JPH05258760A - Operation control method and apparatus for liquid fuel battery - Google Patents

Operation control method and apparatus for liquid fuel battery

Info

Publication number
JPH05258760A
JPH05258760A JP4053795A JP5379592A JPH05258760A JP H05258760 A JPH05258760 A JP H05258760A JP 4053795 A JP4053795 A JP 4053795A JP 5379592 A JP5379592 A JP 5379592A JP H05258760 A JPH05258760 A JP H05258760A
Authority
JP
Japan
Prior art keywords
fuel
liquid
tank
liquid fuel
fuel tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4053795A
Other languages
Japanese (ja)
Inventor
Makoto Shimizu
信 清水
Tetsuya Otake
哲也 大武
Kiyotaka Asahi
聖隆 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Machinery and Engineering Ltd
Original Assignee
Hitachi Machinery and Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Machinery and Engineering Ltd filed Critical Hitachi Machinery and Engineering Ltd
Priority to JP4053795A priority Critical patent/JPH05258760A/en
Publication of JPH05258760A publication Critical patent/JPH05258760A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To enable automatic long-term operation of a small-capacity liquid fuel cell with the use of no manpower. CONSTITUTION:A fuel tank 12 is additionally provided to a fuel battery body 11 of a liquid fuel battery 10 in which unit cells are plurally laminated with separators interposed therebetween and liquid fuel is used as direct fuel. The fuel temperature inside the fuel tank 12 is metered by a temperature gauge 16 in each specified unit of time. When the liquid temperature exceeds a value set beforehand, purified water in a water tank 40 is supplied to the fuel tank 12. When the liquid temperature falls below a lower limit, liquid fuel in a preliminary fuel tank 30 is supplied to the fuel tank 12. By causing control to be made through use of the liquid temperature only, the apparatus is simplified and the operation control under no manpower becomes possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体燃料電池の運転制
御方法及び装置に関し、特に、少容量ではあるが長時間
にわたり無人化の状態で継続運転を可能とした液体燃料
電池の運転制御方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid fuel cell operation control method and device, and more particularly, to a liquid fuel cell operation control method capable of continuous operation in an unmanned state for a long time even though the capacity is small. And equipment.

【0002】[0002]

【従来の技術及び解決すべき課題】負極活性物質とし
て、メタノール、ヒドラシン等の液体燃料、正極活物質
として空気を用い、電解質として水酸化カリウムや硫酸
を用いる液体燃料電池は、構造が単純なこと等の理由か
ら僻地用電源としてあるいは通信用電源としての活用が
期待されている。しかしながら、少容量の液体燃料電池
を長時間継続して運転制御することについては特有の課
題を有している。
2. Description of the Related Art A liquid fuel cell that uses a liquid fuel such as methanol or hydracin as a negative electrode active material, air as a positive electrode active material, and potassium hydroxide or sulfuric acid as an electrolyte has a simple structure. For these reasons, it is expected to be used as a remote power source or a communication power source. However, there is a particular problem in controlling the operation of a small capacity liquid fuel cell continuously for a long time.

【0003】すなわち、図5は従来の100ワット級の
液体燃料電池における電池系統を示す説明図であり、図
に示すように電池本体と燃料タンクとを別体のものとし
て製造するとともに、冷起動時から定常運転までの運転
条件を一定に保つために多くの機器、すなわち液体燃料
の昇温用ヒータ、液冷却用ラジエータをはじめ、制御用
の機器として、温度検出器、濃度検出器、タンク液レベ
ル検出器、電磁弁、制御器等の補助装置、あるいは燃料
移送用ポンプ等を必要とし同時に外部電力も必要として
いる。
That is, FIG. 5 is an explanatory view showing a cell system in a conventional liquid fuel cell of 100 watt class. As shown in the figure, the cell body and the fuel tank are manufactured as separate bodies, and cold start is performed. In order to maintain constant operating conditions from time to steady operation, many devices are used, such as heaters for heating liquid fuel, radiators for liquid cooling, and temperature detectors, concentration detectors, tank liquids as control devices. It requires auxiliary devices such as level detectors, solenoid valves, and controllers, or fuel transfer pumps, and at the same time requires external power.

【0004】基本的制御手法としては、濃度計により燃
料濃度を測定しかつ別途温度計により温度を検出し、両
者の値に基づき燃料の補給あるいは水の補給を選択的に
行うことにより燃料濃度の制御を行うようになってい
る。しかしながら濃度計は一般に複雑で高価でありなが
ら信頼性に欠けるものであり必ずしも満足する結果が得
られていない。
As a basic control method, the fuel concentration is measured by a densitometer and the temperature is separately detected by a thermometer, and the fuel or water is selectively replenished based on the values of both, to determine the fuel concentration. It is designed to control. However, densitometers are generally complicated and expensive, but lack reliability, and satisfactory results have not always been obtained.

【0005】本発明者らは上記の装置を実際に有効出力
100ワットの状態で一定時間運転し、その時の補助装
置の運転に必要な動力を測定したところ約25ワットに
も及んでいた(表1における従来型装置の項参照)。ま
た、さらに実験を重ねることにより、上記のような従来
の補助装置を用いた運転方法においては、電池本体の有
効出力と補助装置の運転に必要な補助電力とは比例せ
ず、どのような小規模の運転システムであっても一定の
補助電力が必要となることも知覚した。従って、液体燃
料電池を小容量電源として用いようとする場合、有効電
力に対する無効電力(電池システムを運転するためにシ
ステム内で消費される電力)の割合は急激に増加し経済
的に成り立たないシステムとなることが分かった。
The present inventors actually operated the above-mentioned device for a certain period of time with an effective output of 100 watts, and measured the power required to operate the auxiliary device at that time, and it was about 25 watts (Table) See the section on conventional equipment in 1). Further, by further conducting experiments, in the above-mentioned conventional operation method using the auxiliary device, the effective output of the battery main body and the auxiliary power required for the operation of the auxiliary device are not proportional to each other. We also perceived that a certain amount of auxiliary power is required even for a large-scale driving system. Therefore, when a liquid fuel cell is used as a small-capacity power source, the ratio of reactive power (power consumed in the system to operate the battery system) to active power increases sharply and is not economically viable system. It turns out that

【0006】また、多くの手段を組み合わせた制御シス
テムであることから長日数無人下の状態で運転すること
は事実上不可能であり、さらに、ヒータを用いる場合に
はどうしても外部電源を必要とすることから、まったく
独立した電源とし使用することも困難であった。さら
に、従来メタノール−空気燃料電池の燃料濃度コントロ
ールの一例として、J. Electrochem. Soc., Vol. 18. N
o. 9, P1523 (1971)において、K. J. Cathroによる "Fu
el Cintrol in Methanol-Air and Formaldehyde-Air Fu
el Cell System" と題し論じられている。この文献にお
いては、2つの方法すなわち、(1)サイクリックボルタ
ムメトリ応用の直接濃度検知法、(2)負荷電流、消費燃
料算出のファラデー法応用の2方法が述べられている。
いずれの方法においても外部から電気化学的に何らかの
反応を与える必要があり、装置は複雑になり、また温度
大きく依存している点は克服すべき課題となっている。
Further, since it is a control system in which many means are combined, it is practically impossible to operate in an unmanned state for a long period of time, and when a heater is used, an external power source is inevitably required. Therefore, it was difficult to use it as a completely independent power source. Furthermore, as an example of fuel concentration control of a conventional methanol-air fuel cell, J. Electrochem. Soc., Vol.
o. 9, P1523 (1971), "Fu by KJ Cathro.
el Cintrol in Methanol-Air and Formaldehyde-Air Fu
El Cell System ". In this document, two methods are used: (1) direct concentration sensing method using cyclic voltammetry, (2) load current, Faraday method for calculating fuel consumption. Two methods are described.
In either method, it is necessary to externally apply some kind of reaction electrochemically, the apparatus becomes complicated, and the point that the temperature largely depends is a problem to be overcome.

【0007】上記のような理由から、液体燃料電池は、
僻地での小出力用電源として期待されていがら今だ実用
の域に達していないのが実情である。本発明の目的は、
上記のような従来の液体燃料電池の持つ不都合を解決
し、長時間完全無人運転−無調製、無保守−を可能にし
た連続運転の小容量、自立型燃料電池を提供することを
目的としている。
For the above reasons, the liquid fuel cell is
Although expected as a small output power source in remote areas, the reality is that it has not yet reached the level of practical use. The purpose of the present invention is to
An object of the present invention is to solve the above-mentioned disadvantages of the conventional liquid fuel cell and to provide a continuous operation small capacity, self-sustaining fuel cell capable of long-time completely unattended operation-no preparation, no maintenance. ..

【0008】[0008]

【課題を解決するための手段】上記の課題を解決し目的
を達成するために、本発明者らは、液体燃料電池の運転
制御のための補助装置の単純化(部品の廃止あるいは小
容量化)による無効電力を極小化しかつ四季による外気
温の変化に影響されずに無人運転が可能なシステムにつ
いて鋭意研究を行った。
In order to solve the above problems and achieve the object, the inventors of the present invention have simplified the auxiliary device for controlling the operation of the liquid fuel cell (abolition of parts or reduction in capacity). ) Was conducted, and a diligent research was conducted on a system that enables unmanned operation without being affected by changes in the outside temperature due to the four seasons.

【0009】その結果、補助装置の簡略化と燃料電池運
転時に電池自身で消費される電力の極小化については、
電池運転の主要素である燃料濃度制御に対しては、燃料
温度のみによる運転制御方式に替えることにより達成し
た。具体的には、燃料電池本体と燃料タンクとを一体化
して発電時の化学反応状態に近い液温を一定時間間隔で
計測し、その計測値を予め定めた設定運転温度範囲と比
較し、計測温度が設定した下限値よりも低い場合には電
池付属タンクの燃料濃度を上げて昇温するために別設置
の予備燃料タンクより燃料を供給し、計測温度が設定温
度の上限値より高くなった場合には電池付属タンクの燃
料濃度を下げて降温させるためにもう一つの別置の希釈
剤タンクより例えば純水を供給する一連の制御により、
濃度制御と燃料温度制御を同時に行うようにした。そり
により、従来方式では必要であった、起動時ヒータ、ラ
ジエータ、燃料冷却ファン、水循環ポンプ、温度センサ
ー、及び各種の制御装置を省略することができ、さら
に、前記のように付属燃料タンクを電池本体と一体化し
た結果、燃料タンクと電池本体の間のあるいは燃料タン
ク内での燃料供給ポンプも省略でき、シンプルでかつ従
来の濃度制御方式よりも安定した運転性能を有する小型
電池システムを構築することができた。
As a result, regarding the simplification of the auxiliary device and the minimization of the electric power consumed by the cell itself during the operation of the fuel cell,
The fuel concentration control, which is the main element of cell operation, was achieved by changing to the operation control method based only on the fuel temperature. Specifically, the fuel cell body and the fuel tank are integrated to measure the liquid temperature close to the chemical reaction state at the time of power generation at fixed time intervals, and the measured value is compared with a preset operating temperature range, and measured. When the temperature is lower than the set lower limit value, the fuel is supplied from a separately installed spare fuel tank to raise the fuel concentration in the battery attached tank and raise the temperature, and the measured temperature becomes higher than the upper limit value of the set temperature. In this case, a series of controls, for example, to supply pure water from another separate diluent tank to lower the fuel concentration in the tank attached to the battery to lower the temperature,
Concentration control and fuel temperature control were performed simultaneously. With the sled, the start-up heater, radiator, fuel cooling fan, water circulation pump, temperature sensor, and various control devices, which were required in the conventional method, can be omitted. As a result of being integrated with the main body, the fuel supply pump between the fuel tank and the cell main body or in the fuel tank can be omitted, and a small battery system with simple and stable operation performance compared to the conventional concentration control method is constructed. I was able to do it.

【0010】[0010]

【実施例】以下、実施例に基づき本発明をより詳細に説
明する。図1は本発明を実施するための液体燃料電池の
一実施例の構成を示している。10は1〜2ワットの小
容量の酸性電解型メタノール−空気燃料電池であり、酸
化剤極と燃料極及び電解質からなる単位電池をセパレー
タを介して複数個積層した燃料電池本体11と燃料であ
るメタノールを収容した燃料タンク12とが一体に構成
されており、電池本体11の酸化剤極には電池ケース上
方に設置した空気供給ファン13により空気が供給さ
れ、燃料極には燃料タンク12内のメタノールが各セル
の溝14を介して自然循環により供給される。
The present invention will be described in more detail based on the following examples. FIG. 1 shows the configuration of an embodiment of a liquid fuel cell for carrying out the present invention. Reference numeral 10 is a small-capacity acidic electrolysis type methanol-air fuel cell of 1 to 2 watts, which is a fuel and a fuel cell main body 11 in which a plurality of unit cells composed of an oxidizer electrode, a fuel electrode, and an electrolyte are stacked with a separator interposed therebetween. A fuel tank 12 containing methanol is integrally formed. Air is supplied to the oxidizer electrode of the cell body 11 by an air supply fan 13 installed above the cell case, and the fuel electrode is provided in the fuel tank 12. Methanol is supplied by natural circulation through the groove 14 of each cell.

【0011】燃料タンク12には液面計であるフロート
センサー15及び温度計16が取り付けられており、フ
ロートセンサー15及び温度計16の計測情報は制御器
20に送られる。燃料電池10とは分離して予備燃料タ
ンク30及び水タンク40が設けられ、予備燃料タンク
30には燃料としてのメタノールが及び水タンク40に
は希釈剤としての純水が収納される。予備燃料タンク3
0と水タンク40とは管路50を介して燃料タンク12
に接続しており、管路途中には、電磁弁31及び41が
介装される。該電磁弁31及び41とは制御器からの信
号により開閉動作を行い燃料あるいは純粋を燃料タンク
12に供給する。
A float sensor 15 and a thermometer 16 which are liquid level gauges are attached to the fuel tank 12, and the measurement information of the float sensor 15 and the thermometer 16 is sent to a controller 20. A spare fuel tank 30 and a water tank 40 are provided separately from the fuel cell 10. The spare fuel tank 30 stores methanol as a fuel and the water tank 40 stores pure water as a diluent. Spare fuel tank 3
0 and the water tank 40 are connected to the fuel tank 12 via a pipe 50.
And solenoid valves 31 and 41 are provided in the middle of the pipeline. The solenoid valves 31 and 41 are opened / closed by a signal from a controller to supply fuel or pure fuel to the fuel tank 12.

【0012】また、この実施例において、電圧の昇圧と
安定化を兼ねて DC/DCコンバータ50により電圧を一定
値以上に昇圧することとし、蓄電池60に充電したうえ
で負荷側70に電力供給するようにしている。制御器2
0は、所定時間間隔毎に温度計16からの信号を計測す
ると共に、それが予め定めた温度範囲の上限値を越えて
いる場合には電磁弁41を開とする信号を発し、下限値
よりも低い場合には電磁弁31を開とする信号を発す
る。さらに、フロートセンサー15からの信号を受信
し、燃料タンク12の液面が予め定めた上限レベルとな
ったときに電磁弁31あるいは41を閉とする信号を発
するようになっている。
Further, in this embodiment, the voltage is boosted to a certain value or more by the DC / DC converter 50 in order to both boost and stabilize the voltage, and the storage battery 60 is charged before power is supplied to the load side 70. I am trying. Controller 2
0 measures the signal from the thermometer 16 at every predetermined time interval, and when it exceeds the upper limit value of the predetermined temperature range, issues a signal to open the solenoid valve 41, and from the lower limit value. If is also low, a signal to open the solenoid valve 31 is issued. Further, it receives a signal from the float sensor 15 and outputs a signal to close the solenoid valve 31 or 41 when the liquid level of the fuel tank 12 reaches a predetermined upper limit level.

【0013】上記の装置を用いて本発明による燃料電池
の運転を制御する方法について説明する。この種の燃料
電池において、発電が始まり時間が経過すると燃料タン
ク12内のメタノール濃度が次第に低下し電池内の化学
反応が減少して燃料タンク内の液温が下がってくる。液
温が予め定めた下限値よりも低い値となったとき予備燃
料タンク30からメタノールを補給する。それにより燃
料タンク内のメタノール濃度が上がり液温も上昇する。
液温が予め設定された上限値以上になったとき水タンク
40から水を補給する。この水により液温は一時的に急
降下するとともにタンク12内のメタノール濃度を下げ
過度の化学反応を抑制する。従って、本発明の運転制御
方法によれば、燃料の濃度と温度とを同時に所定の数値
範囲に保持することが可能となる。
A method for controlling the operation of the fuel cell according to the present invention using the above apparatus will be described. In this type of fuel cell, when power generation starts and time elapses, the concentration of methanol in the fuel tank 12 gradually decreases, the chemical reaction in the cell decreases, and the liquid temperature in the fuel tank decreases. When the liquid temperature becomes lower than a predetermined lower limit value, methanol is replenished from the auxiliary fuel tank 30. As a result, the concentration of methanol in the fuel tank rises and the liquid temperature also rises.
When the liquid temperature exceeds a preset upper limit value, water is replenished from the water tank 40. This water causes the liquid temperature to suddenly drop sharply and lowers the concentration of methanol in the tank 12 to suppress an excessive chemical reaction. Therefore, according to the operation control method of the present invention, it is possible to simultaneously maintain the fuel concentration and temperature within a predetermined numerical range.

【0014】次に、図1に示した実機を用いて本発明の
運転制御方法を実行した場合の例について述べる。用い
た燃料電池10は有効出力1ワット、白金触媒電極であ
り、電解質は陽イオン交換膜(Nafion, Du Pont 社)、
スチレンスルホン酸を用い、電池積層数は8セルで、そ
の電池出力電圧1.6〜3.2ボルトをDC/DC コンバー
タ50を通して14ボルトに昇圧する仕様として実験を
行った。
Next, an example in which the operation control method of the present invention is executed by using the actual machine shown in FIG. 1 will be described. The fuel cell 10 used was a platinum catalyst electrode with an effective output of 1 watt, the electrolyte was a cation exchange membrane (Nafion, Du Pont),
An experiment was conducted by using styrene sulfonic acid, the number of stacked batteries was 8, and the battery output voltage of 1.6 to 3.2 V was boosted to 14 V through the DC / DC converter 50.

【0015】電池運転開始に際し、電池温度(燃料タン
ク12の液温温度)を42℃設定した。以降、60分毎
に温度計測し、液温TがT>60℃のときは水タンクか
ら給水(常温)し、T<=60℃のときは予備タンク3
0からメタノールを注入(常温)する指令を制御器20
から発した。給水あるいはメタノール注入後燃料タンク
12の液面レベルを検知し所定レベルに達したとき電磁
弁41あるいは31を閉じる信号を発した。結果は、起
動後、第1回、第2回、第3回の計測時点ではT<=6
0℃であったのでメタノールを注入した。第4回目の計
測時点ではT>60℃となっていたので水を注入した。
それ以降は、メタノール2回、水1回のサイクルを繰り
返した。結果として平均液温はT=54+−6℃に保持
されていた。また、コンバータ出力電圧は、ほぼ14ボ
ルトと一定であつた。
At the start of the battery operation, the battery temperature (liquid temperature temperature of the fuel tank 12) was set to 42 ° C. Thereafter, the temperature is measured every 60 minutes, and when the liquid temperature T is T> 60 ° C, water is supplied from the water tank (normal temperature), and when T <= 60 ° C, the reserve tank 3 is used.
Controller 20 gives a command to inject methanol from 0 (normal temperature)
Emitted from. After water supply or methanol injection, the liquid level of the fuel tank 12 was detected, and when it reached a predetermined level, a signal was issued to close the solenoid valve 41 or 31. The result shows that T <= 6 at the first, second, and third measurement points after activation.
Since it was 0 ° C, methanol was injected. At the time of the fourth measurement, T> 60 ° C., so water was injected.
After that, the cycle of methanol twice and water once was repeated. As a result, the average liquid temperature was kept at T = 54 + -6 ° C. The converter output voltage was constant at about 14 volts.

【0016】その際の前記した無効電力を表1の「本装
置」の項に示した。表1において従来型装置と本装置と
は両者の有効出力が大きく異なるためこのまま比較する
ことはむずかしいが、表中の(5)〜(9)の項目は電池の容
量に比較的リンクするものであり、(1)〜(4)は電池の容
量に関係なくほぼ一定となるためもし従来方式で1ワッ
ト級電池を構成したとすると無効電力が有効電力に対し
て10倍以上となり実用上実施困難であるが、本発明に
よる場合には十分実行可能となることが容易に推測でき
る(なお、(10)の起動時ヒータ分の電力は計算上除いて
ある)。
The above-mentioned reactive power at that time is shown in the section "this device" in Table 1. In Table 1, it is difficult to compare the conventional device and this device as they are, because the effective outputs of both are significantly different, but items (5) to (9) in the table are relatively linked to the battery capacity. Yes, since (1) to (4) are almost constant regardless of the capacity of the battery, if a 1-watt class battery is constructed by the conventional method, the reactive power is 10 times or more the active power and it is difficult to practically implement. However, in the case of the present invention, it can be easily inferred that it can be sufficiently executed (note that the power for the starting heater in (10) is excluded from the calculation).

【0017】[0017]

【表1】 [Table 1]

【0018】次に、異なった外気条件の下で同じ実機を
用いて同様な運転制御を行った。一つは外気温−2℃の
条件下で、もう一つは外気温40℃の条件下でほぼ15
0時間無人下で継続運転した。その時の液温変化とコン
バータ出力変化を図2(外気温−2℃)、図3(外気温
40℃)に示した。における液温変化と、コンバータ出
力電圧を示す。図に示されるようにいずれの場合も全期
間に亘りほぼ一定の出力電圧を示した。
Next, similar operation control was performed using the same actual machine under different outside air conditions. One is under the condition of outside temperature -2 ° C, and the other is under the condition of outside temperature 40 ° C.
It continued to run unattended for 0 hours. The change in liquid temperature and the change in converter output at that time are shown in FIG. 2 (outside temperature-2 ° C.) and FIG. 3 (outside temperature 40 ° C.). Shows the change in the liquid temperature and the converter output voltage. As shown in the figure, in all cases, the output voltage was almost constant over the entire period.

【0019】さらに、自然環境の下にかつ無人下で同じ
装置を設置し4400時間にわたる連続実験を行った。
その結果を図4に示す。図に示されるように電池温度
(液温)、出力電圧とも所期の性能が得られた。
Further, the same apparatus was installed under a natural environment and unattended, and a continuous experiment was conducted for 4400 hours.
The result is shown in FIG. As shown in the figure, the desired performance was obtained for both the battery temperature (liquid temperature) and the output voltage.

【0020】[0020]

【発明の効果】以上の実験結果からも明らかなように、
本発明においては、従来の燃料電池の運転制御要素とし
て行われていた複雑で高価でありながら信頼性に欠ける
濃度コントロールに換えて、液温のみによる制御を行う
ようにしたので、装置の簡素化が図られかつ無人下での
運転制御が可能となった。
As is clear from the above experimental results,
In the present invention, instead of the complicated and expensive concentration control which is lacking in reliability which was performed as the operation control element of the conventional fuel cell, the control is performed only by the liquid temperature, so that the apparatus is simplified. It is possible to achieve unmanned operation control.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による液体燃料電池の運転制御装置を
示す説明図。
FIG. 1 is an explanatory view showing an operation control device of a liquid fuel cell according to the present invention.

【図2】 本発明による運転制御方法による場合の電池
温度と出力電圧の経時変化を示す図。
FIG. 2 is a diagram showing changes with time in battery temperature and output voltage in the case of the operation control method according to the present invention.

【図3】 他の条件したの電池温度と出力電圧の経時変
化を示す図。
FIG. 3 is a diagram showing changes over time in battery temperature and output voltage under other conditions.

【図4】 さらに他の条件したの電池温度と出力電圧の
経時変化を示す図。
FIG. 4 is a diagram showing changes over time in battery temperature and output voltage under other conditions.

【図5】 従来の方法による液体燃料電池の運転制御装
置を示す説明図。
FIG. 5 is an explanatory diagram showing an operation control device for a liquid fuel cell according to a conventional method.

【符号の説明】[Explanation of symbols]

10…液体燃料電池、11…燃料電池他体、12…付属
燃料タンク、13…空気供給ファン、15…液面検出用
フロートセンサー15、16…温度計、20…制御器2
0、30…予備燃料タンク、40…希釈剤タンク。
10 ... Liquid fuel cell, 11 ... Fuel cell other body, 12 ... Attached fuel tank, 13 ... Air supply fan, 15 ... Liquid level detection float sensor 15, 16 ... Thermometer, 20 ... Controller 2
0, 30 ... Spare fuel tank, 40 ... Diluent tank.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 朝日 聖隆 神奈川県横須賀市船倉町330番地 日立機 械エンジニアリング株式会社久里浜分工場 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Seitaka Asahi 330 Funakura-cho, Yokosuka City, Kanagawa Prefecture Hitachi Machine Engineering Co., Ltd. Kurihama Branch Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸化剤極と燃料極及び電解質からなる単位
電池をセパレータを介して複数個積層し液体燃料を直接
燃料とする液体燃料電池の運転制御方法であって、燃料
電池本体に付設した燃料タンク内の燃料温度を計測し、
予め設定した設定運転温度範囲に対して、計測値がその
上限値を越えた場合には希釈剤を燃料タンクに供給し、
計測値が下限値以下になった場合には液体燃料を燃料タ
ンクに供給することにより燃料濃度をほぼ一定に維持し
て運転することを特徴とする、液体燃料電池の運転制御
方法。
1. A method for controlling the operation of a liquid fuel cell in which a plurality of unit cells composed of an oxidizer electrode, a fuel electrode, and an electrolyte are stacked with a separator interposed therebetween, and the liquid fuel is directly used as a fuel. Measure the fuel temperature in the fuel tank,
When the measured value exceeds the upper limit of the preset operating temperature range, the diluent is supplied to the fuel tank,
An operation control method for a liquid fuel cell, characterized in that, when the measured value is equal to or lower than a lower limit value, the liquid fuel is supplied to a fuel tank to maintain the fuel concentration substantially constant for operation.
【請求項2】液体燃料が、メタノール、ホルマリン、蟻
酸、ヒドラジンから選ばれるものの中の少なくとも1の
液体物質であり、希釈剤が「純水」であることを特徴と
する、請求項1記載の液体燃料電池の運転制御方法。
2. The liquid fuel according to claim 1, wherein the liquid fuel is at least one liquid substance selected from methanol, formalin, formic acid, and hydrazine, and the diluent is “pure water”. Liquid fuel cell operation control method.
【請求項3】酸化剤極と燃料極及び電解質からなる単位
電池をセパレータを介して複数個積層し液体燃料を直接
燃料とする液体燃料電池の運転制御装置であって、燃料
電池本体に付設した燃料タンク内の燃料温度を計測する
温度計測手段と、予備液体燃料タンクと、希釈剤タンク
を少なくとも有し、予め設定した運転温度範囲に対し
て、該温度計測手段の計測値がその上限値を越えた場合
には希釈剤タンク内の希釈剤を燃料タンクに供給する手
段、計測値が下限値以下になった場合には予備燃料タン
ク内の液体燃料を燃料タンクに供給する手段とをさらに
有していることを特徴とする、液体燃料電池の運転制御
装置。
3. An operation control device for a liquid fuel cell in which a plurality of unit cells each composed of an oxidizer electrode, a fuel electrode and an electrolyte are stacked with a separator interposed therebetween and a liquid fuel is used directly as a fuel, which is attached to a fuel cell body. It has at least a temperature measuring means for measuring the fuel temperature in the fuel tank, a spare liquid fuel tank, and a diluent tank, and the measured value of the temperature measuring means has an upper limit value with respect to a preset operating temperature range. When it exceeds the limit, it further has a means for supplying the diluent in the diluent tank to the fuel tank, and a means for supplying the liquid fuel in the auxiliary fuel tank to the fuel tank when the measured value becomes less than or equal to the lower limit value. An operation control device for a liquid fuel cell, which is characterized in that:
JP4053795A 1992-03-12 1992-03-12 Operation control method and apparatus for liquid fuel battery Pending JPH05258760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4053795A JPH05258760A (en) 1992-03-12 1992-03-12 Operation control method and apparatus for liquid fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4053795A JPH05258760A (en) 1992-03-12 1992-03-12 Operation control method and apparatus for liquid fuel battery

Publications (1)

Publication Number Publication Date
JPH05258760A true JPH05258760A (en) 1993-10-08

Family

ID=12952757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4053795A Pending JPH05258760A (en) 1992-03-12 1992-03-12 Operation control method and apparatus for liquid fuel battery

Country Status (1)

Country Link
JP (1) JPH05258760A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178818A (en) * 2002-11-22 2004-06-24 Toshiba Corp Fuel cell system
JP2005116333A (en) * 2003-10-08 2005-04-28 Hitachi Ltd Fuel cell device and its control method
JP2005203355A (en) * 2003-12-17 2005-07-28 Matsushita Electric Ind Co Ltd Fuel cell system and method of generating electric power in fuel cell system
WO2005117183A1 (en) 2004-05-27 2005-12-08 Mitsubishi Pencil Co., Ltd. Fuel reservoir for fuel cell
JP2006080092A (en) * 2002-06-12 2006-03-23 Toshiba Corp Direct methanol fuel cell system, fuel cartridge, and memory for fuel cartridge
JP2006196414A (en) * 2005-01-17 2006-07-27 Hitachi Ltd Fuel cell inspection system
JP2006318715A (en) * 2005-05-11 2006-11-24 Nec Corp Polymer electrolyte fuel cell and operation method of polymer electrolyte fuel cell
KR100675691B1 (en) * 2000-12-29 2007-02-01 주식회사 엘지이아이 Apparatus for contolling fuel temperature of fc and thereof method
US7276303B2 (en) 2002-12-26 2007-10-02 Kabushiki Kaisha Toshiba Direct methanol fuel cell system, portable electronic appliance, and method of detecting an amount of liquid fuel remaining in direct methanol type fuel cell system
JP2008066081A (en) * 2006-09-06 2008-03-21 Fujitsu Ltd Fuel cell device, control device, and program
JP2008143601A (en) * 2006-12-08 2008-06-26 Green Hydrotec Inc Portable liquid feeding system and liquid feeding kit
DE112007000759T5 (en) 2006-03-27 2009-01-29 Mitsubishi Pencil Co. Limited fuel cell
JP2009140934A (en) * 2002-11-28 2009-06-25 Toshiba Corp Direct fuel cell power generator
US7556877B2 (en) 2002-07-26 2009-07-07 Mitsubishi Pencil Kabushiki Kaisha Direct methanol fuel cell
US7582371B2 (en) 2003-06-09 2009-09-01 Panasonic Corporation Fuel cell system having fuel and water controlling means
US7615305B2 (en) 2004-06-08 2009-11-10 Mitsubishi Pencil Co., Ltd. Fuel reservoir for fuel cell
US7727657B2 (en) 2004-06-25 2010-06-01 Mitsubishi Pencil Co., Ltd. Fuel reservoir for fuel cell
US7851106B2 (en) 2005-02-04 2010-12-14 Mitsubishi Pencil Co., Ltd. Fuel cartridge
US7883815B2 (en) 2004-06-25 2011-02-08 Mitsubishi Pencil Co., Ltd. Fuel-storing tank for fuel cell
US7951504B2 (en) 2006-06-05 2011-05-31 Mitsubishi Pencil Company, Limited Fuel cartridge
US8053120B2 (en) 2005-12-14 2011-11-08 Kabushiki Kaisha Toshiba Fuel cell system and control method thereof
US8076043B2 (en) 2003-06-18 2011-12-13 Panasonic Corporation Fuel cell
US8124291B2 (en) 2007-06-12 2012-02-28 Kabushiki Kaisha Toshiba Fuel cell system and control method thereof
US8142945B2 (en) * 2005-11-10 2012-03-27 Samsung Sdi Co., Ltd. Method for controlling peripheral system and fuel cell system using the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675691B1 (en) * 2000-12-29 2007-02-01 주식회사 엘지이아이 Apparatus for contolling fuel temperature of fc and thereof method
JP2006080092A (en) * 2002-06-12 2006-03-23 Toshiba Corp Direct methanol fuel cell system, fuel cartridge, and memory for fuel cartridge
US7556877B2 (en) 2002-07-26 2009-07-07 Mitsubishi Pencil Kabushiki Kaisha Direct methanol fuel cell
US7625656B2 (en) 2002-07-26 2009-12-01 Mitsubishi Pencil Kabushiki Kaisha Direct methanol fuel cell
JP2004178818A (en) * 2002-11-22 2004-06-24 Toshiba Corp Fuel cell system
US7563524B2 (en) 2002-11-22 2009-07-21 Kabushiki Kaisha Toshiba Fuel cell system
JP2009140934A (en) * 2002-11-28 2009-06-25 Toshiba Corp Direct fuel cell power generator
US7374832B2 (en) 2002-12-26 2008-05-20 Kabushiki Kaisha Toshiba Direct methanol fuel cell system, portable electronic appliance, and method of detecting an amount of liquid fuel remaining in direct methanol type fuel cell system
US7276303B2 (en) 2002-12-26 2007-10-02 Kabushiki Kaisha Toshiba Direct methanol fuel cell system, portable electronic appliance, and method of detecting an amount of liquid fuel remaining in direct methanol type fuel cell system
US7582371B2 (en) 2003-06-09 2009-09-01 Panasonic Corporation Fuel cell system having fuel and water controlling means
US8076043B2 (en) 2003-06-18 2011-12-13 Panasonic Corporation Fuel cell
JP2005116333A (en) * 2003-10-08 2005-04-28 Hitachi Ltd Fuel cell device and its control method
JP2005203355A (en) * 2003-12-17 2005-07-28 Matsushita Electric Ind Co Ltd Fuel cell system and method of generating electric power in fuel cell system
US7579096B2 (en) 2004-05-27 2009-08-25 Mitsubishi Pencil Co., Ltd. Fuel reservoir for fuel cell
US7771890B2 (en) 2004-05-27 2010-08-10 Mitsubishi Pencil Co., Ltd. Method of preventing leak of liquid fuel
US8173318B2 (en) 2004-05-27 2012-05-08 Mitsubishi Pencil Co., Ltd. Fuel reservoir for fuel cell
WO2005117183A1 (en) 2004-05-27 2005-12-08 Mitsubishi Pencil Co., Ltd. Fuel reservoir for fuel cell
US7615305B2 (en) 2004-06-08 2009-11-10 Mitsubishi Pencil Co., Ltd. Fuel reservoir for fuel cell
US7883815B2 (en) 2004-06-25 2011-02-08 Mitsubishi Pencil Co., Ltd. Fuel-storing tank for fuel cell
US7727657B2 (en) 2004-06-25 2010-06-01 Mitsubishi Pencil Co., Ltd. Fuel reservoir for fuel cell
JP2006196414A (en) * 2005-01-17 2006-07-27 Hitachi Ltd Fuel cell inspection system
US7851106B2 (en) 2005-02-04 2010-12-14 Mitsubishi Pencil Co., Ltd. Fuel cartridge
JP2006318715A (en) * 2005-05-11 2006-11-24 Nec Corp Polymer electrolyte fuel cell and operation method of polymer electrolyte fuel cell
US8142945B2 (en) * 2005-11-10 2012-03-27 Samsung Sdi Co., Ltd. Method for controlling peripheral system and fuel cell system using the same
US8053120B2 (en) 2005-12-14 2011-11-08 Kabushiki Kaisha Toshiba Fuel cell system and control method thereof
US8263282B2 (en) 2005-12-14 2012-09-11 Kabushiki Kaisha Toshiba Fuel cell system and control method thereof
DE112007000759T5 (en) 2006-03-27 2009-01-29 Mitsubishi Pencil Co. Limited fuel cell
US9373851B2 (en) 2006-03-27 2016-06-21 Mitsubishi Pencil Company, Limited Fuel cell
US7951504B2 (en) 2006-06-05 2011-05-31 Mitsubishi Pencil Company, Limited Fuel cartridge
JP2008066081A (en) * 2006-09-06 2008-03-21 Fujitsu Ltd Fuel cell device, control device, and program
US7918370B2 (en) 2006-12-08 2011-04-05 Green Hydrotec Inc. Portable fluid delivering system and kit
JP2008143601A (en) * 2006-12-08 2008-06-26 Green Hydrotec Inc Portable liquid feeding system and liquid feeding kit
US8124291B2 (en) 2007-06-12 2012-02-28 Kabushiki Kaisha Toshiba Fuel cell system and control method thereof

Similar Documents

Publication Publication Date Title
JPH05258760A (en) Operation control method and apparatus for liquid fuel battery
US9035617B2 (en) Control system for a flow cell battery
Fernández-Moreno et al. A portable system powered with hydrogen and one single air-breathing PEM fuel cell
EP3360193B1 (en) Sealed aqueous flow battery systems with in-tank electrolyte rebalancing
Laurencelle et al. Characterization of a ballard MK5‐E proton exchange membrane fuel cell stack
Jang et al. Dynamic cell performance of kW-grade proton exchange membrane fuel cell stack with dead-ended anode
JP2004530259A (en) Cold start and temperature control method and apparatus for fuel cell system
WO2004030134A1 (en) Liquid fuel direct supply fuel cell system and its operation controlling method and controller
RU2006127407A (en) REGULATION OF WATER DISTRIBUTION IN FUEL ELEMENTS
JP2020196906A (en) Abnormality diagnosis program of water electrolysis apparatus, and water electrolysis system
US20110033764A1 (en) Fuel cell system with wetness sensor
JP4172792B2 (en) Method for detecting fuel concentration in direct methanol fuel cell and direct methanol fuel cell system
CN113839065A (en) Thermal compensation temperature control system and control method for cooling water loop of fuel cell
Wang et al. Transient investigation of passive alkaline membrane direct methanol fuel cell
CN102110827B (en) Thermal management method for high temperature proton exchange membrane fuel cell system
CN103918114B (en) For stablize the method and system of the operation of DMFC in the situation that of varying duty and zubzero temperature
US20080057364A1 (en) Fuel cell device, control device, and program cross-reference to related applications
CN108091914B (en) Method for slowing down capacity fade of all-vanadium redox flow battery and ion permeability testing device
CN103165928A (en) Fuel cell test platform circulating water control system based on control of programmable logic controller (PLC)
CN107851826B (en) Method for measuring and controlling methanol concentration in methanol fuel cell
JP2007066680A (en) Fuel cell system
KR101848537B1 (en) Control system for a sealed coolant flow field fuel cell power plant having a water reservoir
Scott et al. Modelling transport phenomena and performance of direct methanol fuel cell stacks
CN203179989U (en) Fuel battery test platform circulation water control system based on PLC control
CN207883818U (en) Ion permeability test device and all-vanadium redox flow battery system