JPS5983277A - Two-dimensional information transmitting system - Google Patents
Two-dimensional information transmitting systemInfo
- Publication number
- JPS5983277A JPS5983277A JP19296682A JP19296682A JPS5983277A JP S5983277 A JPS5983277 A JP S5983277A JP 19296682 A JP19296682 A JP 19296682A JP 19296682 A JP19296682 A JP 19296682A JP S5983277 A JPS5983277 A JP S5983277A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- propagation
- information
- circuits
- signal line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Multi Processors (AREA)
- Image Processing (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、二次元演算器における情報伝播方式に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an information propagation method in a two-dimensional arithmetic unit.
二次元平面上の情報伝播は、パターン認識技術の基本を
なすものであり、従来その最も単純なものである水平、
車面、2つの対角方向の情報伝播(正方格子量子化空間
の場合)のみがもっばら実用に供されてきた。しかしな
がら、これでは不充分であり、例えは第1図(a)のよ
うに始点Sかも終点Eの間が水平方向の線分の場合は問
題がないが、同図(b)に示すように少しでも頷いた水
平線では、この単純な情報伝播ではときれときれのもの
となってしまう。もつとも、同図(b)&C示すような
単に1つの線が白地上に存在する場合には、線の輪郭を
1はつということで情報の伝播を行なうことができるが
、同図(c)に示されるように線が入り(んでいるよう
な場合には、欲する線上の伝播が困難になる。これらの
問題点を以下に具体的に説明する。Information propagation on a two-dimensional plane forms the basis of pattern recognition technology, and conventionally the simplest one is the horizontal,
In the vehicle plane, only information propagation in two diagonal directions (in the case of a square lattice quantization space) has been put to practical use. However, this is insufficient; for example, if the line segment between the starting point S and the ending point E is horizontal, as shown in Figure 1(a), there is no problem, but as shown in Figure 1(b), If there is even a slight nod to the horizon, this simple information propagation will end up being a complete mess. However, if there is only one line on a white background as shown in (b) & C of the same figure, information can be propagated by using one outline of the line, but as shown in (c) of the same figure. If the lines are intersected as shown in the figure, it becomes difficult to propagate along the desired line.These problems will be explained in detail below.
まず、各演算器間の配線問題について説明すると、第2
図は正方格子状に配列された演算器の隣接した格子(近
傍)との配線図であり、同図にI)は3×3の範囲内の
8点との配線図、同図(1))はそれに5×5の範囲内
の桂馬方向を加えた配線図である。同図(a)、 (b
)共に1点に接続されている線の本数は16木であるが
、近傍の範囲を広げると配線が複雑九なることがわかる
。従って通常、演算は限られた範囲(局所的)の近傍と
の間で各点独立に(並列的)行ない、より広い範囲(大
局的)の情報はその演算の繰り返しで徐々に寄せ集める
という方式がとられる。これを繰り返し形局所並列演算
とよぷ。First, to explain the wiring problem between each arithmetic unit, the second
The figure is a wiring diagram of the arithmetic units arranged in a square lattice with adjacent grids (nearby areas). ) is a wiring diagram with the Keima direction within the 5x5 area added to it. Figures (a) and (b)
) The number of wires connected to one point is 16 trees, but if you expand the neighborhood, you will see that the wiring becomes 9 more complex. Therefore, normally, calculations are performed independently (in parallel) at each point within a limited range (locally) in the vicinity, and information about a wider range (globally) is gradually gathered by repeating the calculations. is taken. This is called iterative local parallel operation.
しかしながら、このように近傍との配線の方向性(演算
の方向性)を限定した場合(第2図(2)の場合は8方
向)、情報をその中間方向(情報の方向性)に伝播する
事は非常K /41Gしい問題となる。However, when the directionality of wiring with the neighborhood (direction of calculation) is limited in this way (eight directions in the case of Figure 2 (2)), information is propagated in the intermediate direction (direction of information). This becomes a very serious K/41G problem.
これを第1図の線の抽出とは別の例、すなわちある白地
の1点がどのように周囲黒地に囲われているか(これを
”閉じパ状態と称す)、抽出する例を用いながら説明す
る。This will be explained using an example different from the line extraction in Figure 1, in which how a point on a white background is surrounded by surrounding black background (this is called a "closed state"). do.
いま、二次元上の1点Zの隣接点を第3図の方向の定義
に基づき隣接点へのベクトルr1を用いて第4図のよう
に表現する。Now, the adjacent point of one point Z on two dimensions is expressed as shown in FIG. 4 using the vector r1 to the adjacent point based on the definition of the direction shown in FIG.
次忙、点2における情報の表現要素として1)(Z)を
用いる。また、この表現は繰り返しの時刻tを明示する
必要がある時p (7; t ) 、’要素が複数個あ
る時はp <z>、k=o、1・・・・・・で表わす。1) (Z) is used as the expression element for information at point 2. In addition, this expression is expressed as p (7; t ) when it is necessary to specify the repetition time t, and as p <z>, k=o, 1, etc. when there are multiple elements.
また、方向に関する演算は全て8を法として行なわれる
。すなわち7 +1 (mod 8 )=0. 2−3
(mail 8 ) = 7である。Further, all calculations regarding directions are performed modulo 8. That is, 7 + 1 (mod 8) = 0. 2-3
(mail 8) = 7.
ここで、繰り返しの時刻t=0における初期値として二
次元図形の点2の濃度に応じてを与え、こねに次の繰り
返し演:i(t:1.2.3・・・・・・・・・)
P<Zr t )=max(P(Z; t I L
P (Z +rh t I ))−・alをMljす
ど、右辺第2項によりi方向の値” 1 ”が伝播され
、右辺第1項より、一度伝播された値”1″は変化しな
いから、この演算により方向1に黒点(1″)があるか
どうか、つまり”閉じているかパどうかを伝播する。一
般には、周囲の1(i=0〜7)について以上の鼠を求
める事により”閉じた状態パが近似的九推定できるので
あるが、ここでは議論を筒車化するためi方向のみに限
っている。Here, the initial value at the repetition time t = 0 is given according to the density of point 2 of the two-dimensional figure, and the following repetition performance: i (t: 1.2.3... ...) P<Zr t )=max(P(Z; t I L
When P (Z +rh t I ))-・al is Mlj, the value "1" in the i direction is propagated by the second term on the right side, and from the first term on the right side, once the value "1" is propagated, it does not change. , This operation propagates whether there is a black point (1″) in direction 1, that is, whether it is “closed” or not. In general, by finding the above numbers for the surrounding 1 (i = 0 to 7), it is possible to approximately estimate 9 closed states, but here, in order to simplify the discussion, we will limit it to only the i direction. ing.
なお、wc1図に示した線上の伝播のためには、新たに
距離を表わす量1) (z r t )を導入し、次の
ようにすればよい。すなわち、
この例に見られる如く、閉じ状態の伝播の方が距離とい
5スカラー、iAが入っていないことで議論が簡単にな
る。しかし、以下の議論は上述の注意の下で、線上の伝
播に直接適用できる。Note that for propagation on the line shown in the wc1 diagram, a new quantity 1) (z r t ) representing distance may be introduced and the following procedure may be performed. That is, as seen in this example, the discussion of closed state propagation is easier because the distance does not include 5 scalars and iA. However, the discussion below is directly applicable to propagation on a line, with the caveats noted above.
上記の例は、近傍の方向性と情報の方向性(1=0.1
.2.・・・・・・・・・7)が一致している例である
が、これが一致しない場合、例えば桂馬(jan” L
=266°)方向からの情報の伝播九ついて考えてみる
。In the above example, the directionality of the neighborhood and the directionality of information (1=0.1
.. 2.・・・・・・・・・7) is a match, but if this does not match, for example, Keima (jan” L
Let us consider the propagation of information from the direction (=266°).
いま方向1とi + 1の中間方向から値″I nを伝
播するため第(2)式を変形して
Jフ (Z; t )
:=max(P(ZyL t)、P(Z十r+ 、
t ’LP CZ+rl+□;t−1)) ・・川
・・・・・旧・印・・・・(5)とすると、第5図のよ
うに、i方向とi+L方向(図の場合方向+01と11
′)の間のどこかに”l“があればI)(Z)=1にな
り、必ずしもちようどiとi + 1の中間方向から伝
播された情報ではなくなる。Now, in order to propagate the value "I n from the intermediate direction between direction 1 and i + 1, we transform equation (2) and write ,
t'LP CZ+rl+□;t-1)) River... Old Mark... (5) As shown in Figure 5, the i direction and i+L direction (direction +01 in the figure) and 11
If there is "l" somewhere between '), I)(Z)=1, and the information is not necessarily propagated from the intermediate direction between i and i + 1.
また、同じく第(2)式を
P(Z;t)=max、(P(Z;t 1)4m1n
(P(ZrrI;t −1)、 )’(Z→−r++r
;t−t ))−(Glと変形すると、今度はiとi
千1方向全てVC,1゛。Similarly, equation (2) can be expressed as P(Z; t)=max, (P(Z; t 1)4m1n
(P(ZrrI;t −1), )'(Z→−r++r
;t-t ))-(Gl, then i and i
VC, 1゛ in all directions.
がないと1’ (Z )が1′にならない。Without it, 1' (Z) will not become 1'.
コノように、演算の方向性ど情惜の方向性とがずれた場
合”情報の拡散パや°′情報の消滅”を防ぐことは非常
に難しい問題であり、伝播を精密化する」二で是非解決
しなければならない間+ytiでai+った。As shown in this example, if the direction of calculation deviates from the direction of interest, it is a very difficult problem to prevent ``information dissemination and information disappearance'', so it is necessary to make the propagation more precise.'' I got ai+ with +yti while I had to solve it.
この発明は、上述の点にかんがみてなされたもので、情
報の伝播方向に対して複数個の便素を用意し、それらを
交互に配線をずらして用いる方法をとることにより演算
の方向とはずれた方向の情報を伝播する方式を提供する
ことを目的とする。This invention was made in view of the above points, and uses a method in which a plurality of convenient elements are prepared in the direction of information propagation, and the wiring is alternately shifted to use them. The purpose is to provide a method for propagating information in different directions.
以−ト、この発明の一実施例どしての伝播前11を説明
し、その具体化の一実施例を図面に基づいて説明する。Hereinafter, a pre-propagation step 11 of an embodiment of the present invention will be explained, and an embodiment of the embodiment will be explained based on the drawings.
前述の桂馬方向jan−’ −方向への値”1 ++の
単一方向の伝播を3×3近傍の演算で行なうことで考え
る。ここで単一方向の伝播とは第(2)式での伝播のよ
うにその方向の直線上の情報のみを伝播することを意味
する。Let us consider the unidirectional propagation of the above-mentioned value "1 ++" in the Keima direction jan-' - direction by performing calculations in the 3x3 neighborhood. Here, the unidirectional propagation is defined as the equation (2). Like propagation, it means that only information on a straight line in that direction is propagated.
まず、jan ” 2 方向の情報の伝播のために、こ
の発明では各点で2個の要素P0(Z)、 P’(Z)
を持つ。First, in order to propagate information in two directions, in this invention, two elements P0(Z) and P'(Z) are used at each point.
have.
繰り返しの時刻t=o圧おける初期値としては、(k=
0.1)
を与える。The initial value at the repetition time t=o is (k=
0.1) is given.
次に、繰り返しの時刻t=L、2.3・・・・・・に対
する局所並列演算は次代で表わされる。Next, the local parallel operation for the repetition time t=L, 2.3, . . . is expressed by the next generation.
P’(Z;t)=max(P’(Z;t 1)+ P
’(Z十r4.t 1))P’ (Z; t )=m
ax(P’ (Z; t −1)、PO(Z+r 、
Q、、 t −1))・・・・・・・・・・・・(8)
第(8)式の右辺第1項は自分自身の点の1時刻前の値
である。第2項は1(二〇に対しては近傍r1の1(=
1の値を、k=1に対しては近傍”i +’−s ’の
に=()の値を、交差させて伝播している。P'(Z;t)=max(P'(Z;t1)+P
'(Z0r4.t 1))P'(Z; t )=m
ax(P'(Z; t-1), PO(Z+r,
Q,, t −1)) (8) The first term on the right side of equation (8) is the value of the own point one time before. The second term is 1 (for 20, the neighborhood r1 is 1 (=
The value of 1 is propagated by crossing the value of =() in the neighborhood "i+'-s" for k=1.
最後に繰り返し演算終了後、
P(Z)=max(P’ (Z;oo) ) ・・
、、、、、、、、、、、、(g)k−0,1
によって点2での値P (Z)を求める。なお、繰り返
しは、tの充分大きな値、または1べてのZK対して、
J” (Z; t )=1” (Z; I−1)がッl
)葛(Z;t)=稈(Z;1−1)で停止する。ここで
は便宜上停止した時刻tを■で表現したが、実際は無限
回λ%a、り返す訳ではない。Finally, after completing the repeated calculation, P(Z)=max(P'(Z;oo))...
, , , , , , , , , (g) Find the value P (Z) at point 2 using k-0,1. Note that the repetition is performed for a sufficiently large value of t or for all ZKs,
J"(Z;t)=1"(Z; I-1)
) It stops at kudzu (Z; t) = culm (Z; 1-1). Here, for convenience, the time t at which it stopped is expressed as ■, but in reality it does not repeat λ%a infinite times.
第6図は第(8)式においてf=0.すなわら方向′0
′と1″の中間方向に対する情報伝播の様子を示す図で
ある。同図において、まず、点Aのみが黒点で他は全部
白点とする。そして、この情報がいかに第Y + 4行
において、点Gのみに伝播されるかという様子を見ると
、第6図と第(8)式から分かるように、第y行の点へ
から出発した情報は、次のM「刻には第y+1行の点B
の1月と点CのJlllのみに伝播される。さらに次の
時刻では、第y十2行の点りのPoとp+のみに伝播さ
れる。つまり第y千1行でばB、・Cの2点に分かれて
いた情報が他の情報に干渉されずに第y+2行目桂馬の
位1aに伝播されたことになる。この繰り返しKより第
y −1−4行では点Gのみに伝播され、3×3近傍演
栃、による桂馬方向の岸一方向伝播が実現されるのであ
る。この時、奇数番目の行(y+i、y+3・・・・・
・・・・)においては情報が2つり点に分散しているが
、最終評価は第(9)弐妊より2点共にAの情報が伝え
られていると考えられ、奇数行で情報が抜ける訳ではな
い。FIG. 6 shows f=0 in equation (8). i.e. direction '0
It is a diagram showing how information is propagated in the intermediate direction between ' and 1''. In the diagram, first, only point A is a black point and all others are white points. Then, how this information is transmitted in the Y + 4th line. , is propagated only to point G. As can be seen from Fig. 6 and equation (8), the information starting from the point in the y-th row is Line point B
It is propagated only to January and Jll of point C. Furthermore, at the next time, it is propagated only to the dots Po and p+ in the 12th row of y. In other words, the information that was divided into two points, B and C in the y-th, 1st line, has been propagated to Keima's place 1a in the y+2nd line without being interfered with by other information. As a result of this repetition K, the signal is propagated only to the point G in the y-1-4th row, and one-way propagation along the shore in the Keima direction is realized using a 3×3 neighborhood model. At this time, odd numbered rows (y+i, y+3...
...), the information is scattered over two points, but in the final evaluation, it is thought that information of A is conveyed for both points from the (9th) second pregnancy, and information is missing in the odd numbered rows. It's not a translation.
以上がこの発明の二次元情報の伝播方式の伝播演算であ
るが、次にそのハードウェア化の一実施例についてtl
p、7図、第8図に基づい゛〔説明する。The above is the propagation operation of the two-dimensional information propagation method of this invention.
This will be explained based on Figures 7 and 8.
第7図は各格子点の演算器の回路構成を示すブロック図
、第8図は格子点間の配線図である。FIG. 7 is a block diagram showing the circuit configuration of the arithmetic unit at each grid point, and FIG. 8 is a wiring diagram between the grid points.
第7図において、1,2はスイッチング回路、3.4は
最大値検出回路、5,6は遅延回路、Tはpo用レジス
タ、8はpl用レジスタである。In FIG. 7, 1 and 2 are switching circuits, 3 and 4 are maximum value detection circuits, 5 and 6 are delay circuits, T is a register for po, and 8 is a register for pl.
同図に示すよ5&C1同一機能の2系統の回路より構成
される。すなわち、最大値検出回路3、遅延回路5.
PO用レジスタ1で構J戊される系統が第(8)式のP
Oの演算を行ない、最大値検出回路4.遅延回路6.P
l用レジスタ8で構成される系謔が一犯8)式のPlの
演算を行う。ここで1μ犬値検出回路3゜遅延回路5.
PO用レしスタγで構成される系統なP00個路、最大
値検出回路4.遅延回路6.)・1用レジスタ8で構成
される系統を131側回路と呼ぶ。P00個路、Pl側
回路にはスイッチング回路1を経由して近傍の格子演算
器からの信号が入力される。人力用のスイッチング回路
1では、周辺格子点との16本の信号線C60””’C
7+の5も伝播したい方向性に応じて2木の信号線が選
択される。As shown in the figure, it is composed of two circuits 5 & C1 with the same function. That is, maximum value detection circuit 3, delay circuit 5.
The system configured by PO register 1 is P in equation (8).
The maximum value detection circuit 4. Delay circuit 6. P
A system composed of registers 8 for 1 calculates Pl in formula 8). Here, 1μ dog value detection circuit 3° delay circuit 5.
Systematic P00 circuit consisting of PO register γ, maximum value detection circuit 4. Delay circuit 6. )・The system composed of the 1 register 8 is called the 131 side circuit. A signal from a nearby lattice calculator is input to the P00 circuit and the Pl side circuit via the switching circuit 1. In the switching circuit 1 for human power, there are 16 signal lines C60""'C connected to the surrounding grid points.
Two signal lines are selected depending on the direction of propagation of 7+5.
例えば0″と°°l”の中間方向の%合は、(F1号線
eo+をpo側回路に、C4゜をP11個路に接Fi、
#る。For example, the % ratio in the intermediate direction between 0'' and °°l'' is (Connect F1 line eo+ to the po side circuit, C4° to the P11 circuit, Fi,
#ru.
スイング・ング回路1かも入力された2つの信号はそれ
ぞれ第(8)式のP’ (Z−1−++ 、 f、 −
1)、I)’(Z+1.、t−1)に対応する。第(8
)式のpO(z;t)け1″
を計算するP00個路においてはこの入力とIJ0用レ
ジスタγとの最大値を最大値検出回路3において則算し
、その後遅延回路5で一単位時間遅延後PO用レジスタ
ーに戻すと同時に出力用のスイッチング回路2に送る。The two input signals of the swinging circuit 1 are respectively expressed as P' (Z-1-++, f, -
1), I)'(Z+1., t-1). No. 8
), the maximum value of this input and the register γ for IJ0 is calculated in the maximum value detection circuit 3, and then the delay circuit 5 calculates the maximum value for one unit time. After the delay, it is returned to the PO register and simultaneously sent to the output switching circuit 2.
第(8)式のP’(Z;t)を計算するP11個路も同
様処理を行ないその出力を出力用のスイッチング回路2
に送る。The P11 circuit that calculates P'(Z;
send to
出力用のスイッチング回路2も入力用のスイッチング回
路1と同様に2本の信号線を16本の出力用信号線C6
O−C7+に伝播方向に応じて選択的に接続する。+0
1とl′の中間方向の場合は、Pollll ヲ、C4
+に、PI側をC,oK接続する。C41から出力され
た信号は第8図圧示すように下方の格子点の信号線C8
1への入力信号に、C50から出力された信号は左下方
の信号線C1゜へり−人力信号になる。Similarly to the input switching circuit 1, the output switching circuit 2 also connects two signal lines to 16 output signal lines C6.
Selectively connect to O-C7+ depending on the propagation direction. +0
In the case of intermediate direction between 1 and l', Pollll wo, C4
+, connect the PI side with C, OK. The signal output from C41 is connected to the signal line C8 at the lower grid point as shown in Figure 8.
The input signal to C1 and the signal output from C50 become a human input signal at the lower left signal line C1°.
なお、上記発明の一実施例の説明から、以下の(11〜
(5)忙述べるような変更およびそれらの複合的変更は
容易に可能である。In addition, from the description of one embodiment of the above invention, the following (11-
(5) Changes such as those described above and combination thereof are easily possible.
(1)上記実施例ではjan ” 2 方向の伝播に
ついて述へたが、要素Pの数を増加させることにより、
jan−・1以外の単一方向の伝播に拡張することがで
きる。すなわち、一般角度tact −’ ′!一方向
の単一方向伝播の場合、m個のPk(k=o、 1.2
.・・・・・・m−1)を用意し、第(8)式を次のよ
うに拡張すればよい。ただし、m>nかつmとnは公約
数を持たない正数とする。これでも問題の一般性は失な
われないことは明らかである。(1) In the above embodiment, propagation in the jan ” 2 direction was described, but by increasing the number of elements P,
It can be extended to unidirectional propagation other than jan-.1. That is, the general angle tact −′′! For unidirectional propagation in one direction, m Pk (k=o, 1.2
.. . . .m-1) and expand equation (8) as follows. However, it is assumed that m>n and m and n are positive numbers having no common divisor. It is clear that the generality of the problem is not lost.
P (l;t)=
ここでk + n (moct l+n )はk +n
の1nを法とする数、すなわち(k十n)7mの剰余で
ある。また、第(7)式および第(9)式は、k=0.
1.2・・・・・冒n −IKつい′C行なう。P (l; t) = where k + n (moct l+n) is k + n
It is the number modulo 1n of , that is, the remainder of (k ten n) 7m. Furthermore, equations (7) and (9) are expressed as k=0.
1.2...blasphemy - IK then 'C'.
このようにすること忙より、1行の(m i’H;で口
安素分ずらされることになり、In行の伝播でnXm要
素分ずらされる。かつ、1点にはm個の要素を平−
持ち、はみ出すと第(l[1式の下段式のよ5&C次、
り:り1tから伝播するから、列方向の移動は(nXm
)/m=nとなり、n1行の伝播でちょうどn列の移動
が起こる。この一般角度jan−”の伝播なm−4゜n
== 3 Kついて図示したのが第9図である。また
、この時第(7)式の初期値を次のように1要素にだけ
設定しても良い。Because of the busyness of doing this, one line of (m i'H; will be shifted by the number element, and the propagation of the In line will be shifted by nXm elements. Also, one point has m elements. Hold it flat, and when it protrudes, the 5th & Cth
Since ri:ri propagates from ri1t, the movement in the column direction is (nXm
)/m=n, and propagation of n1 rows causes movement of exactly n columns. The propagation of this general angle jan-'' is m-4゜n
== 3K is illustrated in FIG. 9. Further, at this time, the initial value of equation (7) may be set to only one element as follows.
・・・・・・・・・・・・・・・・・・・・・α0逆に
、第(力式で黒点のすべての要素に1″をセントして、
最終的には1要素だけで判定する事も可能である。・・・・・・・・・・・・・・・・・・・・・α0 Conversely, by adding 1″ to all elements of the sunspot in the force formula,
Ultimately, it is also possible to make a determination based on only one element.
(2)上記実施例では単一方向伝播について述べたが、
2つ以上の単一方向伝播を組み合わせることしこより幅
のある伝播が可能である。幅のある伝播とは、第10図
(C)のようにある方向範囲から情報を伝播させること
を意味する。第10図(b)は第(8)式すlzわら第
6図の伝播、第10図(a)は縦方向の単一方向伝播で
ある。第1O図(a)の伝播は1個の要素Pのみを用℃
・て第(2)式のi = Oとして引算できる。この第
10図(a)と(b)の伝播(第(2)式と第(8)式
の伝播)を組み合わせて第10図(C)のような幅のあ
る伝播は2つの要素1)k、に二〇、1を用いて次の式
で実現できる。(2) Although the above embodiments described unidirectional propagation,
Wider propagation is possible by combining two or more unidirectional propagations. Broad propagation means that information is propagated from a certain direction range as shown in FIG. 10(C). FIG. 10(b) shows the propagation of equation (8) as shown in FIG. 6, and FIG. 10(a) shows the unidirectional propagation in the vertical direction. The propagation in Figure 1(a) uses only one element P.
- Can be subtracted by setting i = O in equation (2). By combining the propagations in Figure 10 (a) and (b) (propagation in equations (2) and (8)), wide propagation as shown in Figure 10 (C) is created by two elements 1) It can be realized by the following formula using 20.1 for k.
PO(Z; t )=max(P’ (z; t−1)
I PI (Z−1−ro; t−1))P’(Z;t
)
=rnax(P’ (Zy t 1 )+ PO(Z
+ro+ t 1’LP’ (Z+rl、t 1))
・・・・・・・・・・・・・・・・・・・・・(
12一般に、1 an −+−シ・とtan −’−!
!−L(”−< y” r IIJとm11112
m1m2
nIおよびmlとn2 は共約数を持たない、+11<
11111 n2 < ml)の単一方向伝播はそれぞ
れn11個。PO(Z; t)=max(P'(z; t-1)
I PI (Z-1-ro; t-1)) P'(Z; t
) = rnax (P' (Zy t 1 ) + PO (Z
+ro+ t 1'LP' (Z+rl, t 1))
・・・・・・・・・・・・・・・・・・・・・(
12 In general, 1 an −+−shi・tan −′−!
! -L("-<y" r IIJ and m11112
m1m2 nI and ml and n2 have no common divisor, +11<
11111 n2 < ml) unidirectional propagation is n11 each.
m2個の要素pkを必敷とするが、それらの方向範囲内
の幅のある伝播は、mlとIn2の最小公倍数m。Although m2 elements pk are required, the propagation with a width within their directional range is the least common multiple of ml and In2.
個の要素を持てば実排、できる。If you have 1 element, you can actually eliminate it.
(3)上記実施例では、値゛1″の伝播ずなわら、”閉
じ9′状態の伝播について述べたが、この発明は閉じ状
態以外の、線の長さ、線の本数、距離。(3) In the above embodiment, the propagation of the "closed 9" state was described as well as the propagation of the value "1", but this invention is applicable to the length of the line, the number of lines, and the distance of the line other than the closed state.
エツジの方向性等の伝播に対しても適用可能である。It can also be applied to propagation of edge directionality, etc.
(4)上記実施例では、あらかじめ定めたある方向いと
i + 1の中間方向、これをi+2とl己す)への1
ノ;播について述べたが、各方向に対する要素Tl”
’ (z)+ + ”0〜7.に=0.1を持ち各
1+4
要素がそれぞれ3×3近傍の他の要素との相互作用によ
る演算を行なう局所並列前針に対しても適用可能である
。前述したが、これにより2次元的な6閉じパ状態が表
現される。(4) In the above embodiment, 1 in a predetermined direction and an intermediate direction between i + 1, which is referred to as i + 2.
ノ; As I mentioned about dissemination, the element Tl for each direction
' (z) + + "It can also be applied to locally parallel front needles in which 0 to 7 have = 0.1 and each 1+4 element performs calculations by interaction with other elements in its 3x3 neighborhood. As mentioned above, this allows a two-dimensional 6-closed Pa state to be expressed.
(5)上記実施例では、正方格子上での3×3のa近傍
による演算について述べたが、8近傍以外の例えば16
近傍にすること、正方格子以夕(の例えは6角格子圧す
ることも可能である。(5) In the above embodiment, calculations using a 3×3 a neighborhood on a square lattice were described, but operations other than 8 neighborhoods, such as 16
It is also possible to use a square lattice (for example, a hexagonal lattice).
以上説明したように、この発明にイ系る二次元情報伝播
方式は、2次元格子点に配列された演A斗羽と、この演
初器を隣接した格子点どうしで相互に接続する11号線
とからなる並列演算装置、もしくはこれを模擬する演算
装置を用(・て、前り己複数の信−号線のみから方向性
を持った情報伝播を行なうとき、各格子点で複数個の情
報要素を用意し、それらを交互に用いながら情報伝播す
るようにしたので、信号線の方向以外の中間方向に情報
伝播力tでき、そのハードウェアにおける信号線の配線
も単純で、抽出する特徴の適用範囲も広くなるという極
めてすぐれた効果を有する。As explained above, the two-dimensional information propagation method according to the present invention consists of a number of conductors arranged at two-dimensional grid points and a line No. 11 that interconnects these performers at adjacent grid points. When performing directional information propagation only from multiple signal lines, multiple information elements are transmitted at each grid point. , and used them alternately to propagate information, so information propagation force t can be achieved in intermediate directions other than the direction of the signal line, and the wiring of the signal line in the hardware is simple, making it easy to apply the features to be extracted. It has an extremely excellent effect of widening the range.
第1図は2次元正方格子表現で、同図(a)は水平方向
線分、同図(b)は少し傾いた線分、同図(C1は入り
(んだ線分の場合を示す図、第2図は演η。
器の隣接した格子との配線図で、同図(a)は3×3範
囲、同図(b)は5×5の範囲内の配線図、第3図は方
向定義図、第4図は近傍点のベクトル表現の定義図、第
5図は1点の黒点1〃報伝播の説明図、第6図は3×3
近傍による0″と11゛との中間方向(桂馬方向)から
の情報伝播の説明図、第7図は桂馬方向伝播のための各
格子点での演↓9器ブロック回路図、第8図はその演1
9器の近傍の格子との配線図、第9図は一般角度り+n
−+ ”方向伝播の説明図、第10図は2つの単一方
向伝播から幅のある伝播を構成するための説明図で、同
図(81は縦方向の彫一方向伝播を示す図、同図(1〕
)は第6図の伝播を示す図、同図<c>は同図(a)と
同図(b) K示す伝播を組み合わせて伝播を示す図で
ある。
(
8はpl用レジスタである。
515
第1図
a)
第2図
(a)
第3図
第4図
第6図
第7図
Coo Co+ −−−C41Coo −C70C
71第8図Figure 1 is a two-dimensional square grid representation, where (a) is a horizontal line segment, (b) is a slightly inclined line segment, and (C1 is a diagram showing a line segment with an inclination). , Figure 2 shows the wiring diagram for the adjacent grids of the device. Figure (a) is the wiring diagram for the 3x3 range, Figure (b) is the wiring diagram for the 5x5 range, and Figure 3 is the wiring diagram for the 3x3 range. Direction definition diagram, Figure 4 is a definition diagram of vector representation of neighboring points, Figure 5 is an explanatory diagram of one black point 1 information propagation, Figure 6 is 3 × 3
An explanatory diagram of information propagation from the intermediate direction (Keima direction) between 0'' and 11゛ by the neighborhood, Figure 7 is a block circuit diagram of the ↓9 operator at each grid point for propagation in the Keima direction, and Figure 8 is Performance 1
Wiring diagram with the grid near the 9th device, Figure 9 is the general angle +n
-+ "Explanatory diagram of directional propagation. Figure 10 is an explanatory diagram for configuring wide propagation from two unidirectional propagations. Figure (1)
) is a diagram showing the propagation in FIG. 6, and FIG. 6 <c> is a diagram showing the propagation by combining the propagation shown in FIG. (8 is the PL register. 515 Fig. 1a) Fig. 2(a) Fig. 3 Fig. 4 Fig. 6 Fig. 7 Coo Co+ ---C41Coo -C70C
71Figure 8
Claims (1)
し、た格子点どうしで相互に接続する信号線とからなる
並列演算装置、もしくはそれを模擬する演算装置を用い
て、方向性を持った情報伝播を行うとき、前記各格子点
で複数個の情報の要素を用意してそれらを交互に用いな
がら情報伝播させることにより、前記信号線の方向以外
の中間方向に情報伝播ができるよう妊したことを特徴と
する二次元情報伝播方式。Using a parallel computing device consisting of computing units arranged in two-dimensional lattice points and signal lines adjacent to the computing units and interconnecting the grid points, or a computing device that simulates the same, the directionality When performing information propagation with , information can be propagated in an intermediate direction other than the direction of the signal line by preparing multiple information elements at each of the grid points and using them alternately to propagate the information. A two-dimensional information propagation method characterized by the fact that it is pregnant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19296682A JPS5983277A (en) | 1982-11-02 | 1982-11-02 | Two-dimensional information transmitting system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19296682A JPS5983277A (en) | 1982-11-02 | 1982-11-02 | Two-dimensional information transmitting system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5983277A true JPS5983277A (en) | 1984-05-14 |
JPH034954B2 JPH034954B2 (en) | 1991-01-24 |
Family
ID=16300000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19296682A Granted JPS5983277A (en) | 1982-11-02 | 1982-11-02 | Two-dimensional information transmitting system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5983277A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54140437A (en) * | 1978-04-24 | 1979-10-31 | Toshiba Corp | Parallel process system |
-
1982
- 1982-11-02 JP JP19296682A patent/JPS5983277A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54140437A (en) * | 1978-04-24 | 1979-10-31 | Toshiba Corp | Parallel process system |
Also Published As
Publication number | Publication date |
---|---|
JPH034954B2 (en) | 1991-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Banks | Information processing and transmission in cellular automata | |
Banks | Universality in cellular automata | |
Hutchinson et al. | On representations of some thickness-two graphs | |
EP0978944B1 (en) | Wiring of cells in logic arrays | |
TW202129518A (en) | Loading operands and outputting results from a multi-dimensional array using only a single side | |
CN111125981A (en) | Wiring method for integrated circuit VLSI | |
Ollinger | Universalities in cellular automata; a (short) survey | |
Biedl et al. | On edge-intersection graphs of k-bend paths in grids | |
JPS5983277A (en) | Two-dimensional information transmitting system | |
KR102274837B1 (en) | Method of decomposing layout for quadruple patterning technology process and method of manufacturing semiconductor device using the same | |
Rani et al. | Design of QCA circuits using new 1D clocking scheme | |
Demaine et al. | Morpion solitaire | |
Hamacher | Machine complexity versus interconnection complexity in iterative arrays | |
Brualdi et al. | Symmetric alternating sign matrices. | |
Glimm et al. | Conservative front tracking in higher space dimensions | |
Lee et al. | Link‐disjoint embedding of complete binary trees in meshes | |
Euler et al. | On functions whose inverse is their reciprocal | |
Morita et al. | Reversible Elementary Triangular Partitioned Cellular Automata | |
Takács | A maximum-selector design in Codd-ICRA cellular automaton | |
Morita et al. | Two-Dimensional Universal Reversible Cellular Automata | |
Lorenzetti et al. | An implementation of a saturated zone multi-layer printed circuit board router | |
Vavilov et al. | Two Famous Formulas (Part II) | |
JP3278600B2 (en) | Automatic layout method and apparatus | |
JP2013514025A (en) | Logic cell interconnect arrangement and integrated circuit capable of reconfiguring cross-connect topology | |
RU2451997C1 (en) | Special-purpose processor for solving task of searching for shortest path between objects on plane |