterning etching
US7180727B2 (en) 2004-07-16 2007-02-20 Cardiac Pacemakers, Inc. Capacitor with single sided partial etch and stake
US7352560B2 (en) 2004-07-16 2008-04-01 Cardiac Pacemakers, Inc. Method and apparatus for interconnecting electrodes with partial titanium coating
US7532456B2 (en) 2004-07-16 2009-05-12 Cardiac Pacemakers, Inc. Method and apparatus for a partially etched capacitor layer including a connection member
US7682921B2 (en) 2004-07-16 2010-03-23 Cardiac Pacemakers, Inc. Method and apparatus for interconnecting electrodes with partial titanium coating
US8174818B2 (en) 2005-05-09 2012-05-08 Cardiac Pacemakers, Inc. Method for a capacitor with a flexible interconnect
US8012222B2 (en) 2005-05-09 2011-09-06 Cardiac Pacemakers, Inc. Method and apparatus for interconnecting electrodes with partial titanium coating
US7656646B2 (en) 2005-05-09 2010-02-02 Cardiac Pacemakers, Inc. Method and apparatus for a capacitor with a flexible interconnect
US7301753B2 (en) 2005-05-09 2007-11-27 Cardiac Pacemakers, Inc. Method and apparatus for a capacitor with flexible bus
US9978529B2 (en) 2016-01-11 2018-05-22 Pacesetter, Inc. Oxide on edges of metal anode foils
US10923291B2 (en) 2016-01-11 2021-02-16 Pacesetter, Inc. Oxide on edges of metal anode foils
US11469052B2 (en) 2016-01-11 2022-10-11 Pacesetter, Inc. Oxide on edges of metal anode foils
US10090112B2 (en) 2016-01-15 2018-10-02 Pacesetter, Inc. Use of etch resist masked anode frame for facilitation of laser cutting, particle and leakage current reduction
US10825613B2 (en) 2016-01-15 2020-11-03 Pacesetter, Inc. Use of etch resist masked anode frame for facilitation of laser cutting, particle and leakage current reduction
US9969030B2 (en) 2016-05-12 2018-05-15 Pacesetter, Inc. Laser drilling of metal foils for assembly in an electrolytic capacitor
US11185948B2 (en) 2016-05-12 2021-11-30 Pacesetter, Inc. Laser drilling of metal foils for assembly in an electrolytic capacitor
US9852849B2 (en) 2016-05-27 2017-12-26 Pacesetter, Inc. Using etch resist patterns and formation for facilitation of laser cutting, particle and leakage current reduction

Also Published As

Publication number Publication date
JPH0238665B2 (en) 1990-08-31

Similar Documents

Publication Publication Date Title
JPS5983772A (en) Etching method of aluminum foil
JPS6134187A (en) Etching of aluminum anode foil to high voltage electrolytic condenser
JPS61257497A (en) Formation of aluminum anodic oxidation film
US3174920A (en) Method for producing electrical resistance strain gages by electropolishing
JP3859228B2 (en) Aluminum sheet with rough surface
McMurray et al. Scanning kelvin probe studies of filiform corrosion on automotive aluminum alloy AA6016
JPH09272994A (en) Electrolytic copper foil for fine pattern
Bloom et al. Steel Corrosion Mechanisms: The Growth and Breakdown of Protective Films in High‐Temperature Aqueous Systems: at 316° C
US7531078B1 (en) Chemical printing of raw aluminum anode foil to induce uniform patterning etching
JPH08264391A (en) Etching of aluminum foil for electrolytic capacitor
JP3403444B2 (en) Aluminum foil for electrode of electrolytic capacitor
Terryn et al. AC Electrograining of Aluminium in Hydrochloric and Nitric Acid: a Comparative Study
JP3092930B2 (en) Ni, Cu coated cold rolled steel sheet and method for producing the same
JP3460418B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
Bratin et al. New application of the SERA method-assessment of the protective effectiveness of organic solderability preservatives
JP4184836B2 (en) Method for producing insulating film of grain-oriented electrical steel sheet suitable for electrolytic treatment
JP4132973B2 (en) Manufacturing method of stainless steel plate with smooth surface
JP2692107B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP2638038B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
KR930014830A (en) Product manufacturing method including an etch rate monitor
JPH01247547A (en) Aluminum alloy for fluororesin coating
JPS63299309A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JPH01100287A (en) Pickling method for low chromium steel strip
JPS6242022B2 (en)
Florio et al. Electrochemical Etching of Copper Ion Implanted H-19 Aluminum in Aqueous Chloride/Sulfate Solution at 95 C