JPS5983730A - Recovery of minute amount of metal ion - Google Patents

Recovery of minute amount of metal ion

Info

Publication number
JPS5983730A
JPS5983730A JP57195029A JP19502982A JPS5983730A JP S5983730 A JPS5983730 A JP S5983730A JP 57195029 A JP57195029 A JP 57195029A JP 19502982 A JP19502982 A JP 19502982A JP S5983730 A JPS5983730 A JP S5983730A
Authority
JP
Japan
Prior art keywords
metal ion
metal ions
aqueous solution
chelate resin
solution containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57195029A
Other languages
Japanese (ja)
Other versions
JPS6133047B2 (en
Inventor
Takahiro Hirotsu
孝弘 廣津
Shunsaku Kato
俊作 加藤
Kazuhiko Sugasaka
菅坂 和彦
Kunihiro Ichimura
國宏 市村
Masako Sakuragi
桜木 雅子
Masao Suda
須田 昌男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57195029A priority Critical patent/JPS5983730A/en
Publication of JPS5983730A publication Critical patent/JPS5983730A/en
Publication of JPS6133047B2 publication Critical patent/JPS6133047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover a minute amount of a metal ion in good efficiency, by contacting chelate resin having a malonyl dihydroxum acid residue with an aqueous solution containing a minute amount of the metal ion as an adsorbing material. CONSTITUTION:Chelate resin having a malonyl dihydroxamic acid residue is used as an adsorbing material to be brought into contact with an aqueous solution containing minute amounts of a transition metal ion, a lanthanide group metal ion and an actinide group metal ion in such as seawater, mine waste water, the waste water of an atomic power plant or an aqueous solution containing used nuclear fuel to adsorb minute amounts of metal ions by the above mentioned adsorbing material. In the next step, said metal ions are desorbed by a mineral acid to be recovered in good efficiency. The above mentioned chelate resin is obtained by a method wherein insoluble resin having a malonic dialkyl ester residue is suspended in an org. solvent containing hydroxylamine to be reacted in the presence of an alcoholate catalyst such as methanol and the resulting reaction product is converted to hydroxamic acid.

Description

【発明の詳細な説明】 本発明は微量金属イオンの回収方法に関し、さらに詳し
くいえば、特殊なキレート樹脂を用いて、海水などの天
然水及び産業排水などから微量金属イオンを効率よく回
収する方法に関するものである。
[Detailed Description of the Invention] The present invention relates to a method for recovering trace metal ions, and more specifically, a method for efficiently recovering trace metal ions from natural water such as seawater and industrial wastewater using a special chelate resin. It is related to.

近年、有価金属資諒の有効利用及び環境汚染防止の両面
から、溶液中に希薄な状態で存在している金属イオンを
効率よく捕捉することが注目されており、その一つとし
て重金属イオン抽集用キレート樹脂が廃水処理をはじめ
広く実用に供されている。特に、最近に至って海水溶存
イオンの資源化や産業排水の高次利用の要望が高寸り、
それにともなって極めて高性能であり、かつ経済性に優
れたキレート樹脂の出現が丑たれている。
In recent years, attention has been paid to the efficient capture of metal ions that exist in diluted solutions in order to effectively utilize valuable metal resources and prevent environmental pollution. One of these methods is heavy metal ion extraction. Chelate resins are used in a wide range of practical applications, including wastewater treatment. In particular, recently there has been a growing demand for the recycling of seawater dissolved ions and the advanced use of industrial wastewater.
Along with this, there has been a desire for the emergence of chelate resins that have extremely high performance and excellent economic efficiency.

ところで、ヒドロキサム酸基(CJ’、 pKa = 
7.5〜9の弱酸性を有し、重金属イオンと安定なキレ
ート錯体を形成することが知られている。その重金属イ
オンとして、遷移金属でd:、例えばチタン、バナジウ
ム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ジ
ルコニウム、ニオブ、モリブテン、カドミウム、スズ、
ハフニウム、タングステン、水銀、ビスマスなどが、ラ
ンタニド系列ては、例えばセリウム、プラセオジム、坏
オゾム、ザマリウム、カドリニウム、ジスプロシウムな
どが、丑だアクチニド系列では、例えはグロトアクチニ
ウム、ウラン、イ・プツニウムなどが挙げられる。
By the way, hydroxamic acid group (CJ', pKa =
It has a weak acidity of 7.5 to 9 and is known to form stable chelate complexes with heavy metal ions. The heavy metal ions include transition metals such as titanium, vanadium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, niobium, molybdenum, cadmium, tin,
Hafnium, tungsten, mercury, bismuth, etc. are included in the lanthanide series, such as cerium, praseodymium, cyanosome, zamarium, cadrinium, dysprosium, etc.; Can be mentioned.

このようなヒドロキサム酸基の特性から、この官能基を
有する単量体が、溶媒抽出あるいは浮選法などに用いら
れ2、金属イオンの分離などに広く応用されている。
Due to the characteristics of the hydroxamic acid group, monomers having this functional group are used in solvent extraction or flotation methods,2 and are widely applied in the separation of metal ions.

本発明者らは、水溶液から微量金属イオンを回収するに
当り、前記のヒドロキサム酸基の特性を生かし、さらに
実用上広範に応用が可能であり、その上捕集分離性能が
高く、かつ経済性に優れた化合物を提供すべく鋭意研究
を重ねた結果、マロニルジヒドロキサム酸残基を有する
キレート樹脂がその目的を達成しうろことを見出し、こ
の知見に基づいて本発明を完成するに至った。
In recovering trace metal ions from an aqueous solution, the present inventors have made use of the characteristics of the hydroxamic acid group described above, and have found that it can be widely applied in practice, has high collection and separation performance, and is economical. As a result of intensive research in order to provide a compound with excellent properties, it was discovered that a chelate resin having a malonyl dihydroxamic acid residue could achieve the objective, and based on this knowledge, the present invention was completed.

すなわち、本発明は、微量金属イオンを含む水溶液から
該微量金属イオンを回収するに当り、吸着材トしてマロ
ニルジヒドロキサム酸残基を有するキレート樹脂を用い
ることを特徴と1′る微量金属イオンの回収力法を提供
するものである。
That is, the present invention is characterized in that, in recovering trace metal ions from an aqueous solution containing trace metal ions, a chelate resin having a malonyl dihydroxamic acid residue is used as an adsorbent. This method provides a recovery method.

本発明方法G′ζおいて吸着材として用いるキレート樹
脂は、式−0H(C0NHOH) 2  で表わされる
マロニルジヒドロキサム酸残基を有するものであって・
次のようにして製造される。
The chelate resin used as an adsorbent in the method G'ζ of the present invention has a malonyldihydroxamic acid residue represented by the formula -0H(CONHOH) 2 .
It is manufactured as follows.

すなわち、マロン酸ジアルキルエステル残基を有スる不
溶性樹脂をヒドロキシルアミンを含む有機溶媒に懸1濁
さぜ、メタノールやエタノールなとのアルコラ−トラ触
媒として反応させることにより、高い変化率でヒドロキ
サム酸化することができ、本目的のキレート樹脂が得ら
れる。
That is, by suspending an insoluble resin containing a malonic acid dialkyl ester residue in an organic solvent containing hydroxylamine and reacting it with methanol or ethanol as an alcoholatra catalyst, hydroxamate oxidation is carried out at a high conversion rate. The desired chelate resin can be obtained.

出発原料とじて用いられる前記の不溶性樹脂中のマロン
酸ジエステル残基においては、そのエステル基(は1つ
の炭素原子を介して結合しているため、相互のエステル
基の電子吸引効果によって高い反応性を示す。したがっ
て該マロン酸ジアルキルエステル残基を有する不溶性樹
脂は、例えばポリアクリル酸エステルの場合よシもヒド
ロキシルアミンと反応しやすく、このため金属イオン捕
捉能を有するヒドロキサム酸残基を高濃度で樹脂に導入
することができ、さらにこのマロニルジヒドロキサム酸
残基は、1つの炭素原子に2個の吸着官能基が結合した
構造を有するので、単位重量当りの吸着官能基量が大き
い。したがって本発明のキレート樹脂は・極めて優れた
金属イオン捕捉能を示す。
In the malonic acid diester residue in the above-mentioned insoluble resin used as a starting material, the ester group (is bonded via one carbon atom), so the electron attraction effect of the mutual ester groups results in high reactivity. Therefore, insoluble resins containing malonic acid dialkyl ester residues are more likely to react with hydroxylamine than, for example, polyacrylic esters, and therefore hydroxamic acid residues having metal ion-trapping ability are used in high concentrations. This malonyldihydroxamic acid residue has a structure in which two adsorption functional groups are bonded to one carbon atom, so the amount of adsorption functional groups per unit weight is large. The chelate resin of the invention exhibits extremely excellent metal ion trapping ability.

本発明のキレ−1・樹脂は粒状、膜状、繊維状などの任
意の形状にすることができるが、特に製造のしやすさや
吸着方式を考慮すると、粒状のものが望ましい。
The KIRE-1 resin of the present invention can be in any shape such as granules, films, and fibers, but granules are preferable, especially considering ease of manufacture and adsorption method.

本発明の回収方法においては、回分式又は通液式のどち
らの方式を用いてもよいが、特に希薄濃度の金属イオン
を吸着分離する目的のためには、大量の水浴液をこのキ
レート樹脂に接触させる必要があるので、通液式が望ま
しい。
In the recovery method of the present invention, either a batch method or a flow-through method may be used, but in order to adsorb and separate metal ions at a particularly dilute concentration, a large amount of water bath solution is applied to the chelate resin. Since contact is required, a liquid flow type is preferable.

本発明の微量金属イオンの回収方法はマロニルジヒドロ
キサム酸残基を有するキレート樹脂を用いることによっ
て、該樹脂に含まれるヒドロキサム酸基が前記の金属イ
オンと安定なキレート錯体を効率よく形成するだめ、例
えば海水中のウラン、モリブデン、/・す/ラムなどの
微量有用資源、放射性排水中の放射性元素、あるいは鉱
山排水や産業排水中の重金属イオンなどの除去回収に極
めて有用である。
The method for recovering trace metal ions of the present invention uses a chelate resin having malonyldihydroxamic acid residues, so that the hydroxamic acid groups contained in the resin efficiently form stable chelate complexes with the metal ions. For example, it is extremely useful for removing and recovering trace amounts of useful resources such as uranium, molybdenum, and/or rum in seawater, radioactive elements in radioactive wastewater, and heavy metal ions in mine and industrial wastewater.

また、該ヒドロキサム酸基は酸、アルカリに比較的に安
定であり、かつ吸着し7た重金属イオンは鉱酸によって
容易に脱着しつるので、本発明のキレ−1・樹脂は極め
て簡単な方法で再生することができる。
In addition, the hydroxamic acid group is relatively stable to acids and alkalis, and the adsorbed heavy metal ions are easily desorbed by mineral acids. Can be played.

次に実施例によって本発明をさらに詳細Cで説明する。The invention will now be explained in more detail C by way of examples.

参考例1 水素化ナトリウム0.729 (0,03モル)をジメ
チルホルムアミド70づに懸濁した液にマロン酸ジエチ
ルエステル5.6 f (0,035モル)F含trジ
ノチルホルムアミド溶液30m1f加えて、1時間、6
0℃に加温して反応を完全に行ったのち、いったん室温
にもどしてからジビニルベンゼンで架橋したクロロメチ
ル化ポリスチレン(C1含t18.9%) 29 (C
1換算0.01モル)を加え、80℃に加熱し24時間
反応させた。生成物の赤外線吸収スペクトル6−111
定の結果、マロン酸ジエチルエステル基が導入できてい
ることを確めた。また塩素の減少量から反応率を求めた
結果、反応率(d85.9%であった。
Reference Example 1 To a solution in which 0.729 (0.03 moles) of sodium hydride was suspended in 70 g of dimethylformamide, 5.6 f (0,035 moles) of malonic acid diethyl ester was added to 30 mL of a F-containing tr dinotylformamide solution. , 1 hour, 6
After heating to 0°C to complete the reaction, once returning to room temperature, chloromethylated polystyrene crosslinked with divinylbenzene (C1 content 18.9%) 29 (C
0.01 mol) was added thereto, and the mixture was heated to 80°C and reacted for 24 hours. Infrared absorption spectrum of product 6-111
As a result, it was confirmed that the malonic acid diethyl ester group had been introduced. In addition, the reaction rate was determined from the amount of decrease in chlorine, and the reaction rate (d) was 85.9%.

このポリマー]、 Of? (0,0982モル)を乾
燥ヘンゼ/中に約34時間浸漬したのち、ヒドロキシル
アミン(0,393モノ(・)のメタ7ノール溶液を加
え、水冷下で金属ナトリウム7.91 (0,344モ
ル)の1、00 meメタノール溶液を加え、さらに1
時間氷冷したのち室温にもどし70℃に加温して2日間
反応させた。
This polymer], Of? (0,0982 mol) was immersed in dry Henze for about 34 hours, then a methanol solution of hydroxylamine (0,393 mono(·)) was added, and the mixture was cooled with water with 7.91 mol of metallic sodium (0,344 mol). ) of 1,00 me methanol solution was added, and then 1
After cooling on ice for an hour, the mixture was returned to room temperature, heated to 70°C, and reacted for 2 days.

反応生成物は、氷冷水で洗浄したのち、氷冷した0、5
1tlHO1で処理してH+型とし、さらに洗液が中性
となる丑で水にた。その後メタノール洗浄したのち真空
乾燥した。赤外線吸収スペクトル測定の結果、エステル
基は完全に反応し、ヒドロキサム酸の他に一部カルボン
酸の生成が認められた。元素分析の結果、ヒドロキサム
酸の生成率は56.4係であった。
The reaction product was washed with ice-cold water and then washed with ice-cold water.
It was treated with 1 tl HO1 to make it H+ type, and then soaked in water so that the washing liquid became neutral. Thereafter, it was washed with methanol and then vacuum dried. As a result of infrared absorption spectrum measurement, the ester group was completely reacted, and in addition to hydroxamic acid, some carboxylic acid was observed to be produced. As a result of elemental analysis, the production rate of hydroxamic acid was 56.4%.

参考例2 水素化すl−IJウム8.4 f (0,35モル)を
テトラヒドロフラン125dK懸濁させたのち、マロン
酸ジエチルエステル80 f? (0,5モル) ’f
r: 溶解シたテトラヒドロフラン溶液75m1を加え
た。室温にもどしたのち、この混合溶液にクロロメチル
化スチレン45.759 (0,:3モル)を溶解した
テトラヒドロフラン30m1を滴下し、重合阻止剤とし
て硫黄粉末15′を添加後約1時間放置した。その後、
70℃で21時間反応を行った。反応終了後、テトラヒ
ドロフランを留去したのちこの反応生成濃縮液に酢酸エ
チル約200Td!、を加え、数回氷冷した1、NHO
lで洗浄し、さらに数回氷冷水で洗浄したのち無水硫酸
マグネシウムで1夜乾燥した。酢酸エチルを留去してか
ら硫黄粉末17を加え、真空蒸留して帆2mmHg、υ
1;点148〜150℃でビニルベノジルマロン酸ンエ
チルエステルを得た。反応率は55係であった。
Reference Example 2 After suspending 8.4 f (0.35 mol) of sodium hydride in 125 dK of tetrahydrofuran, 80 f? of diethyl malonate was added. (0,5 mol) 'f
r: 75 ml of dissolved tetrahydrofuran solution was added. After returning to room temperature, 30 ml of tetrahydrofuran in which 45.759 (0.3 moles) of chloromethylated styrene had been dissolved was added dropwise to the mixed solution, and after adding sulfur powder 15' as a polymerization inhibitor, the mixture was allowed to stand for about 1 hour. after that,
The reaction was carried out at 70°C for 21 hours. After the reaction is completed, tetrahydrofuran is distilled off, and about 200 Td of ethyl acetate is added to the reaction product concentrate. , and cooled several times on ice.
After washing with ice-cold water several times, it was dried over anhydrous magnesium sulfate overnight. After ethyl acetate was distilled off, sulfur powder 17 was added and vacuum distilled to 2 mmHg, υ
1; Vinylbenozyl malonate ethyl ester was obtained at a temperature of 148 to 150°C. The reaction rate was 55%.

安定剤としてポリビニルピロリドン0.255’を水4
0 ml’で溶解し、&:j:けしぐ妙)@丑ぜながら
前記のよう(lこし−こ得/こビニル入/ジルマロン酸
エステル7 me、 i’ヒ−)1\−・セー・21n
7!、溶媒としてトルLr−ン5 ml’ 、さl’)
 (、こ沈殿剤数7を加えた。重合開始剤トじてアゾヒ
ス1ノブ−1−ロニートリル帆17を加フイてか1[2
、窒(・’; 、、7jスで反1芯糸奮パージしながら
80υで2611.’7間反応させた。反絶、終了後粒
状の生成物記ろ別水洗し、たのイっ、ンノクスレー抽出
器を用(1)−Cアセト〕で1欣代浄後真、空・1(Z
・腺した。沈殿剤金添’Jll Lない’A15合、ゲ
ルポーラスな粒状生成物が、71L殿削としてメチルン
クロヘギザン、ンクロヘキーリノ−・し、ノルマルブタ
ノールなどを用いた場合不透Fすjなマクロし・テ1キ
ュラー型の粒状生成物°が母ら:llた。なおこニア1
らの生成物の赤外線吸収スペクトル測定の結果、5渚例
1の協会と同様のスベク1)Lが得り゛)上、共重合体
であることが認めらJtだ。
As a stabilizer, add 0.255' of polyvinylpyrrolidone to 4 ml of water.
Dissolve in 0 ml' and stir as described above. 21n
7! , toluene (5 ml', 1') as a solvent
(7 precipitants were added to the polymerization initiator, 1 knob of Azohis, 17 of Ronitrile was added, 1 [2
The reaction was carried out at 80υ for 2611.'7 while purging with nitrogen (・'; , 7j) for 2611.'7. After the reaction was completed, the granular product was filtered and washed with water. After purifying the vacuum cleaner with (1) -C acetate], remove the vacuum, empty and 1 (Z
・I had a gland. When precipitant gold is added, the gel porous granular product is 71L precipitated with methylchlorohexanes, chlorohekilinol, etc., and when n-butanol is used, it becomes opaque. A granular product of one-dimensional type was produced. Naoko Near 1
As a result of infrared absorption spectrum measurement of these products, the same spectrum as that of Example 1 was obtained, and it was confirmed that the product was a copolymer.

6考fall 1と同じ方)去で、ヒドロキザム酸1ヒ
全行い、7ニピト「コギャーム酸型ギレート樹脂を得た
。5実施例1 参考例】で得た/ヒドロキサム酸型キレート樹脂10 
ml!f トルエン次にメタノールで浸せぎ処理し、水
洗したのち、内径3crnlのカラムに充てんし、天然
ろ過嵜水を温度25土2℃、流速65 ml。
6) The same method as in 1) was carried out with hydroxamic acid 1 to obtain a cogyamic acid type chelate resin.
ml! f Toluene After soaking with methanol and washing with water, fill a column with an inner diameter of 3 crnl, and add natural filtered water at a temperature of 25 °C and a flow rate of 65 ml.

/min (SV = 390 hr ’ )で上向流
て通水し7、ウラン吸着実1験を行った。所定時間ごと
に吸着セラとジ出し、ウランの吸着量をケイ先広で求め
た。
Water was passed upward at a rate of 1/min (SV = 390 hr')7, and a uranium adsorption experiment was conducted. At predetermined intervals, the adsorption cellar was removed and the amount of uranium adsorbed was determined using a wide point tip.

その結果全表及び1図シこ示す。The complete table and one figure are shown as the results.

なお本樹脂に吸着きれたウランは鉱酸(塩酸 硫酸)V
?:、より容易に脱着された。
The uranium adsorbed to this resin is mineral acid (hydrochloric acid, sulfuric acid) V.
? :, more easily attached and detached.

実施例2 実施例1て示した条件で、26日間海水から吸着実験を
行つ/こ/ヒ10キザム酸型キレート樹脂を水洗し、J
4+(空乾燥したのち、ケイ光X線法で吸着した元素の
定性分り1をおこなった。その結果、ウラノ以夕(にコ
・・ル[・、ニッケル、銅、亜鉛、ストロンチウムが金
属とし7て検iLtされた。本発明の樹脂が、第−遷移
金属及びウラン(で対して高い選択性をイ1し、特に潅
水からウランなどを回収できること&′i明りかである
Example 2 An adsorption experiment was carried out from seawater for 26 days under the conditions shown in Example 1.
After drying in the air, the adsorbed elements were qualitatively analyzed using fluorescent X-ray method. As a result, nickel, copper, zinc, and strontium were considered to be metals. It is clear that the resin of the present invention exhibits high selectivity for transition metals and uranium, and is particularly capable of recovering uranium from irrigation water.

参考例2でイ4トだギレート]酊脂もは11回様の金属
吸着性能を示した。
In Reference Example 2, the metal adsorption performance was 11 times as high as that of 11 times.

【図面の簡単な説明】[Brief explanation of drawings]

図(弓実施例1(・′こおける吸着時間とウラン吸着量
との関係を示すウランである。 a)J−着 時 IVI   (日ン 第1頁の続き (7才発 明 者 須田昌男 茨城県筑波郡谷田部町東1丁目 1番4号工業技術院繊維高分子 材料研究所内
Figure (Bow Example 1) shows the relationship between the adsorption time and the amount of uranium adsorbed in the uranium. Fiber and Polymer Materials Research Institute, Agency of Industrial Science and Technology, 1-1-4 Higashi, Yatabe-cho, Tsukuba-gun, Prefecture

Claims (1)

【特許請求の範囲】 1 9量金属イオンを含む水溶液から該微量金属イオン
を回収するに当り、吸着材としてマロニをジヒドロキサ
ム酸残基を有するキレート樹脂を用いることを特徴とす
る微量金属イオンの回収方法。 2 微量金属イオンを含む水溶液が、海水、鉱山排水、
原子力発電所排水、使用済核燃料を含む水溶液である特
許請求の範囲第1項記載の方法。 3 微量金属イオンが遷移金属、ランクニド系列、アク
チニド系列の金属イオンである特許請求の範囲第1項又
は第2項記載の方法。
[Scope of Claims] 1. A method for recovering trace metal ions, characterized in that a chelate resin having a dihydroxamic acid residue and maloni is used as an adsorbent in recovering the trace metal ions from an aqueous solution containing the metal ions. Collection method. 2. Aqueous solutions containing trace metal ions can be used in seawater, mine drainage,
The method according to claim 1, wherein the aqueous solution contains nuclear power plant wastewater and spent nuclear fuel. 3. The method according to claim 1 or 2, wherein the trace metal ion is a transition metal, ranknide series, or actinide series metal ion.
JP57195029A 1982-11-05 1982-11-05 Recovery of minute amount of metal ion Granted JPS5983730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57195029A JPS5983730A (en) 1982-11-05 1982-11-05 Recovery of minute amount of metal ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57195029A JPS5983730A (en) 1982-11-05 1982-11-05 Recovery of minute amount of metal ion

Publications (2)

Publication Number Publication Date
JPS5983730A true JPS5983730A (en) 1984-05-15
JPS6133047B2 JPS6133047B2 (en) 1986-07-31

Family

ID=16334344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57195029A Granted JPS5983730A (en) 1982-11-05 1982-11-05 Recovery of minute amount of metal ion

Country Status (1)

Country Link
JP (1) JPS5983730A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346164A (en) * 1993-06-08 1994-12-20 Agency Of Ind Science & Technol Separation of niobium and tantalum
JP2000507308A (en) * 1996-03-26 2000-06-13 キャボット コーポレイション Recovery of metal value
CN103012677A (en) * 2011-09-23 2013-04-03 中南大学 Preparation method of ion imprinted hydroxamic acid chelate resin

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218090Y2 (en) * 1985-02-08 1990-05-22
JPH0295362U (en) * 1989-01-17 1990-07-30

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346164A (en) * 1993-06-08 1994-12-20 Agency Of Ind Science & Technol Separation of niobium and tantalum
JP2000507308A (en) * 1996-03-26 2000-06-13 キャボット コーポレイション Recovery of metal value
CN103012677A (en) * 2011-09-23 2013-04-03 中南大学 Preparation method of ion imprinted hydroxamic acid chelate resin

Also Published As

Publication number Publication date
JPS6133047B2 (en) 1986-07-31

Similar Documents

Publication Publication Date Title
Vernon Chelating ion exchangers-the synthesis and uses of poly (hydroxamic acid) resins
GB2148735A (en) A process for separating and purifying metallic elements in displacement chromatography
JP3822329B2 (en) Fiber having metal chelate-forming ability, process for producing the same, and metal ion trapping method using the fiber
CN114044844B (en) Chelate resin and preparation method and application thereof
JPS5983730A (en) Recovery of minute amount of metal ion
CN111019147A (en) Metal organic framework adsorbent, one-step preparation method and application thereof
TWI748288B (en) Methods for extraction and recovery of au, pt, re, ru, rh and pd from aqueous acidic solutions and chelating fibers used therefor
JPS56100105A (en) Recovering and treating method for waste hydrochloric acid
JPS6248725A (en) Novel chelate resin and production thereof
US6375852B1 (en) Calix [4] arene polymer, method of manufacturing the same and method of separating divalent lead ion by use of the same
CN103657607B (en) A kind of metal ion surface carbonization graft type polymeric adsorbent and preparation method thereof
JPS6152164B2 (en)
JP6933360B2 (en) Antimony separation and recovery methods
JPH0230368B2 (en)
JP5803136B2 (en) Amide-containing sulfide compound, and production method and use thereof
JPH0239452B2 (en) JUKINZOKUNOKAISHUHOHO
CN117263838A (en) Preparation method and application of acid-resistant heavy metal trapping agent with disulfide anions
JPS63205140A (en) Adsorbent for nitrogen monoxide and method for separating and removing nitrogen monoxide
JPS6023176B2 (en) Copper removal from nickel and/or cobalt containing solutions
JPH0313170B2 (en)
JPS621297B2 (en)
JP2005230664A (en) Strontium separating method
JPS5834180B2 (en) Heavy metal scavenger and its manufacturing method
JPS5910723B2 (en) Method for producing macrocyclic hexamines containing polystyrene
CN117362670A (en) Metal organic framework material based on octatetrathiophene, preparation method and application thereof in heavy metal adsorption