JPH0652645B2 - Vacuum valve - Google Patents

Vacuum valve

Info

Publication number
JPH0652645B2
JPH0652645B2 JP59036702A JP3670284A JPH0652645B2 JP H0652645 B2 JPH0652645 B2 JP H0652645B2 JP 59036702 A JP59036702 A JP 59036702A JP 3670284 A JP3670284 A JP 3670284A JP H0652645 B2 JPH0652645 B2 JP H0652645B2
Authority
JP
Japan
Prior art keywords
shield
vacuum valve
end plate
insulating
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59036702A
Other languages
Japanese (ja)
Other versions
JPS60180028A (en
Inventor
秀臣 高橋
哲 塩入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59036702A priority Critical patent/JPH0652645B2/en
Publication of JPS60180028A publication Critical patent/JPS60180028A/en
Publication of JPH0652645B2 publication Critical patent/JPH0652645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66284Details relating to the electrical field properties of screens in vacuum switches

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は特にバルブ本体内の耐電圧性能を向上した真空
バルブに関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a vacuum valve having improved withstand voltage performance inside a valve body.

〔発明の技術的背景〕[Technical background of the invention]

従来の真空バルブは第1図に示すように絶縁筒1aを軸
方向に2個並設してなる絶縁容器1の両端に夫々端板
2,3を設けて内部を真空にした真空容器を形成してい
る。そして固定電極4は端板2を気密に貫通する通電軸
4aを接触子4bを有する電極4cを設けている。また
可動電極5は端板3にベローズ6を介して可動に密封さ
れた通電軸5aに接触子5bを有する電極5cを設けて
いる。
As shown in FIG. 1, the conventional vacuum valve has a structure in which two insulating cylinders 1a are arranged side by side in the axial direction, and end plates 2 and 3 are provided at both ends of the insulating container 1 to form a vacuum container having a vacuum inside. is doing. The fixed electrode 4 is provided with an energizing shaft 4a that hermetically penetrates the end plate 2 and an electrode 4c having a contactor 4b. The movable electrode 5 is provided with an electrode 5c having a contactor 5b on an energizing shaft 5a movably sealed on the end plate 3 via a bellows 6.

然して固定及び可動の各電極側に夫々フランジ・シール
ド7,7aを、又真空容器の中間に支持金具8を介して
アーク・シールド9を設けている。
However, flange shields 7 and 7a are provided on the fixed and movable electrode sides, respectively, and an arc shield 9 is provided in the middle of the vacuum container via a support metal fitting 8.

このような各シールド7,7a及び9は電流遮断時に電
極4,5間で発生する金属蒸気が絶縁容器1の内壁に付
着するのを防止する為に大きな役割を果している。然し
乍ら、このフランジ・シールドとアーク・シールドとの
近くに絶縁筒1aがある為破壊電圧が低下する。
Each of the shields 7, 7a and 9 plays a great role in preventing the metal vapor generated between the electrodes 4 and 5 from being attached to the inner wall of the insulating container 1 when the current is cut off. However, since there is the insulating cylinder 1a near the flange shield and the arc shield, the breakdown voltage is lowered.

これは、第2図に示すように可動側について考えると、
アーク・シールド9に電界が加わると、可動側のフラン
ジ・シールド7aが陰極となって放出された電子eは絶
縁筒1aに衝突して2次電子を放出する。この時の衝突
エネルギーと2次電子放出効率δ(E)との関係は第3図
に示す特性曲線δ(E)となる。第3図において縦軸は2
次電子放出効率δ(E)、横軸は電子の衝突エネルギーE
〔eV〕を示している。この曲線δ(E)に従て絶縁筒1a
には正の電荷が蓄積される。この絶縁筒1aから放出さ
れた電子は2次電子なだれによって電子増殖し、遂には
絶縁破壊にいたる。従って比較的低電圧で電子なだれに
よる前記破壊電流が流れこの結果、破壊電圧は低くな
る。一方、近年真空バルブを用いる回路の高電圧化が著
るしく進み、高電圧で安定に用い得る真空バルブの出現
が望まれている。
This is because when considering the movable side as shown in FIG.
When an electric field is applied to the arc shield 9, the movable side flange shield 7a serves as a cathode and the emitted electrons e collide with the insulating cylinder 1a to emit secondary electrons. The relationship between the collision energy and the secondary electron emission efficiency δ (E) at this time is the characteristic curve δ (E) shown in FIG. In Figure 3, the vertical axis is 2
Secondary electron emission efficiency δ (E), horizontal axis is electron collision energy E
[EV] is shown. Insulation tube 1a follows this curve δ (E)
A positive charge is stored in. The electrons emitted from the insulating cylinder 1a multiply by a secondary electron avalanche and finally lead to dielectric breakdown. Therefore, the breakdown current due to the electron avalanche flows at a relatively low voltage, and as a result, the breakdown voltage becomes low. On the other hand, in recent years, the voltage of a circuit using a vacuum valve has been remarkably increased, and a vacuum valve that can be stably used at a high voltage has been desired.

然して、上述の欠点を除去する為の方法として、アルミ
ナ及びエポキシ樹脂などの絶縁部材でアーク・シールド
9、フランジ・シールド7,7aの表面を被覆すること
が考えられている。これは、陰極となるどちらかのシー
ルドからの電界放射電子の放出を押えることが出来る
為、絶縁筒に入射する一次電子を抑制することが出来
る。従って絶縁筒表面の2次電子なだれの進展を制限す
ることが出来、耐電圧性能を向上することが期待出来
る。
However, as a method for eliminating the above-mentioned drawbacks, it has been considered to cover the surfaces of the arc shield 9 and the flange shields 7 and 7a with an insulating member such as alumina and epoxy resin. This can suppress the emission of field emission electrons from either shield serving as the cathode, and thus can suppress the primary electrons that enter the insulating cylinder. Therefore, it is possible to limit the progress of secondary electron avalanche on the surface of the insulating cylinder, and it can be expected that the withstand voltage performance is improved.

〔背景技術の問題点〕[Problems of background technology]

然し乍ら、このようなものでは次のような欠点がある。 However, there are the following drawbacks with such a device.

即ち真空バルブでは電流遮断時に発生するアークによる
電極表面の急激な温度上昇及びヒートラン試験等による
温度上昇の為に真空容器内の部品は、なるべく熱伝導率
の高い部品を使用しなければならない。然し乍ら、アル
ミナ或はエポキシ樹脂等の絶縁材料は熱伝導率が低い
為、放熱特性が著るしく低下する。
That is, in the vacuum valve, the components in the vacuum container must have as high thermal conductivity as possible because of the rapid temperature rise of the electrode surface due to the arc generated when the current is cut off and the temperature rise due to the heat run test. However, since the insulating material such as alumina or epoxy resin has a low thermal conductivity, the heat dissipation characteristic is remarkably deteriorated.

又アルミナ或はエポキシ樹脂は絶縁材料自体の絶縁耐力
が低いため、期待する程耐電圧性能が向上しない。
Further, since alumina or epoxy resin has a low dielectric strength of the insulating material itself, the withstand voltage performance is not improved as expected.

更に、この種の真空バルブは脱ガス処理を行う為に数1
00℃に真空加熱を行う必要がある。その為、真空バル
ブ内の部品の融点を加熱温度より高くしなければならな
い。一方、エポキシ樹脂は融点が低い為、エポキシ樹脂
を真空容器内で使用する為には、加熱温度を低くする必
要があり、脱ガス処理を十分に行う事が出来ない。
Furthermore, this type of vacuum valve requires several 1
It is necessary to perform vacuum heating to 00 ° C. Therefore, the melting point of the parts in the vacuum valve must be higher than the heating temperature. On the other hand, since the epoxy resin has a low melting point, it is necessary to lower the heating temperature in order to use the epoxy resin in a vacuum container, and the degassing process cannot be sufficiently performed.

又、アルミナ等で被覆した場合には融点が高いので脱ガ
ス処理は十分に行う事が出来るが、金属製シールドとの
熱膨張の相異により加熱処理時や、遮断時のアークによ
り熱膨張応力を生じ破損やひび割れを生じる。
In addition, since the melting point is high when coated with alumina etc., degassing can be sufficiently performed, but due to the difference in thermal expansion from the metal shield, the thermal expansion stress due to the arc at the time of heat treatment or interruption Cause damage and cracks.

破損は勿論、僅かのひび割れが生じると、電子がそこを
通って放出されるから、電子放射を抑制する効果が失わ
れ耐電圧低下を招く。
When a slight crack is generated as well as damage, electrons are emitted through the crack, so that the effect of suppressing electron emission is lost and the withstand voltage is lowered.

従って、真空バルブのシールドをアルミナ或はエポキシ
樹脂等の絶縁材料でコーティングすることは困難であ
り、耐電圧性能の良好な高電圧化に適した真空バルブを
実用化することは困難であった。
Therefore, it is difficult to coat the shield of the vacuum valve with an insulating material such as alumina or epoxy resin, and it is difficult to put a vacuum valve suitable for high voltage with good withstand voltage performance into practical use.

〔発明の目的〕[Object of the Invention]

本発明は上記の事情に鑑みてなされたもので、電界放射
によりシールド端部より放出された電子が絶縁容器に衝
突し、この面に帯電することを防止できるようにするこ
とにより、高沿面耐圧を有する真空バルブを提供するこ
とを目的とするものである。
The present invention has been made in view of the above circumstances, and it is possible to prevent electrons emitted from the shield end portion from colliding with the insulating container due to field emission and being charged on this surface, so that a high creepage withstand voltage can be obtained. It is an object of the present invention to provide a vacuum valve having

〔発明の概要〕[Outline of Invention]

本発明は上記の目的を達成する為になされたもので、絶
縁容器とこの絶縁容器を閉塞する端板とからなる真空容
器内に接離可能な一対の電極を設け、この一対の電極の
少なくとも一方がベローズを介して前記端板に可動に封
着されると共に、前記絶縁容器内には前記端板に一端側
を保持させてそれぞれ金属円筒部を設け、さらに前記電
極を包囲するアーク・シールドを設け、このアーク・シ
ールドの端部を前記金属円筒部で覆い、且つ、前記真空
容器の外方には前記金属円筒部配設領域を含み前記絶縁
容器の端部側外周を覆う外部シールドを設けたことを特
徴としている。
The present invention has been made in order to achieve the above-mentioned object, and a pair of electrodes that can be contacted and separated is provided in a vacuum container composed of an insulating container and an end plate that closes the insulating container, and at least the pair of electrodes is provided. One is movably sealed to the end plate through a bellows, and one end side is held by the end plate in the insulating container to provide a metal cylinder portion, respectively, and an arc shield surrounding the electrode. An outer shield that covers the end portion of the arc shield with the metal cylinder portion, and that includes the metal cylinder portion installation region outside the vacuum container and covers the outer periphery of the end portion of the insulating container. The feature is that it is provided.

〔発明の実施例〕Example of Invention

以下本発明の一実施例を第4図、及び第5図参照して詳
細に説明する。
An embodiment of the present invention will be described in detail below with reference to FIGS. 4 and 5.

なお、第1図と同一部分には同一符号を付してその説明
を省略する。第4図に示すように絶縁筒1aを軸方向に
2個並設した絶縁容器1の両端にそれぞれ端板2,3に
封着された端部金属円筒部2a,3aを封着して真空容
器を形成し、固定電極4は端板2を貫通して封着された
通電軸4aの先端に接触子4bを備えた電極4cを設け
ている。また可動電極5は端板3にベローズ6を介して
可動に封着された通電軸5aの先端に接触子5bを備え
た電極5eが設けられている。固定電極側の端部金属円
筒部2a及び可動電極側の端部金属円筒部3aには夫々
外部シールド10,10を設け、この外部シールド1
0,10の中間の絶縁筒1aの接続部8には支持金具8
aを設けてアーク・シールド9を保持し、又支持円筒8
bにより絶縁筒1aが封着支持されている。
The same parts as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. As shown in FIG. 4, two ends of an insulating container 1 in which two insulating cylinders 1a are arranged side by side in the axial direction are sealed with end metal cylindrical portions 2a and 3a sealed to end plates 2 and 3, respectively, and a vacuum is formed. The container 4 is formed, and the fixed electrode 4 is provided with an electrode 4c having a contactor 4b at the tip of a current-carrying shaft 4a that penetrates the end plate 2 and is sealed. Further, the movable electrode 5 is provided with an electrode 5e having a contact 5b at the tip of a current-carrying shaft 5a that is movably sealed to the end plate 3 via a bellows 6. External shields 10 and 10 are provided on the end metal cylindrical portion 2a on the fixed electrode side and the end metal cylindrical portion 3a on the movable electrode side, respectively.
A support metal fitting 8 is provided on the connecting portion 8 of the insulating cylinder 1a in the middle of 0 and 10.
a is provided to hold the arc shield 9 and the supporting cylinder 8
The insulating cylinder 1a is sealed and supported by b.

然してアーク・シールド9の端部9aが端部金属円筒部
2a又は3aに覆われるように配置されているから、ア
ーク・シールドの端部9aより電界放射により放出され
た電子は第5図に示すように絶縁筒1aの内壁面に衝突
せず、a-で示すように端部金属円筒部2a,3a及び
端板2,3に指向する。
Since the end portion 9a of the arc shield 9 is arranged so as to be covered by the end metal cylindrical portion 2a or 3a, the electrons emitted from the end portion 9a of the arc shield by field emission are shown in FIG. Thus, it does not collide with the inner wall surface of the insulating cylinder 1a, but is directed toward the end metal cylindrical portions 2a and 3a and the end plates 2 and 3 as indicated by a .

従って、第2図及び第3図示したように絶縁物表面での
衝突→2次電子放出→再衝突→再二次電子放出→…とい
う繰り返えしにより電子なだれの発生と、沿面絶縁を破
壊するという現象を抑制することになる。
Therefore, as shown in FIG. 2 and FIG. 3, the electron avalanche is generated and the surface insulation is destroyed by the repetition of collision on the insulator surface → secondary electron emission → re-collision → re-secondary electron emission →. The phenomenon of doing will be suppressed.

上述のことは第5図で端板2がアーク・シールド9に対
して正の極性の場合であるが、逆極性となった場合は第
5図で端部金属円筒部2aの先端2cでの電界が大とな
って絶縁物と金属との接合部2dより電界放射電子が生
ずる恐れがあるが、これ等は外部シールド10により接
合部2dを遮蔽することにより第5図に示したようにこ
の部分からの電界集中が緩和されて2次電子が生ずるこ
とがない。
The above is the case where the end plate 2 has a positive polarity with respect to the arc shield 9 in FIG. 5, but when it has a reverse polarity, the end plate 2 at the tip 2c of the end metal cylindrical portion 2a in FIG. Although the electric field may become large and field emission electrons may be generated from the junction 2d between the insulator and the metal, these may be generated by shielding the junction 2d by the external shield 10 as shown in FIG. The concentration of the electric field from the portion is relaxed and secondary electrons are not generated.

一方この時外部シールドの端部10aでの電界は若干強
まるが、真空バルブの外部であるから絶縁設計は比較的
容易で、又外部に絶縁ガス例えばSF6の様な絶縁特性の
良好なガスを用いることにより、真空絶縁以上の絶縁強
度を得ることが出来る。
On the other hand, at this time, the electric field at the end portion 10a of the outer shield is slightly strengthened, but the insulation design is relatively easy because it is outside the vacuum valve, and an insulating gas such as SF 6 having a good insulating property is provided outside. By using it, insulation strength higher than vacuum insulation can be obtained.

第5図は端板2の部分について述べたが、端板3につい
ては極性が逆となるだけで、上述した事と同様であるこ
とは明らかである。
Although FIG. 5 has described the portion of the end plate 2, it is clear that the end plate 3 is the same as the above with only the polarities being reversed.

この様な構成により真空バルブ内の絶縁は、いわゆる沿
面絶縁部が実質的に無くなる。即ち第5図で絶縁筒1a
に向く電界を持ったアーク・シールド9の部分9bでは
電界が図で判るように、シールド端部9aの電界強度に
比して部分9bの電界強度がはるかに小であるから絶縁
容器内面への電子衝突が皆無となる。
With such a configuration, the insulation in the vacuum valve is substantially free of so-called creeping insulation. That is, in FIG. 5, the insulating cylinder 1a
As can be seen in the figure, the electric field strength of the portion 9b of the arc shield 9 having an electric field directed toward the electric field is much smaller than the electric field strength of the shield end portion 9a. There is no electron collision.

従って真空バルブ内の絶縁は、いわゆる極間絶縁だけと
なるので、真空バルブ用電極金属材料の耐電圧特性を十
分に使うことにより高耐圧の小形の真空バルブが得られ
る。
Therefore, since the insulation in the vacuum valve is only so-called inter-electrode insulation, a small vacuum valve having a high withstand voltage can be obtained by fully utilizing the withstand voltage characteristics of the electrode valve metal material for the vacuum valve.

第6図は本発明の他の実施例であるが第1の実施例と同
一部分に同一符号を付して説明を省略する。第6図にお
いてそれぞれ端板2及び端板3に固定され、且つ絶縁筒
1aの内側に位置させて端板円筒2b,3bが設置され
ており、この円筒内部に入るようにアーク・シールド9
の先端部9aが図示したように配置されている。又アー
ク・シールド9の支持金具8にはこの部分の外部への電
界強度を緩和することを目的として、中間外部シールド
11が設けられている。
Although FIG. 6 shows another embodiment of the present invention, the same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. In FIG. 6, end plate cylinders 2b and 3b are respectively fixed to the end plate 2 and the end plate 3 and located inside the insulating cylinder 1a, and the arc shield 9 is placed inside the cylinders.
The front end portion 9a is arranged as shown. Further, the metal support 8 of the arc shield 9 is provided with an intermediate outer shield 11 for the purpose of relaxing the electric field strength to the outside of this portion.

このような構成であるから、アーク・シールド9の先端
部9aより放出される電界放射電子は、端板2又は3更
に端板円筒2b又は3bに指向し絶縁円筒1aに到達す
ることが無い。又端板円筒2b又は3bの先端部2c又
は3cの電界は外部シールド10の効果的な遮蔽作用に
より緩和され電界放射電子を生じない事は明らかであ
る。
With such a configuration, the field emission electrons emitted from the tip portion 9a of the arc shield 9 are directed to the end plate 2 or 3 and further to the end plate cylinder 2b or 3b and do not reach the insulating cylinder 1a. Also, it is clear that the electric field at the tip 2c or 3c of the end plate cylinder 2b or 3b is relaxed by the effective shielding action of the outer shield 10 and does not generate field emission electrons.

又中間シールド8の部分の外部電界は中間外部シールド
11により効果的に遮蔽されるので電界が緩和され良好
な耐圧特性が得られる。
Further, since the external electric field in the portion of the intermediate shield 8 is effectively shielded by the intermediate external shield 11, the electric field is relaxed and good withstand voltage characteristics can be obtained.

第7図は第4図,第5図に示した本発明のバルブを従来
バルブとの暗電流を比較したものである。即ち横軸を破
壊電圧、又縦軸を暗電流とした場合、従来バルブの特性
Aは暗電流特性の立上りが急となっているが、これは沿
面による電子増倍作用の為である。一方本発明のバルブ
は安定した暗電流特性Bを示す。
FIG. 7 compares the dark current of the valve of the present invention shown in FIGS. 4 and 5 with that of a conventional valve. That is, when the breakdown voltage is plotted on the horizontal axis and the dark current is plotted on the vertical axis, the characteristic A of the conventional valve has a sharp rise in the dark current characteristic, which is due to the electron multiplication effect due to the creepage. On the other hand, the valve of the present invention exhibits a stable dark current characteristic B.

真空バルブでは凡そ暗電流が数mmA程度の一定値ICに
到達した時に発生するので従来バルブの破壊電圧は
1、本発明バルブの破壊電圧はV2となり、本発明のバ
ルブの特性の方が良好なものとなっていることが判る。
In a vacuum valve, when the dark current reaches a constant value IC of about several mmA, the breakdown voltage of the conventional valve is V 1 , the breakdown voltage of the valve of the present invention is V 2 , and the characteristic of the valve of the present invention is You can see that it is good.

〔発明の効果〕〔The invention's effect〕

このように本発明では真空バルブ内に設置された金属部
分より放出される電界放射電子が絶縁物容器内面に衝突
して増倍し、絶縁破壊を生ずることを効果的に阻止して
いるので高耐圧のコンパクトな真空バルブが得られる。
又外部絶縁に前記のSF6のような絶縁ガスを用いること
により絶縁特性が飛躍的に良好となる。
As described above, according to the present invention, it is possible to effectively prevent the field emission electrons emitted from the metal portion installed in the vacuum valve from colliding with the inner surface of the insulator container and multiplying it, thereby causing dielectric breakdown. A pressure-resistant compact vacuum valve can be obtained.
In addition, by using an insulating gas such as SF 6 as the external insulation, the insulation characteristics are dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の真空バルブの縦断面図、第2図は同じく
従来の真空バルブのアーク・シールドとフランジ・シー
ルドとの要部を示す断面図、第3図は2次電子放出特性
を示す特性曲線図、第4図は本発明真空バルブの概略の
縦断面図、第5図は本発明のアーク・シールド端部と端
板金属円筒の要部との電位分布図、第6図は本発明の他
の実施例の概略の縦断面図で第7図は本発明真空バルブ
と従来の真空バルブとの暗電流特性の比較曲線図であ
る。 1…絶縁容器、1a…絶縁筒、2,3…端板、2a,3
a…端部金属円筒部、4…固定電極、5…可動電極、6
…ベローズ、9a…アーク・シールドの端部、10…外
部シールド、11…中間外部シールド。
FIG. 1 is a vertical cross-sectional view of a conventional vacuum valve, FIG. 2 is a cross-sectional view showing main parts of an arc shield and a flange shield of the conventional vacuum valve, and FIG. 3 shows secondary electron emission characteristics. Fig. 4 is a characteristic curve diagram, Fig. 4 is a schematic vertical sectional view of the vacuum valve of the present invention, Fig. 5 is a potential distribution diagram of the arc shield end portion of the present invention and a main portion of the end plate metal cylinder, and Fig. 6 is a book. FIG. 7 is a schematic vertical sectional view of another embodiment of the invention, and FIG. 7 is a comparative curve diagram of dark current characteristics of the vacuum valve of the present invention and a conventional vacuum valve. 1 ... Insulation container, 1a ... Insulation cylinder, 2,3 ... End plate, 2a, 3
a ... end metal cylindrical portion, 4 ... fixed electrode, 5 ... movable electrode, 6
... bellows, 9a ... end of arc shield, 10 ... outer shield, 11 ... intermediate outer shield.

フロントページの続き (56)参考文献 特開 昭48−21168(JP,A) 特開 昭48−101562(JP,A) 特開 昭50−103677(JP,A) 特開 昭53−131480(JP,A) 特開 昭57−80625(JP,A) 特開 昭60−100324(JP,A) 実開 昭55−66350(JP,U)Continuation of front page (56) References JP-A-48-21168 (JP, A) JP-A-48-101562 (JP, A) JP-A-50-103677 (JP, A) JP-A-53-131480 (JP , A) JP-A-57-80625 (JP, A) JP-A-60-100324 (JP, A) Practical development Sho-55-66350 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁容器とこの絶縁容器を閉塞する端板と
からなる真空容器内に接離可能な一対の電極を設け、こ
の一対の電極の少なくとも一方がベローズを介して前記
端板に可動に封着されると共に、前記絶縁容器内には前
記端板に一端側を保持させてそれぞれ金属円筒部を設
け、さらに前記電極を包囲するアーク・シールドを設
け、このアーク・シールドの端部を前記金属円筒部で覆
い、且つ、前記真空容器の外方には前記金属円筒部配設
領域を含み前記絶縁容器の端部側外周を覆う外部シール
ドを設けたことを特徴とする真空バルブ。
1. A pair of electrodes that can be contacted and separated from each other are provided in a vacuum container composed of an insulating container and an end plate closing the insulating container, and at least one of the pair of electrodes is movable to the end plate through a bellows. Along with being sealed to the inside of the insulating container, one end side is held by the end plate to provide a metal cylindrical portion, and an arc shield surrounding the electrode is further provided, and an end portion of the arc shield is provided. A vacuum valve which is covered with the metal cylindrical portion, and is provided with an external shield outside the vacuum container, the outer shield including the metal cylindrical portion installation region and covering an outer periphery of an end side of the insulating container.
JP59036702A 1984-02-28 1984-02-28 Vacuum valve Expired - Lifetime JPH0652645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59036702A JPH0652645B2 (en) 1984-02-28 1984-02-28 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59036702A JPH0652645B2 (en) 1984-02-28 1984-02-28 Vacuum valve

Publications (2)

Publication Number Publication Date
JPS60180028A JPS60180028A (en) 1985-09-13
JPH0652645B2 true JPH0652645B2 (en) 1994-07-06

Family

ID=12477097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59036702A Expired - Lifetime JPH0652645B2 (en) 1984-02-28 1984-02-28 Vacuum valve

Country Status (1)

Country Link
JP (1) JPH0652645B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019115128A1 (en) * 2017-12-15 2019-06-20 Siemens Aktiengesellschaft High-voltage circuit breaker and method for electromagnetically shielding a vacuum interrupter in an insulator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4762802B2 (en) * 2006-06-27 2011-08-31 株式会社日立製作所 Vacuum switchgear
JP5015845B2 (en) * 2008-04-04 2012-08-29 三菱電機株式会社 Switch device
DE102009007474B4 (en) * 2009-01-30 2011-04-28 Siemens Aktiengesellschaft Vacuum interrupter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101562A (en) * 1972-04-10 1973-12-20
US3889080A (en) * 1973-12-19 1975-06-10 Westinghouse Electric Corp Vacuum interrupter shield protector
CA1019372A (en) * 1974-01-23 1977-10-18 Westinghouse Electric Corporation Vacuum interrupter having an electric field free region
DE2717562A1 (en) * 1977-04-20 1978-10-26 Siemens Ag CONNECTING FLANGE RING FOR VACUUM SWITCHING TUBES
JPS5780625A (en) * 1980-11-06 1982-05-20 Meidensha Electric Mfg Co Ltd Vacuum breaker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019115128A1 (en) * 2017-12-15 2019-06-20 Siemens Aktiengesellschaft High-voltage circuit breaker and method for electromagnetically shielding a vacuum interrupter in an insulator
CN111480212A (en) * 2017-12-15 2020-07-31 西门子股份公司 High-voltage power switch and method for electromagnetically shielding a vacuum interrupter in an insulator

Also Published As

Publication number Publication date
JPS60180028A (en) 1985-09-13

Similar Documents

Publication Publication Date Title
KR100576398B1 (en) A vacuum interrupter and a vapor shield
JPH0652645B2 (en) Vacuum valve
JPH0355933B2 (en)
US4020304A (en) Two-material vapor shield for vacuum-type circuit interrupter
JP3253844B2 (en) Gas circuit breaker
US2341920A (en) Electrical discharge device
US11201031B2 (en) High voltage seals and structures having reduced electric fields
RU2418339C1 (en) High-voltage electronic device
JP3130722B2 (en) Vacuum valve
RU2773038C1 (en) Pulse neutron generator
JPS5912511A (en) Gas bushing
JPS6247337B2 (en)
JPS596587Y2 (en) vacuum valve
JPS6226131B2 (en)
Feng et al. Enhancement of External Insulation Performance for Vacuum Interrupters by External Shields
JPS6074213A (en) Vacuum valve
JPS598273Y2 (en) Vacuum cutter
JPH05282968A (en) Circuit breaker for metal-sealed gas insulated high voltage device
JPH069130B2 (en) Vacuum valve
CA1058258A (en) Power vacuum fuse using coaxial cylinders
KR920007087B1 (en) Electron gun structure
JPS60100324A (en) Vacuum bulb
JPS60151921A (en) Vacuum breaker
JP2642469B2 (en) Electrical equipment insulation structure
JPH1021802A (en) Vacuum valve