JPS5983744A - Shape memory alloy - Google Patents

Shape memory alloy

Info

Publication number
JPS5983744A
JPS5983744A JP19245982A JP19245982A JPS5983744A JP S5983744 A JPS5983744 A JP S5983744A JP 19245982 A JP19245982 A JP 19245982A JP 19245982 A JP19245982 A JP 19245982A JP S5983744 A JPS5983744 A JP S5983744A
Authority
JP
Japan
Prior art keywords
shape memory
less
memory effect
alloy
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19245982A
Other languages
Japanese (ja)
Inventor
Yasubumi Fujishiro
藤城 泰文
Tamotsu Hashimoto
保 橋本
Yasuo Otani
大谷 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19245982A priority Critical patent/JPS5983744A/en
Publication of JPS5983744A publication Critical patent/JPS5983744A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide an Fe-Mn type shape memory alloy improved in shape memory effect with a reduced Mn-amount, by compounding specific amounts of C, Si, Mn and sol Al as base components. CONSTITUTION:A shape memory alloy comprises, on the wt. basis 0.1-0.35% C, 0.5% or less Si, 8.0-15.0% Mn, 0.01-0.06% sol Al, according to necessity, further one or more of 1.0% or less Ni and 1.0% or less Cr and the remainder Fe and inevitable impurities. By this alloy composition, excellent shape memory effect is obtained with a reduced Mn-amount. The shape memory effect of this alloy means that only a part of plastic deformation stress applied at an Ms point or less returns to the shape prior to plastic deformation.

Description

【発明の詳細な説明】 本発明は形状記憶合金、すなわち形状記憶効果を有する
合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to shape memory alloys, ie alloys having a shape memory effect.

すでに良く知られているように、機械要素および構造部
材の固定、締付け、接合および補修の操作は工業技術上
重要な基本的な操作であシ、その手段として今日、例え
ばネジ、ボルトの利用さらには、各種溶接技術の利用が
実用化されている。
As is already well known, the operations of fixing, tightening, joining and repairing mechanical elements and structural members are important basic operations in industrial technology. The use of various welding techniques has been put into practical use.

新らしい材料の出現、さらにはよシ厳しい条件下での使
用というような各種の要求に応じ、このような工業上基
本的な操作の分野においても技術の高度化が要求されて
いる。
In response to various demands such as the appearance of new materials and use under more severe conditions, technological sophistication is required even in the field of such basic industrial operations.

ところで、例えば従来のネジ、ボルト等を利用して締め
つけを行なう場合、締めつけ後のゆるみが問題となるこ
とがあシ、かかる締めつけ後のゆるみを防止するために
は、かIp大きな締めつけ力を予め加えておくか、また
はその他の特殊な方法を用いなければ、ゆるみ防止に完
全な効果を上げることはできない。よシ高度のゆるみ防
止には施工上かな、り高度な技術を必要とするのである
By the way, when tightening using conventional screws, bolts, etc., loosening after tightening may become a problem, and in order to prevent such loosening after tightening, it is necessary to apply a large tightening force in advance. Unless you add it or use other special methods, you will not be able to fully prevent loosening. In order to prevent loosening to a high degree, highly advanced construction techniques are required.

また、パイプ同志の接合および補修は、溶接またはネジ
によシ実り市される場合が多い。しかし、溶接を利用す
る場合、必ず熱影響を受ける部分が存在するためとの部
分の性能を落とすことなくパイプの接合、補修を行うに
は材質上、施工上種々の工夫が必要とされる。一方、ネ
ジ接合では、高圧の管内圧力に耐え得るようにするため
には、ネジの形状およびネジ切シ作業等の細部にわたる
までの種々の注意、および高度々技術が・要求される。
Furthermore, joining and repairing pipes together is often accomplished by welding or screwing. However, when welding is used, there are always parts that are affected by heat, so in order to join and repair pipes without degrading the performance of those parts, various ingenuity is required in terms of materials and construction. On the other hand, in order to withstand high pressure inside the pipe, threaded joints require a variety of attention to detail, such as the shape of the thread and the thread cutting process, as well as a high level of skill.

さらに、海底における・々1プ補修に関しては、′ts
内の密封性およびili、I正性の要求がかなり厳しい
ものになるため、さらに高度な技術が要求されるところ
で、構造物を製作する上での上述のような問題点に対処
するために、従来から、累材自身の形状記憶性を活用し
ようという試みが提案されている。
Furthermore, regarding repairs on the seabed, 'ts
In order to deal with the above-mentioned problems in manufacturing the structure, even more advanced technology is required because the requirements for internal sealability and Ili, I correctness are quite strict. Conventionally, attempts have been proposed to utilize the shape memory properties of composite materials themselves.

しかし、従来の形状記憶合金は、そのほとんどが非鉄系
の合金である。特にTi −Ni 、Cu−Zn−Al
がよく知られているが、これらの合金はいずれも通常の
鋼にくらべて製造コストが高く、また製造方法に関して
は細心の注意をはられなければ良好な形状記憶効果を得
ることは困難であるため、実用的とは云えない。
However, most of the conventional shape memory alloys are non-ferrous alloys. Especially Ti-Ni, Cu-Zn-Al
However, all of these alloys are more expensive to manufacture than ordinary steel, and it is difficult to obtain a good shape memory effect unless careful attention is paid to the manufacturing method. Therefore, it cannot be said to be practical.

一方、鉄系の形状記憶合金としてはFe−Δb。On the other hand, Fe-Δb is an iron-based shape memory alloy.

Fe −Ni 、 Fe−Pt 、 Fe −Pd 系
および304 型ステンレス鋼がよく知られている。
The Fe-Ni, Fe-Pt, Fe-Pd series and type 304 stainless steel are well known.

この中ではFe −Mn  系が最も安価であるため、
この系を用いた形状記憶合金がいくつか報告されている
r  (Scripta Metallurgica 
9−9 (1975)、941〜948、特開昭55−
76043、および特開昭55−73846)。
Among these, the Fe-Mn system is the cheapest, so
Several shape memory alloys using this system have been reported.
9-9 (1975), 941-948, JP-A-1987-
76043, and JP-A-55-73846).

しかし、これらの場合、所要の形状記憶効果を得るだめ
にいずれもMn の含有量が高く、通常の鋼と比らべて
安価とは云えない。製造コストの面からはMn量は低い
方が好ましいのである。
However, in these cases, the Mn content is too high to obtain the required shape memory effect, and they cannot be said to be cheaper than ordinary steel. From the viewpoint of manufacturing cost, it is preferable that the amount of Mn be lower.

以上の従来技術の問題点に対し、本発明者等は、ネジ、
?ルトの締付け、固定およびパイプの接合、補修に対す
る形状記憶合金の活用を図るべく、Mnの含有量が従来
の形状記憶鋼よシも低く、むしろ一般鋼種に近い形状記
憶合金の開発に関して長年研究を石仏、上述のような用
途に適するMn含有量の少ない実用的な形状記憶合金を
見い出し、本発明を完成した。
In order to solve the above-mentioned problems of the conventional technology, the present inventors have developed a screw,
? In order to utilize shape memory alloys for tightening and fixing bolts, joining and repairing pipes, we have been researching for many years on the development of shape memory alloys that have a lower Mn content than conventional shape memory steels and are actually closer to common steel types. We have discovered a practical shape memory alloy with a low Mn content that is suitable for the above-mentioned uses, and completed the present invention.

ここに、本発明は、重量係で、C: 0.1〜0.35
φ以下、Si:o、s%以下、Mn  : 8.0〜1
5.0 %、Sol、AI: 0.0 i 〜0.06
%、さらに必要によシNj:1.0%以下およびCr 
 : 1.0%v下の1補または2種、残部Fe およ
び不可避不純物から成ることを特徴とする、形状記憶合
金である。
Here, the present invention has a weight ratio of C: 0.1 to 0.35.
φ or less, Si: o, s% or less, Mn: 8.0 to 1
5.0%, Sol, AI: 0.0 i ~ 0.06
%, further necessary Nj: 1.0% or less and Cr
: It is a shape memory alloy characterized by consisting of 1.0% v or less of 1st or 2nd type, balance Fe and unavoidable impurities.

なお、本発明に係る形状記憶合金は、形状記憶力1果を
示す合金を云い、ここに、不発明の形状記憶効果とは、
Ms 点以下で7711えた塑性変形歪がAc1点以上
に一旦加熱してから室温に冷却すると完全に塑性変形前
の形状に戻るという従来の一般的な形状記憶効果を云う
のではなく、Ms 点以下で加えた塑性変形歪の一部の
みが塑性変形前の形状に戻ることを意味し、塑性変形歪
が完全に塑性変形前の形状に戻ることを意味しない。本
発明にあっては云わば不完全形状記憶効果によるこの復
元量、復元力を活用するのである。
Note that the shape memory alloy according to the present invention refers to an alloy that exhibits shape memory power, and the shape memory effect of the invention herein refers to the following:
This does not refer to the conventional general shape memory effect in which the plastic deformation strain that has increased by 7711 below the Ms point completely returns to the shape before plastic deformation when it is heated to the Ac1 point or higher and then cooled to room temperature, but below the Ms point. This means that only a portion of the plastic deformation strain applied returns to the shape before plastic deformation, and does not mean that the plastic deformation strain completely returns to the shape before plastic deformation. In the present invention, this amount of restoration and restoring force due to the so-called incomplete shape memory effect are utilized.

本発明において合金組成を上記のように限定した理由は
次の通シである。
The reason why the alloy composition is limited as described above in the present invention is as follows.

炭素(に) :炭素は0.35%を越えるとMs Aが
常温以下となり、常温で冷間加工を加えても十分な形状
記憶効果が得られないため・ 本発明では炭素は0.3
5%以下とする。又は0.10係未満では十分な形状記
憶効果が得られない。
Carbon: If carbon exceeds 0.35%, Ms A will be below room temperature, and sufficient shape memory effect will not be obtained even if cold worked at room temperature. In the present invention, carbon is 0.3%.
5% or less. Or, if it is less than 0.10, a sufficient shape memory effect cannot be obtained.

ケイ素(Si):ケイ素が005%を越えるとMs 点
が常温以下となシ、常温で冷間加工を加えても十分な効
果が得られないため、本発明ではケイ素は0.5%以下
とする。
Silicon (Si): If the silicon content exceeds 0.005%, the Ms point will be below room temperature, and even if cold working is applied at room temperature, a sufficient effect will not be obtained. Therefore, in the present invention, the silicon content is 0.5% or less. do.

マンガン(Ivin):マンガンが8.0φ未満では形
状記憶効果を発現するのに有効であるεマルテンサイト
の生成が不十分であセ、十分な効果が得られない8一方
、Mnが15係を越えるとMs 点が常温以下となシ、
常温で冷間加工を刃口えても十分な形状記憶効果が得ら
れない。
Manganese (Ivin): If manganese is less than 8.0φ, the formation of ε martensite, which is effective for expressing the shape memory effect, is insufficient, and a sufficient effect cannot be obtained. If it exceeds the Ms point, it will be below room temperature.
Even if the blade is cold worked at room temperature, a sufficient shape memory effect cannot be obtained.

好ましくは9〜11%である2、 可溶性アルミニウム(Sol、A1): Sol、A1
  は0.01φ未満では脱酸の効果が不十分であるが
、一方、0.06%を越えると靭性が劣化してしまい、
所要の機械的特性が得られないため本発明ではSol、
AI  OJ 1〜0.06%とする。
Preferably 9-11% 2. Soluble aluminum (Sol, A1): Sol, A1
If it is less than 0.01%, the deoxidizing effect will be insufficient, but if it exceeds 0.06%, the toughness will deteriorate,
Since the required mechanical properties cannot be obtained, in the present invention, Sol,
AI OJ shall be 1 to 0.06%.

ニッケル(Ni)  およびクロム(Cr) :本発明
にあっては、所望により、さらに機棹的特性改善のため
にそれぞれ1.0%以下のニッケルおよびクロムの少な
くとも1種を添加してもよい。しかしそれぞれ1.0%
を越えるとMs 点が常温以下となシ、常温で冷間加工
を加えても十分な効果が得られないため、それぞれ上限
を1.0%とする。
Nickel (Ni) and Chromium (Cr): In the present invention, if desired, at least one of nickel and chromium may be added in an amount of 1.0% or less each to further improve mechanical properties. However, each 1.0%
If it exceeds 1.0%, the Ms point will be below room temperature, and even if cold working is applied at room temperature, a sufficient effect will not be obtained, so the upper limit for each is set at 1.0%.

なお、すでに述べたところからも明らかなように、実用
的形状記憶合金としては、まず、Ms 点が常温以上で
あることであシ、これによって、Ms点以下での塑性変
形を常温で加えることができ、製造上非常に簡便になる
。さらにAc1点があまシ高温すぎないことも必要とさ
れる。これによって大がかシな加熱設備を必・要とせず
に形状の彷元が可能となるからである。
As is clear from what has already been said, for a practical shape memory alloy, the Ms point must first be above room temperature, so that plastic deformation below the Ms point can be applied at room temperature. This makes manufacturing extremely simple. Furthermore, it is also required that the Ac1 point is not too high. This is because it becomes possible to change the shape without requiring large-scale heating equipment.

以下、本発明をさらに実施例によって説明する。Hereinafter, the present invention will be further explained by examples.

なお、これらの実施例は単に例示のために示すものであ
って、これによって本発明を制限するものではない。
It should be noted that these Examples are shown merely for illustrative purposes and are not intended to limit the present invention.

実施例: 第1表の各鋼組成を有する13種の鋼種につぃて、高周
波溶解して得た鋼塊を1150℃に加熱稜厚さ5mmの
鋼板に圧延し、次いで常温まで空冷した後、再び100
0℃に加熱し、水冷によシ焼入処理を施した。
Example: For 13 types of steel having each steel composition shown in Table 1, a steel ingot obtained by high-frequency melting was heated to 1150°C and rolled into a steel plate with a ridge thickness of 5 mm, and then air-cooled to room temperature. , again 100
It was heated to 0°C and subjected to a hardening treatment by water cooling.

このようにして得た鋼板から厚さ3陶×幅20爾×長さ
160調の板状引張試験片を機械加工して得、常温にて
10%以下の引張変形を施した後、Ac1点以上に再加
熱してから常温にまで冷却した。
A plate-shaped tensile test piece with a thickness of 3 mm x width of 20 mm x length of 160 mm was machined from the steel plate obtained in this way, and after being subjected to tensile deformation of 10% or less at room temperature, an Ac1 point was obtained. After reheating as above, it was cooled to room temperature.

さらにこの再加熱前後の試験片のグーソ長さく標点開祖
ili#)を測定することによシ試験片の長さの復元率
を測定した。
Furthermore, the recovery rate of the length of the test piece was measured by measuring the length of the test piece before and after reheating.

この結果を第1表に併わせで示すが、本発明合金は復元
率が2φ以上と明らかに比較合金よシも大きな形状記憶
効果を有し、本発明が目的とするより厳しい仕様のネジ
およびデルトの締付けさらにパイプの接合、補修等に適
用が可能であることが分かる。
These results are also shown in Table 1. The alloy of the present invention clearly has a greater shape memory effect than the comparative alloys, with a recovery rate of 2φ or more. It can be seen that it can be applied to tightening delts, joining pipes, repairing pipes, etc.

本発明におけるかかるすぐれた形状記憶効果(復元性)
が得られるメカニズムについては必ずしも明確ではない
が次のように説明することができる。すなわち、本発明
合金にあっては、まずFe −C−St −Mn−AI
系において、従来合金にみられる程多量のMn を添加
しなくとも、Cを添加することによシMs 点以下で十
分εマルテンサイトが生成するものと考えられる。一方
、Ms 点以下での冷間加工時には、その塑性変形歪の
一部が、上述のようにして生成したεマルテンサイトt
たは焼入れ時に生成した微細双晶による、格子すベシに
よらない変形によってなされると考えられる。
Such excellent shape memory effect (restorability) in the present invention
Although the mechanism by which this is obtained is not necessarily clear, it can be explained as follows. That is, in the alloy of the present invention, Fe-C-St-Mn-AI
In the system, it is considered that by adding C, ε martensite can be sufficiently generated below the Ms point, even without adding as much Mn as in conventional alloys. On the other hand, during cold working below the Ms point, part of the plastic deformation strain is caused by the ε martensite t formed as described above.
Or, it is thought that deformation is caused by fine twins generated during quenching, which are not dependent on the lattice.

したがってこれに読く、再加熱時にはAc4点以上でこ
の変形が母相の格子に逆変態することによって素材の形
状が塑性変形前の前に復元するもの!ある。
Therefore, when reheating, this deformation is reversely transformed into the matrix lattice at the Ac4 point or higher, and the shape of the material is restored to its original shape before plastic deformation! be.

このように、本発明によれば、従来の高Mn鋼よシもM
n量が低く、が表シ一般鋼材に近い組成でもって、例え
ば2%以上という優れた形状記憶効果が得られるのであ
って、その実際的見地からの本発明の効果には著しいも
のがあることが分かる。
As described above, according to the present invention, the Mn
An excellent shape memory effect of, for example, 2% or more can be obtained with a low n content and a composition close to that of general steel materials, and the effects of the present invention from a practical standpoint are remarkable. I understand.

第  1  表 注−1)*:本発明範囲外 ただし、Ll:加熱前の標点間距離 t2:加熱後の獣点間距離Table 1 Note-1) *: Outside the scope of the present invention However, Ll: Gauge distance before heating t2: Distance between animal points after heating

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、c : o、i〜0.35%、Si:
0.5%以下、Mn  : 8.0〜15.0 %、S
ol、Al  : 0.(11〜0.06%、残部Fe
および不可避不純物から成ることを特徴とする、形状記
憶合金。
(1) In weight%, c: o, i~0.35%, Si:
0.5% or less, Mn: 8.0-15.0%, S
ol, Al: 0. (11~0.06%, balance Fe
and unavoidable impurities.
(2)重置チで、C: 0.1〜0.35%、Si:0
.5%以下、Mn  : 8.0%−15,0%、So
l。 AI:0.01〜0.06係、さらにNi:1.0係以
下およびCr  : 1..0%以下の1種咬たは2種
、残部Feおよび不可避不純物から成ることを特徴とす
る、形状記憶合金。
(2) Overlapping chip, C: 0.1-0.35%, Si: 0
.. 5% or less, Mn: 8.0%-15.0%, So
l. AI: 0.01 to 0.06, Ni: 1.0 or less, and Cr: 1. .. A shape memory alloy comprising 0% or less of type 1 or type 2, the balance being Fe and unavoidable impurities.
JP19245982A 1982-11-04 1982-11-04 Shape memory alloy Pending JPS5983744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19245982A JPS5983744A (en) 1982-11-04 1982-11-04 Shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19245982A JPS5983744A (en) 1982-11-04 1982-11-04 Shape memory alloy

Publications (1)

Publication Number Publication Date
JPS5983744A true JPS5983744A (en) 1984-05-15

Family

ID=16291646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19245982A Pending JPS5983744A (en) 1982-11-04 1982-11-04 Shape memory alloy

Country Status (1)

Country Link
JP (1) JPS5983744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933027A (en) * 1988-04-05 1990-06-12 Nkk Corporation Iron-based shape-memory alloy excellent in shape-memory property, corrosion resistance and high-temperature oxidation resistance
WO2017092104A1 (en) * 2015-12-04 2017-06-08 重庆哈工易成形钢铁科技有限公司 Steel material for stamping forming, formed member and heat treatment method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933027A (en) * 1988-04-05 1990-06-12 Nkk Corporation Iron-based shape-memory alloy excellent in shape-memory property, corrosion resistance and high-temperature oxidation resistance
WO2017092104A1 (en) * 2015-12-04 2017-06-08 重庆哈工易成形钢铁科技有限公司 Steel material for stamping forming, formed member and heat treatment method thereof

Similar Documents

Publication Publication Date Title
JP6390567B2 (en) Manufacturing method of stainless clad steel plate
JP4552268B2 (en) How to connect high strength martensitic stainless steel pipes for oil wells
JPH0426741A (en) Pd-added stainless steel for high thmperature-high concentration sulfuric acid
JPS5983744A (en) Shape memory alloy
JPS5913023A (en) Production of steel plate for large diameter welded pipe
EP0998591B1 (en) Linepipe and structural steel produced by high speed continuous casting
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JP3260232B2 (en) Manufacturing method of coastal high weather resistant clad steel sheet
JP3004784B2 (en) High toughness ferritic stainless steel for high temperatures
JPH0387332A (en) High strength-low alloy-heat resistant steel
JPH09272956A (en) Seawater resistant precipitation hardening type high alloy steel and its production
JPS602653A (en) Production of precipitation hardening type nickel-base alloy
JP2737525B2 (en) Manufacturing method of austenitic stainless clad steel sheet with excellent brittle fracture arrestability of base metal
JPS63255341A (en) Highly corrosion resistant steel plate for welding construction excellent in salt damage resistance
JP4220088B2 (en) Welded joint for steel structure and method for producing the same
JPS59211552A (en) Martensitic high cr steel with high toughness
CN110157985B (en) Steel plate for chord web arm of crawler crane and thermal hardening and tempering process performed on steel plate
JP2687037B2 (en) Gas shielded arc welding method
JPS61144284A (en) Production of clad material
JPH0237830B2 (en) 9CRR1MOKOYOSETSUYOWAIYA
JPS61223160A (en) Shape memory alloy
JPS62224493A (en) Wire for welding 9cr-2mo steel
JP2000239740A (en) MANUFACTURE OF Fe-BASE ALLOY MEMBER EXCELLENT IN STRESS CORROSION CRACKING RESISTANCE, AND Fe-BASE ALLOY MEMBER
JPH07126814A (en) Corrosion resistant alloy for heat exchanger tube for coal gasification plant
JPH02217443A (en) High chromium steel for trash incineration waste heat boiler tube