JPS598278A - Liquid fuel cell - Google Patents

Liquid fuel cell

Info

Publication number
JPS598278A
JPS598278A JP57115968A JP11596882A JPS598278A JP S598278 A JPS598278 A JP S598278A JP 57115968 A JP57115968 A JP 57115968A JP 11596882 A JP11596882 A JP 11596882A JP S598278 A JPS598278 A JP S598278A
Authority
JP
Japan
Prior art keywords
liquid fuel
air
fuel cell
fuel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57115968A
Other languages
Japanese (ja)
Inventor
Motoo Yamaguchi
元男 山口
Yasuyuki Tsutsumi
泰行 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57115968A priority Critical patent/JPS598278A/en
Publication of JPS598278A publication Critical patent/JPS598278A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To eliminate use of a pump or blower by supplying by utilizing convection to be generated with a heater at least one of liquid fuel supplying to a fuel electrode or air supplying to an air electrode. CONSTITUTION:When heating elements 8 and 10 generats heat by current flowing from a power supply 12, liquid fuel 4 and air 6 are heated, and temperature difference between an upper layer and a lower layer is produced and convection is generated by their density difference. Thereby, a liquid fuel 4 is supplied to a fuel electrode 1 and air 6 is to an air electrode 2. A metal resistor such as tungsten, carbon resistor, or conductive ceramic resistor is used as the heating elements 8 and 10. Since the heating element 8 is immersed in the liquid electrolyte 4, insulating is necessary to prevent electrical shorting, and heating from the outside may be applied if the liquid electrolyte is conductive. Since rotating portions are eliminated, failure is decreased and a compact and light weight cell can be provided.

Description

【発明の詳細な説明】 本発明は液体燃料と空気との電気化学反応によって眠気
エネルギーを得るようにしだ液体燃料電池の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a liquid fuel cell that obtains drowsiness energy through an electrochemical reaction between liquid fuel and air.

第1図は従来の液体燃料電池の要部構成概念図である。FIG. 1 is a conceptual diagram of the main parts of a conventional liquid fuel cell.

第1図において、1は燃料極、2は空気画、3はイオン
透過層で、燃料極1には液体燃料を、空気極2には空気
を供給することが必要であるが、従来は、燃料極工に液
体燃料4を供給するのにポンプ5を用い、空気極2に空
気6を供給するのにブロワ7を用いていた。
In FIG. 1, 1 is a fuel electrode, 2 is an air layer, and 3 is an ion-permeable layer.It is necessary to supply liquid fuel to the fuel electrode 1 and air to the air electrode 2, but conventionally, A pump 5 was used to supply liquid fuel 4 to the fuel electrode, and a blower 7 was used to supply air 6 to the air electrode 2.

したがって、燃料4の消費状況によってポンプ5の送液
量を制御し、また、ブロワ7の送風量全制御しなければ
ならず、そのための制御回路を必要としていた。しかも
、ポンプ5、ブロワ7および制御回路を作動させる動力
源は、燃料電池自体としているが一般的で、電池出力が
変動するので、ポンプ5、ブロワ7の運転制白1が困難
であった。
Therefore, the amount of liquid sent by the pump 5 must be controlled depending on the consumption status of the fuel 4, and the amount of air blown by the blower 7 must be controlled, and a control circuit for this purpose is required. Moreover, the power source for operating the pump 5, blower 7, and control circuit is generally a fuel cell itself, and the battery output fluctuates, making it difficult to control the operation of the pump 5, blower 7, and so on.

さらに1ポンプ5、ブロワ7および制御回路を含めた燃
料電池の体積、電歇が大きくなり、また、ポンプ5、ブ
ロワ7は回転体であるため、故障が起りやすいという欠
点があった。
Furthermore, the volume of the fuel cell including the pump 5, the blower 7 and the control circuit, and the electric switch are large, and since the pump 5 and the blower 7 are rotating bodies, there is a drawback that failures are likely to occur.

本発明は上記に鑑みてなされたもので、その目的とする
ところは、ポンプやブロワを用いることpく液体燃料や
空気を供給することができる液体燃料電池を提供するこ
とにある。
The present invention has been made in view of the above, and an object of the present invention is to provide a liquid fuel cell that can supply liquid fuel and air without using a pump or blower.

本発明の特徴は、液体燃料電池の燃料極に供給する液体
燃料と空気極に供給する空気とのうち少なくとも何れか
一方を流体の温度差による対流現象を利用して供給する
発熱体を用いた供給手段を備えた構成とした点にある−
0 以下本発明を第2図、第4図、第5図に示した実施例お
よび第3図を用いて詳細に説明する。
A feature of the present invention is that a heating element is used to supply at least one of the liquid fuel supplied to the fuel electrode of a liquid fuel cell and the air supplied to the air electrode by utilizing a convection phenomenon caused by a temperature difference in the fluid. The point is that the structure is equipped with a supply means.
0 The present invention will be described in detail below with reference to the embodiments shown in FIGS. 2, 4, and 5, and FIG. 3.

第2図は本発明の液体燃料電池の一実施例を示す要部構
成概念図で、第1図と同一部分は同じ符号で示し、ここ
では説明を省略する。第2図の第1図と異なるところは
、第1図のポンプ5の代りに発熱素子8と発熱素子8へ
の通電をオン、オフする感温スイッチ9を設け、液体燃
料4の流路は図示のように燃料極1を含めて対流可能に
構成し、また、第1図のブロワ7の代りに発熱素子[0
と発熱素子10への通電をオン、オフする感温スイッチ
11を設け、液体燃料4と空気6とをそれぞれ液体の温
度差による対流現象を利用して燃料極1、空気極2にそ
れぞれ供給するようにした点にある。
FIG. 2 is a conceptual diagram showing an embodiment of the liquid fuel cell according to the present invention, and the same parts as those in FIG. The difference between FIG. 2 and FIG. 1 is that a heating element 8 and a temperature-sensitive switch 9 for turning on and off electricity to the heating element 8 are provided in place of the pump 5 in FIG. As shown in the figure, it is configured to allow convection including the fuel electrode 1, and a heating element [0
A temperature-sensitive switch 11 is provided to turn on and off energization to the heating element 10, and liquid fuel 4 and air 6 are supplied to the fuel electrode 1 and the air electrode 2, respectively, using the convection phenomenon caused by the temperature difference between the liquids. This is what I did.

なお、感温スイッチ9.11はそれぞれ燃料電池本体の
温度を検知して作動するもので、設定温度′vIになる
と接点が開路し、T1 より所定温度低い温度T2にな
ると接点が閉路するように構成しである。
The temperature-sensitive switches 9 and 11 are activated by detecting the temperature of the fuel cell body, and the contacts open when the set temperature 'vI is reached, and the contacts close when the temperature T2, which is a predetermined temperature lower than T1, is reached. It is composed.

第3図は感温スイッチ9,11の動作を説明するだめの
線図で、以下第3図を参照しながら第2図の動作につい
て説明する。
FIG. 3 is a diagram for explaining the operation of the temperature sensitive switches 9 and 11, and the operation of FIG. 2 will be explained below with reference to FIG.

燃料極1に接する液体燃料4は、燃料電池の発電によっ
て消費し、その濃度が低下する。電気化学反応を利用す
る燃料電池においては、燃料濃度の低下とともに発熱量
が小さくなるから、その結果として燃料電池本体の濃度
が低下する。これを感温スイッチ9,11が検知し、第
3図に示すように、設定温度T、からT2″!、で低下
した時点t1で感温スイッチ9,11の接点が閉路し、
発熱素子8,10にはそれぞれ電源12から通電されて
発熱する。発熱素子8.10が発熱すると、液体燃料4
および空気6が加熱されて、それぞれ上層のものと温度
差が生じて密度差による対流現象を生じ、液体燃料4は
燃料極1に、空気6は空気極2に供給される。これにと
もなって電気化学反応が進み、燃料電池本体の温度が再
び」二昇し、設定温度T1に達すると、その時点t2で
感温スイッチ9,110接点が開路して発熱素子8゜1
0への通電が遮断される。以下同様の動作が自動的に、
しかも、連続的に繰り返される。
The liquid fuel 4 in contact with the fuel electrode 1 is consumed by the power generation of the fuel cell, and its concentration decreases. In a fuel cell that utilizes an electrochemical reaction, the amount of heat generated decreases as the fuel concentration decreases, and as a result, the concentration of the fuel cell body decreases. The temperature-sensitive switches 9, 11 detect this, and as shown in FIG. 3, the contacts of the temperature-sensitive switches 9, 11 close at the time t1 when the set temperature T decreases to T2''!.
The heating elements 8 and 10 are each energized by a power source 12 and generate heat. When the heating element 8.10 generates heat, the liquid fuel 4
The air 6 is heated and has a temperature difference with that of the upper layer, causing a convection phenomenon due to the density difference, and the liquid fuel 4 is supplied to the fuel electrode 1 and the air 6 is supplied to the air electrode 2. Along with this, the electrochemical reaction progresses, and the temperature of the fuel cell body rises again, and when it reaches the set temperature T1, the temperature-sensitive switch 9, 110 contact opens at time t2, and the heating element 8°1
0 is cut off. The same operation below will be performed automatically.
Moreover, it is repeated continuously.

ここで、発熱素子8,10のエネルギー源である電源1
2は、燃料電池自体であっても別電源であってもよいこ
とはいう捷でもない。また、発熱素子8と10とを直列
接続として、感温スイッチを1個としてもよい。発熱素
子8,10としては、タングステンなどの金属抵抗、カ
ーボン抵抗体、導電性セラミック抵抗体などを用いるこ
とができる。なお、発熱素子8は液体・燃料4中に浸漬
するので、電気的短絡が生じないように絶縁することが
必要であり、特に液体燃料4が導電性の場合は注意する
必要があり、場合によっては外部から加熱するようにし
てもよい。液体燃料4としてはメチルアルコールを用い
ると、流動性が良好なので好ましい。
Here, the power source 1 which is the energy source of the heating elements 8 and 10
2 does not necessarily mean that it may be the fuel cell itself or a separate power source. Alternatively, the heating elements 8 and 10 may be connected in series, and one temperature-sensitive switch may be used. As the heating elements 8 and 10, metal resistors such as tungsten, carbon resistors, conductive ceramic resistors, etc. can be used. Note that since the heating element 8 is immersed in the liquid/fuel 4, it is necessary to insulate it to prevent electrical short circuits. Particular care must be taken when the liquid fuel 4 is conductive. may be heated externally. It is preferable to use methyl alcohol as the liquid fuel 4 because it has good fluidity.

上記した本発明の実施例によれば、ポンプやブロワを用
いないので、回転部がなくなり、故障の低減が期待でき
る。また、燃料電池自体を電源とする場合、ポンプやブ
ロワは出力電圧の如何によっては回転しないことがある
という心配があるが、発熱素子8,10による加熱方式
であるので、何ら問題を生ずることがない。また、ポン
プやプロー7を必要としないので、全体の小形、軽鼠化
をはかることができる。さらに、例えば起動信号を用い
て発熱素子10に通電し、すみやかに空気極2に空気を
供給して起動時間を短縮することができる。また、起動
後電池温度が上がり、対流が充分行われる状態になれば
、感温スイッチ9,11の作用により発熱素子8,10
への通電が遮断されるから消費エネルギーを少なくす゛
ることかできる。
According to the embodiment of the present invention described above, since no pump or blower is used, there are no rotating parts, and a reduction in failures can be expected. In addition, if the fuel cell itself is used as a power source, there is a concern that the pump or blower may not rotate depending on the output voltage, but since the heating system uses heating elements 8 and 10, no problems will occur. do not have. Furthermore, since no pump or plow 7 is required, the entire device can be made smaller and lighter. Further, by energizing the heating element 10 using, for example, a startup signal, air can be promptly supplied to the air electrode 2, thereby shortening the startup time. In addition, when the battery temperature rises after startup and sufficient convection occurs, the heat-generating elements 8 and 10 are activated by the action of the temperature-sensitive switches 9 and 11.
Since power is cut off, energy consumption can be reduced.

第4図、第5図はそれぞれ本発明の他の実施例を示す要
部構成概念図で、第1図、第2図と同一部分は同じ符号
で示しである。第4図においては、第1図のブロワ7は
そのままとし、ポンプ5のみを発熱素子8と感温スイッ
チ9に変えである。また、第5図においては、第1図の
ポンプ5はそのままとし、ブロワ7のみを発熱素子10
と感温スイッチ11に変えである。このようにすると、
その効果は第2図に及ばな跡が、それなりの効果が得ら
れる。
FIGS. 4 and 5 are conceptual diagrams showing the main parts of other embodiments of the present invention, and the same parts as in FIGS. 1 and 2 are designated by the same reference numerals. In FIG. 4, the blower 7 in FIG. 1 is left as is, and only the pump 5 is replaced with a heating element 8 and a temperature-sensitive switch 9. In addition, in FIG. 5, the pump 5 in FIG. 1 is left as is, and only the blower 7 is replaced with the heating element 10.
This is a change to the temperature-sensitive switch 11. In this way,
Although the effect is not as good as that shown in Fig. 2, a certain effect can be obtained.

なお、第2図、第4図の発熱素子8は、液体燃料4を加
熱することによって対流の促進をはかるだめのものであ
るが、この場合、上流と下流とに逆止弁を設けるかある
いは下流側を上流側にくらべて高周波圧力損失が大きい
流路構造とし、発熱素子8に流す電流を断続電流とする
ようにしてもよい。このようにすると、加熱によって膨
張した液体燃料4の大半が下流側へ流れるというポンプ
作用が生ずるので、すみやかに液体燃料4を燃料5匝1
に供給することができる。
Note that the heating element 8 shown in FIGS. 2 and 4 is intended to promote convection by heating the liquid fuel 4, but in this case, check valves are provided upstream and downstream, or The flow path structure may be such that the high-frequency pressure loss is larger on the downstream side than on the upstream side, and the current flowing through the heating element 8 may be an intermittent current. In this way, a pumping effect occurs in which most of the liquid fuel 4 expanded by heating flows downstream, so that the liquid fuel 4 can be quickly pumped into 5 sq.
can be supplied to

また、上記した各実施例では、感温スイッチ9゜11を
用いであるが、これを温度検知素子とその出力を用いて
開閉を制御されるスイッチあるいは通電電流を制御され
る半導体素子に変えてもよく、同様の効果が得られる。
In addition, in each of the above-mentioned embodiments, the temperature-sensitive switch 9°11 is used, but this can be replaced with a switch whose opening/closing is controlled using a temperature detection element and its output, or a semiconductor element whose conduction current is controlled. You can also get the same effect.

なお、発熱素子8,10は各セル毎に設けてもよいが、
いくつかのセルへ液体燃料4または空気6を供給する共
通管に設けるようにしてもよい。
Note that the heating elements 8 and 10 may be provided for each cell, but
It may also be provided in a common pipe that supplies liquid fuel 4 or air 6 to several cells.

このようにすると発熱素子の数をへらすことができ、経
済的である。
In this way, the number of heating elements can be reduced, which is economical.

以上説明したように、本発明によれば、ポンプやブロワ
を用いることなく液体燃料や空気を供給することができ
、小形、軽量化をはかることができるとともに故障が低
減し、かつ、消費エネルギーの低減をはかることができ
るという効果がある。
As explained above, according to the present invention, liquid fuel and air can be supplied without using a pump or blower, the size and weight can be reduced, failures can be reduced, and energy consumption can be reduced. This has the effect of being able to reduce this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の液体燃料電池の要部構成概念図、第2図
は本発明の液体燃料電池の一実施例を示す要部構成概念
図、第3図は感温スイッチの動作を説明するだめの線図
、第4図、第5図はそれぞれ本発明の他の実施例を示す
第2図に相当する要部構成概念図である。 1・・・燃料画、2・・・空気極、4・・・液体燃料、
5・・・ポンプ、6・・・空気、7・・・ブロワ、8,
10・・・発熱素(ほか1名) $ l 目
Fig. 1 is a conceptual diagram of the main part of a conventional liquid fuel cell, Fig. 2 is a conceptual diagram of the main part of an embodiment of the liquid fuel cell of the present invention, and Fig. 3 explains the operation of a temperature-sensitive switch. The blank diagram, FIG. 4, and FIG. 5 are conceptual diagrams of the main part structure corresponding to FIG. 2 showing other embodiments of the present invention. 1...Fuel picture, 2...Air electrode, 4...Liquid fuel,
5...Pump, 6...Air, 7...Blower, 8,
10... Pyrogen (1 other person) $ l eyes

Claims (1)

【特許請求の範囲】 ■、液体燃料と空気との電気化学反応によって電気エネ
ルギーを得るようにした液体燃料電池において、該液体
燃料電池の燃料極圧供給する液体燃料と空気極に供給す
る空気とのうち少なくとも何れか一方を流体の温度差に
よる対流現象を利用して供給する熱発体を用いた供給手
段を備えたことを特徴とする液体燃料電池、。 2、 前記発熱体は通電によって発熱するものである特
許請求の範囲第1項記載の液体燃料電池。 3、前記発熱体は通電によって発熱するものであって、
燃料電池本体の温度の高低によって通電を制御されてい
る特許請求の範囲第1項記載の液体燃料電池。 4、前記液体燃料がメチルアルコールである特許請求の
範囲第1項または第2項または第3項記載の液体燃料電
池。
[Claims] (1) In a liquid fuel cell that obtains electrical energy through an electrochemical reaction between liquid fuel and air, the liquid fuel supplied to the extreme pressure of the fuel of the liquid fuel cell and the air supplied to the air electrode 1. A liquid fuel cell, comprising a supply means using a heat generator that supplies at least one of them by utilizing a convection phenomenon caused by a temperature difference between fluids. 2. The liquid fuel cell according to claim 1, wherein the heating element generates heat when energized. 3. The heating element generates heat when energized,
The liquid fuel cell according to claim 1, wherein energization is controlled depending on the temperature of the fuel cell main body. 4. The liquid fuel cell according to claim 1, 2, or 3, wherein the liquid fuel is methyl alcohol.
JP57115968A 1982-07-02 1982-07-02 Liquid fuel cell Pending JPS598278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57115968A JPS598278A (en) 1982-07-02 1982-07-02 Liquid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57115968A JPS598278A (en) 1982-07-02 1982-07-02 Liquid fuel cell

Publications (1)

Publication Number Publication Date
JPS598278A true JPS598278A (en) 1984-01-17

Family

ID=14675589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57115968A Pending JPS598278A (en) 1982-07-02 1982-07-02 Liquid fuel cell

Country Status (1)

Country Link
JP (1) JPS598278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071935A (en) * 2003-08-27 2005-03-17 Toshiba International Fuel Cells Corp Fuel cell fuel self supply apparatus and fuel cell power generator using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071935A (en) * 2003-08-27 2005-03-17 Toshiba International Fuel Cells Corp Fuel cell fuel self supply apparatus and fuel cell power generator using same

Similar Documents

Publication Publication Date Title
GB2063484A (en) Resistive fluid level detecting system
US4058702A (en) Fluid heating apparatus
WO1993020670A1 (en) Heating apparatus having thermistor of positive temperature coefficient
JPH05258760A (en) Operation control method and apparatus for liquid fuel battery
JP2008124010A (en) Ptc element as self-conditioning starting rheostat for fuel cell stack
JPS598278A (en) Liquid fuel cell
US11739982B2 (en) Control system for an intermittent pilot water heater
JPS6145569A (en) Power supply for automobile
JP2004311348A (en) Fuel cell system
JP3475261B2 (en) Heating toilet seat
JPH0343541B2 (en)
JP2526750Y2 (en) Liquid evaporator and liquid supply detecting device therefor
JP2009063484A (en) Liquid level detector
US3189725A (en) Electric water heating and storage device
JPS621169B2 (en)
JPH03125847A (en) Electric water heater
JPH0420360Y2 (en)
JPS64452Y2 (en)
KR20200040556A (en) Heater module for fuel filter capable of multi stage temperature control and management apparatus thereof
JPH02219950A (en) Controller device for hot water feeder
JPS61250388A (en) Method for preventing freezing of pump
JPS5820108B2 (en) Ekitainen Ryodenchi Souchi
JPS60165433A (en) Water detecting device of hot-water supply heater
JPS58219355A (en) Freezing preventing device of water heater
JPS59138934A (en) Leakage detector