JPS598273Y2 - Vacuum cutter - Google Patents

Vacuum cutter

Info

Publication number
JPS598273Y2
JPS598273Y2 JP1979101637U JP10163779U JPS598273Y2 JP S598273 Y2 JPS598273 Y2 JP S598273Y2 JP 1979101637 U JP1979101637 U JP 1979101637U JP 10163779 U JP10163779 U JP 10163779U JP S598273 Y2 JPS598273 Y2 JP S598273Y2
Authority
JP
Japan
Prior art keywords
electrodes
electrode
shield
magnetic field
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979101637U
Other languages
Japanese (ja)
Other versions
JPS5618638U (en
Inventor
孝光 佐野
泰司 野田
建四郎 小山田
Original Assignee
株式会社明電舎
株式会社ゼムバツク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎, 株式会社ゼムバツク filed Critical 株式会社明電舎
Priority to JP1979101637U priority Critical patent/JPS598273Y2/en
Publication of JPS5618638U publication Critical patent/JPS5618638U/ja
Application granted granted Critical
Publication of JPS598273Y2 publication Critical patent/JPS598273Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【考案の詳細な説明】 本考案は真空しゃ断器に関するものである。[Detailed explanation of the idea] The present invention relates to a vacuum breaker.

真空しゃ断器は高電圧化の一途をたどり、現在では84
KV級のものが出現し、さらに超高電圧化されつつあ
る。
The voltage of vacuum breakers continues to increase, and currently 84
KV class voltages have appeared, and ultra-high voltage voltages are on the way.

第1図に現在の84 KV級の真空しゃ断器を示す。Figure 1 shows the current 84 KV class vacuum breaker.

図において、1,2は接続リング3,4および中間リン
グ5を介して夫々の一端を接続された各絶縁筒、6,7
は夫々絶縁筒1,2の他端に接続リング8,9を介して
取付けられた固定側端板および可動側端板で、これらの
部材により真空容器を形戒する。
In the figure, 1 and 2 are insulating cylinders 6 and 7 connected at one end through connection rings 3 and 4 and an intermediate ring 5, respectively.
A fixed side end plate and a movable side end plate are attached to the other ends of the insulating cylinders 1 and 2 via connecting rings 8 and 9, respectively, and these members form a vacuum container.

10は固定側端板6に挿着された固定リード棒、11は
可動側端板7に挿通されるとともにベローズ12を介し
て可動側端板7と接続された可動リード棒、13.14
は夫々各リード棒10.11の先端に相互に対向するよ
う取付けられた固定電極および可動電極で、各電極13
.14は夫々対向電極と接離自在に接触する接触電極部
13 a ,14 aと通電時に軸方向磁界を発生する
コイル電極部13b,14bを有する。
10 is a fixed lead rod inserted into the fixed end plate 6; 11 is a movable lead rod inserted into the movable end plate 7 and connected to the movable end plate 7 via the bellows 12; 13.14
are a fixed electrode and a movable electrode attached to the tip of each lead rod 10.11 so as to face each other, and each electrode 13
.. 14 has contact electrode portions 13 a and 14 a that are in contact with the opposing electrode in a manner that allows them to move toward and away from each other, and coil electrode portions 13 b and 14 b that generate an axial magnetic field when energized.

15は両電極13.14を囲むよう中間リング5に取付
けられた主シールド、16.17は夫々端板6,7に接
続リング18.19を介して一端を取付けられた筒状の
シールド支持絶縁体、20.21は夫々シールド支持絶
縁体16.17に接続リング22.23を介して取付け
られた中間シールドで、中間シールド20.21は夫々
主シールド15と各電極13.14との間に位置して各
電極13.14を夫々囲む。
15 is a main shield attached to the intermediate ring 5 so as to surround both electrodes 13.14, and 16.17 is a cylindrical shield supporting insulator attached at one end to the end plates 6 and 7 via connecting rings 18.19. 20.21 are intermediate shields each attached to the shield support insulator 16.17 via a connecting ring 22.23, and the intermediate shield 20.21 is connected between the main shield 15 and each electrode 13.14, respectively. and surrounding each electrode 13, 14 respectively.

又、24.25は夫々各リード棒10,11に取付けら
れた軸シールドおよびベローズシールド、26.27は
夫々端板6,7に取付けられた外シールドである。
Further, 24 and 25 are shaft shields and bellows shields attached to each lead rod 10 and 11, respectively, and 26 and 27 are outer shields attached to end plates 6 and 7, respectively.

尚、13 C ,14 Cは夫々接触電極部13 a
,14 aとコイル電極部13b,14bとの間に設け
た高抵抗材、13 d ,14 dは夫々接触電極部1
3 a ,14 aとコイル電極部13b,14bとの
間に設けた接続導体である。
In addition, 13 C and 14 C are contact electrode parts 13 a, respectively.
, 14a and the coil electrode parts 13b, 14b, and 13d, 14d are the contact electrode parts 1, respectively.
These are connecting conductors provided between 3 a and 14 a and the coil electrode portions 13 b and 14 b.

上記の真空しゃ断器はしゃ断時には図示しない操作装置
により可動リード棒11を下動させ、両電極13.14
を図示状態に開離する。
When the vacuum breaker is cut off, the movable lead rod 11 is moved downward by an operating device (not shown), and both electrodes 13, 14 are
Open as shown.

この際、両電極13.14間にはアークが生じるが、こ
のアークは各コイル電極部13 b ,14 bが生じ
る軸方向磁界により捕捉されて各接触電極部13 a
,14 a上に均一に分布し、かつこの間にとじ込めら
れる。
At this time, an arc is generated between both electrodes 13, 14, but this arc is captured by the axial magnetic field generated by each coil electrode portion 13b, 14b, and is connected to each contact electrode portion 13a.
, 14 a, and is confined therebetween.

このため、アーク集中により各接触電極部13 a ,
14 aから多量の金属蒸気が発生することが防止され
、しゃ断能力が向上する。
Therefore, due to arc concentration, each contact electrode portion 13a,
14a is prevented from generating a large amount of metal vapor, and the shutoff ability is improved.

又、各シールド、特に中間電位の主シールド15および
主シールド15と各電極13.14のほぼ中間の電位を
有する各中間シールド20.21を設けたことにより形
或された各真空ギャップに電極13.14間の電圧を分
担させて耐電圧を向上させ、しゃ断能力の向上と小形化
を図っている。
Further, each vacuum gap formed by providing each shield, in particular a main shield 15 at an intermediate potential and each intermediate shield 20.21 having a potential approximately intermediate between the main shield 15 and each electrode 13.14, is provided with an electrode 13. By sharing the voltage between .

しかし、真空しゃ断器はさらに超高圧化およびしゃ断電
流の増大が望まれており、その場合には電極13.14
間や各シールド間のギャップの長大化、真空容器の大形
化、高価格化などの欠点が生じ、特に電極13.14間
のギャップが長大化するとこのギャップ間における軸方
向磁界の磁束分布に歪を生じて磁束密度が低下し、従っ
て軸方向磁界のアーク捕捉能力が低下してしゃ断能力が
低下する欠点があった。
However, it is desired that the vacuum breaker has an even higher voltage and an increased breaking current, and in that case, the electrodes 13, 14
Disadvantages such as an increase in the gap between the electrodes 13 and each shield, an increase in the size of the vacuum vessel, and an increase in price occur.In particular, if the gap between the electrodes 13 and 14 becomes long, the magnetic flux distribution of the axial magnetic field between the gaps will be affected. This has the disadvantage that distortion occurs and the magnetic flux density decreases, resulting in a decrease in the arc trapping ability of the axial magnetic field and a decrease in the interrupting ability.

本考案は上記の欠点を除去して、電極間ギャップの耐電
圧の向上により電極間ギャップの長大化を防止してアー
クに対して軸方向磁界を効果的に作用させ、超高電圧用
で大電流しゃ断可能な真空しゃ断器を提供することを目
的とする。
The present invention eliminates the above-mentioned drawbacks, prevents the inter-electrode gap from becoming longer by improving the withstand voltage of the inter-electrode gap, and allows the axial magnetic field to effectively act on the arc. The purpose of the present invention is to provide a vacuum breaker capable of interrupting current.

以下本考案の実施例を図面とともに説明する。Embodiments of the present invention will be described below with reference to the drawings.

従来と同一部分は同一符号を用いて説明は省略する。Components that are the same as those in the prior art are designated by the same reference numerals, and explanations thereof will be omitted.

本実施例においては第2図に示すように各シールド15
,20,21 .24〜27の先端部などの比較的耐電
圧の弱い部分の表面および各電極13.14の表面(接
触電極部13 a ,14 aのアーク発生側は除く。
In this embodiment, each shield 15 is
, 20, 21. 24 to 27, and the surfaces of the electrodes 13 and 14 (excluding the arc generating side of the contact electrode parts 13 a and 14 a).

)にベリリウムBe、ホウ素B又は炭素(グラファイト
)Cなどの金属の薄層28(厚さ2〜30μm程度)を
メッキや蒸着などの手段により形或する。
) is formed with a thin layer 28 (about 2 to 30 μm thick) of metal such as beryllium Be, boron B, or carbon (graphite) C by means of plating, vapor deposition, or the like.

これらの金属は銅、鉄系金属よりも軽くて硬度が大きく
融点、沸点も同等以上である。
These metals are lighter and harder than copper and iron-based metals, and their melting and boiling points are the same or higher.

又、これらの金属は二次電子放出係数(放射二次電子数
/人射一次電子数)δ〈1であり、電圧印加時や電流し
ゃ断時に発生する電子、イオン、X線、光子および波な
どのエネルギーを吸収する。
In addition, these metals have a secondary electron emission coefficient (number of radiated secondary electrons/number of human irradiated primary electrons) δ<1, and they emit electrons, ions, X-rays, photons, waves, etc. generated when voltage is applied or current is cut off. absorb the energy of

従って、各シールドや電極13.14の各々の間の耐電
圧が向上する。
Therefore, the withstand voltage between each shield and each electrode 13, 14 is improved.

例えば金属の薄層28としてBeの薄層を用いた場合に
は薄層28を設けない場合に比較して耐電圧が約1.5
〜2.5倍向上した。
For example, when a thin layer of Be is used as the thin metal layer 28, the withstand voltage is about 1.5 compared to the case where the thin layer 28 is not provided.
It was improved by ~2.5 times.

特に電極13.14を囲む主シールド15や各中間シー
ルド20,21,とりわけ各中間シールド20.21間
の耐電圧の向上により電極13.14間の電位分布が改
良され、電極13.14間の耐電圧が向上する。
In particular, the potential distribution between the electrodes 13.14 is improved by improving the withstand voltage between the main shield 15 surrounding the electrode 13.14 and the intermediate shields 20, 21, especially between the intermediate shields 20.21. The withstand voltage is improved.

このため、超高電圧、大電流しや断用の真空しゃ断器に
おいても電極13.14間のギャップは長大化しない。
Therefore, the gap between the electrodes 13 and 14 does not become large even in a vacuum breaker for ultra-high voltage and large current circuit breakers.

従って、各コイル電極部13b,14bが発生する軸方
向磁界の磁束分布に歪が生じないためその磁束密度は低
下せず、軸方向磁界がアークに効果的に加わり、しゃ断
能力は向上する。
Therefore, since no distortion occurs in the magnetic flux distribution of the axial magnetic field generated by each coil electrode portion 13b, 14b, the magnetic flux density does not decrease, the axial magnetic field is effectively applied to the arc, and the breaking ability is improved.

尚、上記実施例ではシールドをいわゆる多重構造とした
が、必ずしも多重構造でなくても良い。
In the above embodiment, the shield has a so-called multiple structure, but it does not necessarily have to have a multiple structure.

又、薄層28を各シールドの全表面に設けても良い。Alternatively, a thin layer 28 may be provided over the entire surface of each shield.

以上のように本考案においては各電極に軸方向磁界を発
生するコイル電極部を設けており、しゃ断時に発生する
アークは軸方向磁界に捕捉されて電極上に均一に分布す
るためアークの集中により金属蒸気が多量に発生するこ
とがなく、シゃ断能力が向上する。
As described above, in the present invention, each electrode is provided with a coil electrode part that generates an axial magnetic field, and the arc generated at the time of disconnection is captured by the axial magnetic field and distributed uniformly on the electrode, so that the arc is concentrated. A large amount of metal vapor is not generated, and the cutting ability is improved.

又、電極を囲むシールドの表面にBe等の電子、X線、
光子および波などのエネルギーを吸収する金属の薄層を
設けており、このシールドの耐電圧が向上し、これによ
り電極間の電位分布が改良されて電極間の耐電圧も向上
し、しゃ断能力が向上する。
In addition, electrons such as Be, X-rays,
It has a thin layer of metal that absorbs energy such as photons and waves, which improves the withstand voltage of this shield, which improves the potential distribution between the electrodes and increases the withstand voltage between the electrodes, increasing the breaking ability. improves.

しかも、電極間の耐電圧の向上により超高電圧、大電流
しゃ断用の真空しゃ断器においても電極間ギャップは長
大化しないので軸方向磁界に歪を生ぜず、その磁束密度
は低下しない。
Furthermore, due to the improvement in the withstand voltage between the electrodes, the gap between the electrodes does not become large even in a vacuum breaker for ultra-high voltage and large current interruption, so that no distortion occurs in the axial magnetic field and the magnetic flux density does not decrease.

このため、軸方向磁界がアークに効果的に加わり、電極
間ギャップの長大化によるしゃ断能力の低下は生じない
Therefore, the axial magnetic field is effectively applied to the arc, and the breaking ability does not deteriorate due to the lengthening of the gap between the electrodes.

又、小形化も可能となる。さらに、軸方向磁界がアーク
に効果的に加わるためアークは電極間にとじ込められ、
シールドの表面に設けた金属の薄層はアークにより溶融
せず、常に安定した耐電圧を得ることができる。
Further, it also becomes possible to downsize the device. Furthermore, since the axial magnetic field is effectively applied to the arc, the arc is confined between the electrodes,
The thin metal layer provided on the surface of the shield does not melt due to the arc, and a stable withstand voltage can always be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の真空しゃ断器の縦断正面図、第2図は本
考案に係る真空しゃ断器の縦断正面図。 1,2・・・・・・絶縁筒、3,4,8,9,18,1
9,22,23・・・・・・接続リング、5・・・・・
・中間リング、6,7・・・・・・端板、10・・・・
・・固定リード棒、11・・・・・・可動リード棒、1
2・・・・・・ベローズ、13・・・・・・固定電極、
14・・・・・・可動電極、13a,14a・・・・・
・接触電極部、13b,14b・・・・・・コイル電極
部、15・・・・・・主シールド、16.17・・・・
・・シールド支持絶縁体、20.21・・・・・・中間
シールド、28・・・・・・金属の薄層。
FIG. 1 is a longitudinal sectional front view of a conventional vacuum breaker, and FIG. 2 is a longitudinal sectional front view of a vacuum breaker according to the present invention. 1, 2... Insulation tube, 3, 4, 8, 9, 18, 1
9, 22, 23... Connection ring, 5...
・Intermediate ring, 6, 7...End plate, 10...
・・Fixed lead rod, 11 ・・・・Movable lead rod, 1
2... Bellows, 13... Fixed electrode,
14...Movable electrode, 13a, 14a...
・Contact electrode part, 13b, 14b... Coil electrode part, 15... Main shield, 16.17...
...Shield supporting insulator, 20.21...Intermediate shield, 28...Thin layer of metal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 真空容器内に軸方向磁界を発生するコイル電極部を有す
る一対の電極を接離可能に対向配置するとともに、電極
を囲むよう設けられたシールドの表面にベリリウム、ホ
ウ素又はグラファイトの薄層を形或したことを特徴とす
る真空しゃ断器。
A pair of electrodes each having a coil electrode portion that generates an axial magnetic field in a vacuum container are arranged facing each other so as to be able to come into contact with and separate from them, and a thin layer of beryllium, boron, or graphite is formed on the surface of a shield provided to surround the electrodes. A vacuum breaker characterized by:
JP1979101637U 1979-07-23 1979-07-23 Vacuum cutter Expired JPS598273Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979101637U JPS598273Y2 (en) 1979-07-23 1979-07-23 Vacuum cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979101637U JPS598273Y2 (en) 1979-07-23 1979-07-23 Vacuum cutter

Publications (2)

Publication Number Publication Date
JPS5618638U JPS5618638U (en) 1981-02-18
JPS598273Y2 true JPS598273Y2 (en) 1984-03-14

Family

ID=29334378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979101637U Expired JPS598273Y2 (en) 1979-07-23 1979-07-23 Vacuum cutter

Country Status (1)

Country Link
JP (1) JPS598273Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021048029A (en) * 2019-09-18 2021-03-25 富士電機株式会社 Vacuum valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052564A (en) * 1973-09-11 1975-05-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052564A (en) * 1973-09-11 1975-05-10

Also Published As

Publication number Publication date
JPS5618638U (en) 1981-02-18

Similar Documents

Publication Publication Date Title
KR930011829B1 (en) Vacuum interrupter
KR860001452B1 (en) Air-breaker
JPH0355933B2 (en)
JPS598273Y2 (en) Vacuum cutter
JPS5855609B2 (en) Vacuum cutter
US3821581A (en) Targets for x ray tubes
US20230027571A1 (en) Vacuum interrupter
US3979634A (en) Travelling-wave tube with an improved electron gun
US3920942A (en) Arc-shield arrangement in a vacuum power circuit breaker
JPS598274Y2 (en) Vacuum cutter
JP3575472B2 (en) Ion source
JP3329509B2 (en) Magnetron for microwave oven
US2229152A (en) Rotary anode X-ray tube
US2071696A (en) Anode construction for discharge tubes having rotary anodes
US4574169A (en) Bimetallic arc shield
JP2006318795A (en) Vacuum valve
JP2765300B2 (en) Ion source
JPH0652645B2 (en) Vacuum valve
JPS59822A (en) Vacuum valve
JPS6359218B2 (en)
JPS6338807B2 (en)
JPS60151921A (en) Vacuum breaker
JPH07169422A (en) X-ray tube
JP3130722B2 (en) Vacuum valve
JPS6310855B2 (en)