JPS598367A - Active matrix substrate - Google Patents

Active matrix substrate

Info

Publication number
JPS598367A
JPS598367A JP11756682A JP11756682A JPS598367A JP S598367 A JPS598367 A JP S598367A JP 11756682 A JP11756682 A JP 11756682A JP 11756682 A JP11756682 A JP 11756682A JP S598367 A JPS598367 A JP S598367A
Authority
JP
Japan
Prior art keywords
dust
substrate
resist
gate
gate wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11756682A
Other languages
Japanese (ja)
Inventor
Takeo Yamada
山田 彪夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP11756682A priority Critical patent/JPS598367A/en
Publication of JPS598367A publication Critical patent/JPS598367A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent disconnection of gate lead and data lead due to a flaw caused by dust or pattern by partly correcting the wirings before the etching of pattern. CONSTITUTION:After depositing a polycrystalline silicon film 12 which becomes a gate wiring material, phosphor is thermally diffused on the principal surface of substrate which has completed the pre-treatment. Dust attached to the surface can be removed by washing etc. but dust or flaking attached before or during formation of a silicon film 12 enters the film and is perfectly fixed. In this case, such dust can no longer be removed. After the resist 6 is applied on the substrate for the gate wiring, the laser beam is selectively irradiated to the surrounding 7 of defective part 8 which has been found previously and the resist of such part is hardened. 9 is the position of expected gate lead. Thereafter, normal patterning is carried out and a gate wiring is formed.

Description

【発明の詳細な説明】 本発明はソーダガラス、ホウケイサンガラス、あるいけ
石英板等の透明基板上に少なくとも多結晶シリコンある
いはアモルファスシリコンを主構成部玉としてなるアク
ティブマトリクス基板に関するものであり、さらKuマ
マトリクス状形成されてなるデータ線とゲート線の欠陥
修正に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an active matrix substrate comprising at least polycrystalline silicon or amorphous silicon as a main component on a transparent substrate such as soda glass, borosilicate glass, or quartz plate; This invention relates to defect correction of data lines and gate lines formed in a Ku matrix shape.

近年、情報化社会といわれる中でコンピュータ関連機器
の発展Kd目ざましいものがあり、これにともない表示
装置も従来からの0RTKかわるものとして平面ディス
プレーの開発も盛んに行なわれている。特に平面ディス
プレーでは液晶を用い°たよのが低電力、低電圧ならび
に受光タイプの見易すさの面も含めて時計電卓にはもと
より家電製品、自動車用パネルとしても巾広く用いられ
て鍍ている。
In recent years, there has been a remarkable development of computer-related equipment in the so-called information society, and along with this, flat displays have been actively developed as display devices to replace the conventional 0RTK. In particular, flat displays using liquid crystals are widely used in clock calculators, home appliances, and automobile panels due to their low power consumption, low voltage, and easy-to-read light-receiving type.

■、現在CRTに替る安価な平面ディスプレーとして注
目されているものに薄膜トランジスタのアクティブマト
リクスによって液晶を駆動する方式が検討されている。
(2) Currently, a method of driving a liquid crystal using an active matrix of thin film transistors is being considered as a method that is attracting attention as an inexpensive flat display to replace the CRT.

これは透明基板上にスイッチング用膜薄トランジスタ回
路をマトリクス状に形成し、この基板と他の透明ガラス
板間に液晶を封入した画像表示用ディスプレーパネルで
ある。
This is a display panel for displaying images in which thin film transistor circuits for switching are formed in a matrix on a transparent substrate, and liquid crystal is sealed between this substrate and another transparent glass plate.

従来報告されている一般的な薄膜シリコントランジヌタ
の構造は第1図の如く、先ず透明基板1上に多M、f&
シリコンある匹はアモルファスシリコン等の薄膜シリコ
ン2を形成後ホトエツチングによりトランジスタ形成部
のみを残し仙の薄膜シリコンを除去量る。次に前バー薄
膜シリコン表面に酸化@3を熱酸化あるいけOVD方式
にて形成し、防酸化膜十にはつづけてゲート線となる薄
膜シリコンを堆積(ホトエツチングにより配線を形成す
る。ゲート線形成にあたっては不純物を含有する薄膜シ
リコンを直接堆積する方法あるいけ薄膜シリコン堆積移
に不純物を熱拡散し配線抵抗を下げる工夫がされてい石
The structure of a conventionally reported general thin film silicon transistor is as shown in FIG.
For silicon, after forming a thin film 2 of amorphous silicon or the like, photoetching is performed to remove the remaining thin film silicon, leaving only the transistor formation area. Next, oxide@3 is formed on the front bar thin film silicon surface by thermal oxidation or OVD method, and on the oxidation preventive film 1, thin film silicon that will become the gate line is deposited (wiring is formed by photoetching. Gate line formation One approach is to directly deposit a thin film of silicon containing impurities, and a method has been devised to lower interconnect resistance by thermally diffusing impurities during the thin film deposition process.

次にイオン打込みを前記ゲート線をマスクに行ないンー
ス・ドレイン部を形成後基板主面上に絶縁膜4を堆積す
る。
Next, ion implantation is performed using the gate line as a mask to form a source/drain portion, and then an insulating film 4 is deposited on the main surface of the substrate.

次にホトエツチングによりコンタクトホールを開孔した
後データ線となる金属配線5を形成する。
Next, contact holes are formed by photoetching, and then metal interconnections 5 that will become data lines are formed.

以上の如く薄膜を用いたアクティブマトリクス基板の製
造過稈においては膜の堆積ホトエツチングさらには拡散
イオン打込み等の多くの工程を含んでおり製造中に発生
するゴミあるいはフレーキングでらにπキズ等が基板の
品質あるいけ歩留りを犬評く左右することになる。
As mentioned above, the manufacturing process of active matrix substrates using thin films includes many steps such as film deposition, photo-etching, and diffusion ion implantation, so that dust or flaking generated during manufacturing may cause π scratches, etc. The quality and yield of the board will be greatly affected.

特にディスプレーの場合前P欠陥によって発生するゲー
ト線あるいけデーター線の断線は画面上Vc1g欠陥と
して表示されてしまうため欠陥ツクネルとして使用不可
部となる。すなわちパネルの製造歩留りをいかに向上ζ
せるかは、製造中における欠陥の発生を完全にゼロにす
るかあるいけ手□段をこうじて配線を修正するかの二つ
の方式しかない。
Particularly in the case of a display, a disconnection of a gate line or data line caused by a front P defect is displayed as a Vc1g defect on the screen, and becomes an unusable part as a defective tunnel. In other words, how to improve panel manufacturing yieldζ
There are only two ways to do this: completely eliminate the occurrence of defects during manufacturing, or take steps to correct the wiring.

しかし大量生産時において欠陥の発生を皆無とすること
は不可能でありおのずと後者の修正手段が重要視される
ことになる。
However, it is impossible to completely eliminate defects during mass production, and naturally the latter method of correction becomes more important.

本発明は製造中に発生するゴミあるいはパターンのキズ
により生ずるゲート線およびデータ線の断線を防止する
手段を提供するものであり断線による線欠陥を皆無とす
るものでありパネルの歩留り向上及びコスト低減に犬き
く寄与するものである。
The present invention provides a means for preventing disconnections of gate lines and data lines caused by dust or pattern scratches generated during manufacturing, and eliminates line defects due to disconnections, improving panel yield and reducing costs. This is something that contributes greatly to dog hearing.

次に本発明の詳細を実施例に基ずいて説明する。  。Next, details of the present invention will be explained based on examples.  .

実施例−1 パネル形成Vci−いては配線形成としてゲート線の形
成およびデーター線の形成の二つの配線形成工程が必弗
となるが両者とも[極膜の形成工程と該me膜をホトエ
ツチングする工程とからなり基本的Vrは同じ方式と矛
えてかまわない。そこで本′$施例VrおHる胛明でけ
ゲート線の形成方法上その修正手段について詳細VC訝
9明する。
Example-1 Panel Formation Vci- In order to form wiring, two wiring forming steps are required: forming a gate line and forming a data line, but both of them are [a step of forming an electrode film and a step of photo-etching the ME film]. Therefore, the basic Vr may conflict with the same method. Therefore, in this embodiment, detailed VC explanations will be given regarding the method of forming the gate line and the means for correcting it.

f′R2図の如く、前工程の終了した基板主面上にゲー
ト配絆材となる多結晶シリコン膜12を堆積したのちリ
ンを熱拡散する6表面上に付着したゴミ類は洗浄等によ
り除去可能であるが前記多結晶シリコン膜形成前あるい
け形成中に付着したゴミあるいはフレー、キングは第3
図の如く膜中に入り込み完全に固着され除去不可能と乙
「っでいる。
As shown in Fig. f'R2, after depositing a polycrystalline silicon film 12 as a gate bonding material on the main surface of the substrate where the previous process has been completed, phosphorus is thermally diffused.6 Debris adhering to the surface is removed by cleaning etc. Although it is possible, dust, flakes, and kings attached before or during the formation of the polycrystalline silicon film are
As shown in the figure, it has entered the membrane and is completely fixed, making it impossible to remove.

このためこねらの欠陥がゲートライン上に発生した場合
はその殆んどが断線につながることになる。そこで第2
図の如く、基板上にゲート配線のためのレジスト6を塗
布したのちあらかじめ発見された欠陥部8の周囲7に第
3図の如く選択的にレーザー光を拙射し、その個所のレ
ジストを硬化せしめる。9は予想−れるゲート線の位情
である。
Therefore, if a kneading defect occurs on the gate line, most of the defects will lead to disconnection. So the second
As shown in the figure, after applying a resist 6 for gate wiring on the substrate, a laser beam is selectively applied to the area 7 around the defective area 8 that has been discovered in advance, as shown in Figure 3, to harden the resist at that location. urge 9 is the expected state of the gate line.

その後、正規のパターニングを行ないゲート配線の形成
を行なら。なお前記方式にてかりに隣り合った配線同志
がショートした場合はレーザー光を用いてその個所を修
正することは容易である。
After that, regular patterning is performed to form gate wiring. Note that if adjacent wirings are short-circuited using the above method, it is easy to correct the short-circuit using a laser beam.

この方式はデーター線の修正にも全く同じ方式にて応用
が可能なことは云うまでもない。
It goes without saying that this method can also be applied to data line correction in exactly the same manner.

実施例−2 実施例−Iにおいてはレジスト形成直後に前もってすべ
ての欠陥個所を修正する方式をとっているが、本実施例
ではゲートラインのパターニング(州像士り)にて検査
を行ないIfI線に直接起因する伊所のみを対象として
、修正する手段を提供するものである。第4図の如く、
すなわちチ〃像上りにて再度レジストを塗布した後実施
例−1と同様の手段にて欠陥部のみその個所を避けてパ
ターニングし再度明像する方式である。10は初期のゲ
ートラインパターン、11は熱硬化婆せたレジスト部で
おる。この方式ではホトエッチングエ稈が追加されると
いう欠点があるが確実性が有り他のラインに影響なく完
全I/c断線を防止することが可能となる。
Example-2 In Example-I, a method was adopted in which all defective locations were corrected in advance immediately after resist formation, but in this example, inspection was performed during gate line patterning (state patterning). This provides a means to correct only those defects that are directly caused by. As shown in Figure 4,
That is, after applying the resist again after completing the image, patterning is performed using the same means as in Example 1, avoiding only the defective areas, and then clear imaging is performed again. 10 is an initial gate line pattern, and 11 is a heat-cured resist portion. Although this method has the disadvantage of adding a photo-etched culm, it is reliable and can prevent complete I/C disconnection without affecting other lines.

リ上の如く、本発明は製造過程において発生するゴミあ
るいけパターンキズ等によって生ずる断線ヲパターンの
エツチング前に配線の一部修正をほどこすことによ抄究
全f防止するものであり歩留りの向上ζらにはパネルコ
ストの低減及び画質向上に太いに寄与するものであス。
As shown above, the present invention prevents wire breakage caused by dust or pattern scratches that occur during the manufacturing process by partially correcting the wiring before etching the pattern, thereby improving yield. ζ and others greatly contribute to reducing panel costs and improving image quality.

11お実施例においては欠陥の修正方法としてレーザー
光を用いてレジストを硬化する方式をとったが仙の手段
として電子ビームを用いて露光する方式あるいはX線に
よるものと手段1’を創々者先られるが結果として欠陥
修正が可節であればどの方式を用いても本発明の目的を
逸脱するものではtrい。
11 In the embodiment, a method of curing the resist using a laser beam was used as a method for correcting defects, but as an alternative method, the creator of Method 1' used a method of exposure using an electron beam or a method using X-rays. However, as long as defect correction is possible as a result, no matter which method is used, it does not deviate from the purpose of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の製造方式による透明基板上に形成濱ねた
薄膜シリコントランジスタのff’f1面構造である。 第2図は本発明を胛明寸Z、ため製造過程における薄膜
トランジスタの断面構造である。 第3図は本発明の製造途中における基板平面略図である
。 第4囮は本発明の製造途中におはる基板平面略図である
。 1・・・・・・透明基板 2・・・・・・薄膜シリコン 6・・・・・・酸化膜 4・・・・・・絶縁膜 5・・・・・・金属配線 6・・・・・・レジスト 7・・・・・・熱硬化したレジスト部 8・・・・・・欠陥部 9・・・・・・ゲート線の予習位置 10・・・・・ゲート線 11・・・・・・熱硬化したレジスト 12・・・・・・多結晶シリコン膜 以  上 出願人 株式会社 諏訪精工舎
FIG. 1 shows the ff'f1 plane structure of a thin film silicon transistor formed on a transparent substrate using a conventional manufacturing method. FIG. 2 shows a cross-sectional structure of a thin film transistor in the manufacturing process for the purpose of implementing the present invention. FIG. 3 is a schematic plan view of a substrate in the middle of manufacturing according to the present invention. The fourth decoy is a schematic plan view of a substrate during manufacturing of the present invention. 1... Transparent substrate 2... Thin film silicon 6... Oxide film 4... Insulating film 5... Metal wiring 6... ...Resist 7...Thermoset resist portion 8...Defect portion 9...Gate line preparation position 10...Gate line 11...・Thermoset resist 12...Polycrystalline silicon film or more Applicant: Suwa Seikosha Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] データー線とゲート線のマトリクスからなるアクティブ
マトリクス基板において前記データー線及びゲート線の
一部が基板主面上の欠陥個所を避けて、形成されている
ことを特徴とするアクティブマトリクス基板。
1. An active matrix substrate comprising a matrix of data lines and gate lines, wherein some of the data lines and gate lines are formed avoiding defective areas on the main surface of the substrate.
JP11756682A 1982-07-06 1982-07-06 Active matrix substrate Pending JPS598367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11756682A JPS598367A (en) 1982-07-06 1982-07-06 Active matrix substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11756682A JPS598367A (en) 1982-07-06 1982-07-06 Active matrix substrate

Publications (1)

Publication Number Publication Date
JPS598367A true JPS598367A (en) 1984-01-17

Family

ID=14714981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11756682A Pending JPS598367A (en) 1982-07-06 1982-07-06 Active matrix substrate

Country Status (1)

Country Link
JP (1) JPS598367A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292643A (en) * 1990-11-12 1992-10-16 Casco Nobel Ab Foaming thermoplastic microsphere and production and usage thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292643A (en) * 1990-11-12 1992-10-16 Casco Nobel Ab Foaming thermoplastic microsphere and production and usage thereof

Similar Documents

Publication Publication Date Title
KR100931874B1 (en) TFT-LCD Array Board
JP2003167258A (en) Liquid crystal display device
KR100910445B1 (en) Method for manufacturing array substrate
KR20000076864A (en) Method for manufacturing an active element array substrate
GB2172732A (en) Liquid crystal display devices
JP3480757B2 (en) Panel fabrication method
JP2776360B2 (en) Method of manufacturing thin film transistor array substrate
JP2001264798A (en) Active matrix substrate and optical modulation device using the same
JPH0823102A (en) Electronic component and manufacture thereof
JPS598367A (en) Active matrix substrate
JPH0695186B2 (en) Thin film transistor array
JP2000206560A (en) Active matrix type liquid crystal display device
JPH0481820A (en) Active matrix substrate and liquid crystal display element using the same
KR101002470B1 (en) Method for manufacturing lcd
JPH11119251A (en) Production of active matrix substrate
JPH04269837A (en) Manufacture of thin-film transistor
KR20000002472A (en) Method of making liquid crystal display device
JPH0797191B2 (en) Active matrix cell and manufacturing method thereof
JP2590360B2 (en) Method of manufacturing thin film transistor panel
KR100289654B1 (en) Liquid crystal display device with a vertical thin film transistor and its manufacturing method
JP4405004B2 (en) Method for manufacturing thin film transistor array
KR100978256B1 (en) Liquid crystal display device and method of fabricating the same
JPH11218784A (en) Liquid crystal display device and manufacture of active matrix substrate for liquid crystal display device
JPS60257171A (en) Manufacture of thin-film semiconductor element
TW539888B (en) Low-temperature polysilicon TFT-LCD structure and the manufacturing method thereof