JPS5982597A - Capacity varying type compressor - Google Patents

Capacity varying type compressor

Info

Publication number
JPS5982597A
JPS5982597A JP19275882A JP19275882A JPS5982597A JP S5982597 A JPS5982597 A JP S5982597A JP 19275882 A JP19275882 A JP 19275882A JP 19275882 A JP19275882 A JP 19275882A JP S5982597 A JPS5982597 A JP S5982597A
Authority
JP
Japan
Prior art keywords
compression
pressure
chamber
spool
compression chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19275882A
Other languages
Japanese (ja)
Inventor
Kunifumi Gotou
後藤 邦文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK, Toyoda Automatic Loom Works Ltd filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP19275882A priority Critical patent/JPS5982597A/en
Publication of JPS5982597A publication Critical patent/JPS5982597A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/16Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using lift valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To prevent malfunction of a control valve, by a method wherein a spool is openably/closably located in a bypass hole for communicating a compression chamber with a suction chamber, the pressure detector of the spool is forced into coincidence with the phase of both compression blocks, and a low pressure side detecting part is situated so as to front on the compression chamber in the primary stage of compression. CONSTITUTION:In a control valve mechanism 12, a spool 19 for opening/closing a bypass hole 11 is slidably situated opposite to the bypass hole 11. From a high pressure chamber 20 at the end of the spool 19, a first pressure induction hole 23 extends and the forward end thereof is located so as to be rendered effective during compression stroke of a compression chamber 6. A second pressure guide hole 24 extends from a low pressure chamber 21, and the forward end thereof is situated so as to be rendered effective during the suction stroke of the compression chamber 6. Further, pressure detecting parts 23' and 24' have a phase angle of 90 deg. shifted from each other, and this permits prevention of malfunction of a control valve.

Description

【発明の詳細な説明】 本発明は室内における冷房負荷の変化に伴い圧縮容量を
自動的に制御することの出来る圧縮容量可変型の圧縮機
に関するものである。更に具体的には、吸入行程圧力P
L(吸入室内若しくは圧縮室内の吸入行程における圧力
)と、圧縮行程圧力PH(圧縮室内の圧縮行程における
圧力)との間に生ずる差圧の変化を利用して制御弁を自
動開閉可能に設け、同制御弁の自動開閉を介して低冷房
負荷時において圧縮室内の圧縮途中にある冷媒ガスの一
部を吸入室側に逃すことによって圧縮室におけるその圧
縮容量を自動的に調整することが出来る様に設けられる
容量可変型圧縮機のその制御弁機構の改良に関するもの
であって、その制御機能を高めること、更に詳しくは吸
入行程圧力PLと圧縮行程圧力PH間に生ずる差圧の変
動幅を抑制することによって制御弁の誤作動を防止する
ことをその目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a variable compression capacity compressor that can automatically control compression capacity in accordance with changes in indoor cooling load. More specifically, the suction stroke pressure P
A control valve is provided so as to be able to be automatically opened and closed by utilizing a change in the differential pressure that occurs between L (pressure during the suction stroke in the suction chamber or compression chamber) and compression stroke pressure PH (pressure during the compression stroke in the compression chamber), By automatically opening and closing the control valve, part of the refrigerant gas that is being compressed in the compression chamber is released to the suction chamber during low cooling loads, thereby automatically adjusting the compression capacity in the compression chamber. This invention relates to improving the control valve mechanism of a variable capacity compressor installed in a compressor, and improving its control function, more specifically, suppressing the range of variation in differential pressure that occurs between suction stroke pressure PL and compression stroke pressure PH. The purpose of this is to prevent malfunction of the control valve.

従来室内における冷房負荷の変化に伴い圧縮容量全自動
的に制御する様にした容量可変型の圧縮機としては吸入
室内の吸入圧力と、圧縮室内の圧縮行程中の圧力間に生
ずる差圧の変化ケ利用する方法、更に具体的には吸入室
内の圧力と圧縮室内の圧縮行程中の圧力との間に生ずる
差圧の変化を比較した場合において吸入行程における圧
力の旨さに比例してその差圧の変化が大きくなることに
鑑み、この差圧の変化全利用して制御弁機構を自動開閉
させ、圧縮途中にある冷媒ガスの一部を吸入室に逃す様
にすることによりその圧縮容量を調整する方法が先に提
案されている(例えば特開昭57−122191号)0 しかして上記提案にあっては吸入行程圧力PL(吸入室
内の圧力)と圧縮行程圧力PHとの間に生ずる差圧の変
動幅が大きく絞り作用等による減衰が不十分だとスプー
ルの開閉に誤作動を生じ易い点に問題点を有する。
Conventionally, variable capacity compressors have been designed to fully automatically control the compression capacity in response to changes in the cooling load in the room. (ii) The method used, more specifically, when comparing the change in differential pressure that occurs between the pressure in the suction chamber and the pressure in the compression chamber during the compression stroke, the difference is proportional to the degree of pressure in the suction stroke. In view of the large pressure change, the control valve mechanism is automatically opened and closed by making full use of this differential pressure change, and a part of the refrigerant gas in the middle of compression is released into the suction chamber, thereby increasing the compression capacity. A method of adjustment has previously been proposed (for example, JP-A-57-122191). However, in the above proposal, the difference between the suction stroke pressure PL (pressure inside the suction chamber) and the compression stroke pressure PH is The problem is that if the pressure fluctuates widely and damping due to throttling or the like is insufficient, malfunctions are likely to occur when opening and closing the spool.

即ち回転軸の1回転に対して第9図に示す様に吸入行程
圧力PL  (吸入室内の圧力)はほとんど変ずししな
いのに対して圧縮行程圧力PH+ハ回転軸の回転角度の
変化にともない大きく変動する。更に具体的には例えば
スライドベーン型の圧縮機において、圧縮室内に4枚の
べ−7か出没自在に設けられ、同ベーンによって圧縮室
内が4個の圧縮ブロックに区画され各圧縮ブロックが、
吸入側より吐出側に向けて連続移行する場合において、
特定のベーンが圧縮行程中に設けられる圧縮行程圧力P
Hの圧力検出部を通過した直後においては、その検出圧
力は最も低い状態にあり、後続のベーンが同圧力検出部
に接近するに従って次第にその検出圧力は高められ、同
ベーンか圧力検出部全通過する直前において最も高い圧
力状態が検出されるとともに同ベーンが圧力検出部を通
過すると同時にその圧力は急激に低下し、再び最も低い
圧力状態が検出されるというパターンが回転軸の1回転
に対して4回に亘って繰り返されるのである。
In other words, as shown in Fig. 9, the suction stroke pressure PL (pressure inside the suction chamber) hardly changes for one revolution of the rotating shaft, whereas the compression stroke pressure PH + C changes as the rotation angle of the rotating shaft changes. It fluctuates greatly. More specifically, for example, in a slide vane type compressor, four vanes 7 are provided in a compression chamber so as to be freely retractable, and the inside of the compression chamber is divided into four compression blocks by the vanes, and each compression block is
When continuously moving from the suction side to the discharge side,
Compression stroke pressure P at which a particular vane is provided during the compression stroke
Immediately after passing the pressure detection part of H, the detected pressure is at its lowest state, and as the succeeding vane approaches the same pressure detection part, the detection pressure gradually increases until the same vane passes all the way through the pressure detection part. The highest pressure state is detected just before the vane passes through the pressure detection part, the pressure drops rapidly, and the lowest pressure state is detected again. It is repeated four times.

そしてこの様に圧縮行程圧力pHにおける検出圧力が大
きく変動することにより圧縮行程圧力pHと吸入行程圧
力PL間に生ずる差圧ΔPも又ΔPm!□。
As the detected pressure at the compression stroke pressure pH fluctuates greatly in this way, the differential pressure ΔP generated between the compression stroke pressure pH and the suction stroke pressure PL also becomes ΔPm! □.

からΔPma、x間に亘って大幅に変動することとなる
のであるが、この様に差圧が大幅に変動することにより
スプールに誤作動を生じ、大冷房負荷時にスプールが開
き圧縮容量がダウンしたり、あるいは小冷房負荷時にス
プールが閉じ圧縮容量がアップする等の不具合を生ずる
こととなるのである。
ΔPma and x will fluctuate significantly, and this drastic variation in differential pressure will cause the spool to malfunction, causing the spool to open during heavy cooling loads and reduce the compression capacity. Otherwise, problems may occur such as the spool closing and the compression capacity increasing during a small cooling load.

本発明は上記の様な従来の実情に鑑みてその改善を試み
たものであって、吸入行程圧力PLの圧力検出部を圧縮
室内の吸入行程中(圧縮作用の初期段階も含む位置)に
設け、同吸入行程圧カPLの検出圧力を圧縮行程圧力P
Hの検出圧力と同期して変動させる様にすることによっ
て、雨検出圧力間に生ずる差圧の変動幅を可及的に小さ
く抑えることが出来る様にしたことをその特徴とするも
のである。
The present invention is an attempt to improve the conventional situation in view of the above-mentioned conventional situation, and a pressure detection part for the suction stroke pressure PL is provided in the compression chamber during the suction stroke (at a position including the initial stage of the compression action). , the detected pressure of the suction stroke pressure PL is the compression stroke pressure P
The feature is that by changing the pressure in synchronization with the detected pressure of rain H, it is possible to suppress the fluctuation range of the differential pressure that occurs between the rain detected pressures as small as possible.

そして本発明の要旨は圧縮室を複数個の圧縮ブロックに
区画し、各圧縮ブロックを吸入側より吐出側に向けて連
続移行可能な如く設けて成る圧縮機において、圧縮室と
吸入室間を連通ずるバイパス孔に対してスプールを開閉
自在に設け、同スプールは常時は開き方向に向けて付勢
するとともに同スプールの両端部には一対の圧力室を対
峙させて設ける一方、上記圧縮室には上記両圧力室の圧
力検出部を、その夫々の圧力検出部が別の圧縮ブロック
に臨むことが可能な如く設は且つ両正力検出部は面圧縮
ブロックに対してその位相を一致させるとともに低圧側
の圧力検出部を圧縮作用の初期段階にある圧縮室に臨む
ように構成したことにある。
The gist of the present invention is to provide a compressor in which a compression chamber is divided into a plurality of compression blocks, and each compression block is provided so as to be able to move continuously from the suction side to the discharge side. A spool is provided so that it can be opened and closed with respect to the bypass hole that communicates with it, and the spool is normally biased in the opening direction, and a pair of pressure chambers are provided facing each other at both ends of the spool. The pressure detecting sections of both pressure chambers are arranged so that each pressure detecting section can face another compression block, and both positive force detecting sections are aligned in phase with respect to the surface compression block, and the pressure detecting sections are arranged so that each pressure detecting section can face another compression block. The reason is that the pressure detection section on the side is configured to face the compression chamber in the initial stage of compression action.

以下に本発明の具体的な実施例全例示の図面について説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The drawings illustrating all specific embodiments of the present invention will be described below.

第1図乃至第5図は第1の実施例を表わす図面であって
、各図面において(1)は圧縮機の外殻を構成するハウ
ジングを示す。同ハウジング(llifフロントハウジ
ング(IA)とリヤハウジング(IB)により形成され
、同フロントハウジング(IA)に(ハフリンダ−ブロ
ック(2)が、又同ソリンダーブロノク(2)ヲ間に挾
んでその両側にフロントサイトグレート(3A)とりャ
サイドプレート(3B)が内嵌される。/リンダーブロ
ック(2)は前後両端部に開口部を存して中空円筒状に
形成され、同中空部の内壁面は/リンダーブロック(2
)の外周面と同心円の円筒状jr(l形成される。同ノ
リンダーブロノク(2)の前後両開口部は上記両サイド
プレート(3A)(3B)によって遮蔽される。そして
両サイドプレート(3A)(3B)間には駆動軸(4)
が横架される。同駆動軸(4)はシリンダーブロック(
2)に対してその中心線を偏寄させて設けられ、同1駆
動軸(4)にはローター(5)が一体重に固着される。
1 to 5 are drawings showing a first embodiment, and in each drawing, (1) indicates a housing forming the outer shell of the compressor. The same housing (llif) is formed by the front housing (IA) and the rear housing (IB), and the front housing (IA) has a half linder block (2), which is also sandwiched between the lif linder block (2). A front sight grate (3A) and a catcher side plate (3B) are fitted on both sides./The linder block (2) is formed into a hollow cylindrical shape with openings at both front and rear ends, and the inside of the hollow part The wall is / Linder block (2
) is formed in a cylindrical shape concentric with the outer peripheral surface of the Norinder Bronnok (2).Both the front and rear openings of the Norinder Bronnok (2) are shielded by the above-mentioned both side plates (3A) (3B). There is a drive shaft (4) between 3A) and (3B).
is suspended horizontally. The drive shaft (4) is connected to the cylinder block (
The rotor (5) is integrally fixed to the drive shaft (4).

同ローター(5)はシリンダーブロック(2)ノ内壁面
に対してその外周壁の一部が摺接可能な如く設けられ、
同ローター(5)の外周壁とシリンダーブロック(2)
の内壁面間には圧縮室(6)が形成される。
The rotor (5) is provided so that a part of its outer peripheral wall can slide against the inner wall surface of the cylinder block (2),
The outer peripheral wall of the rotor (5) and the cylinder block (2)
A compression chamber (6) is formed between the inner wall surfaces of.

又ローター(5)には4枚のベーン(8)・・・が圧縮
室(6)に対して出没自在に嵌挿される。そして各べ−
7(8)・・・は圧縮室(6)を4個の圧縮ブロック(
6a)(6b ) (6c ) (6d )に区画し、
各圧縮ブロック(6a)(6b)(6c)(6d)を吸
入側より吐出側に向けて連続移行させ乍ら圧縮室(6)
内を回転する如く設けられる。
Furthermore, four vanes (8) are fitted into the rotor (5) so as to be retractable into the compression chamber (6). And each base
7 (8)... is a compression chamber (6) made up of four compression blocks (
6a) (6b) (6c) (6d),
While each compression block (6a) (6b) (6c) (6d) is continuously moved from the suction side to the discharge side, the compression chamber (6)
It is installed so that it rotates inside.

フロントハウジング(IA)とフロントサイドグレート
(3A)間には吸入室(9)が設けられ、同吸入室(9
)にはフロントバウシング(IA)側に吸入管路(図示
省略)に接続する吸入口(9)′が設けられる。又同フ
ロントサイドダレ−1−(3A)には圧縮室(6)の一
端、即ちローター(5)の回転方向に沿う始端部と相対
応して吸入孔(10)が開口される。そして又同フロン
トサイドプレート(3A)には圧縮室(6)の吸入行程
と圧縮行程の略中間(圧縮行程初期に位置してバイパス
孔(]l)が貫設される。(バイパス孔は/す/ダーブ
ロノクにあけ、スプールを同シリンダーブロック内に組
み込むことも可能である。)同バイパス孔(11)は圧
縮室(6)と吸入室(9)間を連通する如く設けられ、
フロントサイドブレー)(3A)内には制御弁機構(1
21が上記バイパス孔(印と直交する方向に向けて設け
られる。(制御弁機構(12)については後述する。) 一方圧縮室(6)の他端、即ちローター(5)の回転方
向に沿う終端部と相対応する位置に(はシリンダーブロ
ック(2)の一部を切欠いてフロ/トノ・ウジフグ(I
A)の内壁面との間に吐出室03)が形成さ71.同吐
出室(13)と圧縮室(6)の終端部間は吐出孔旧)に
よって連通される。(15)は同吐出孔Q4) k N
う吐出弁、(IGIは同吐出弁(15)の開き角度を規
制するりテーナーを示ず0 又リヤハウジング(IB)にはリヤサイトプレート(3
B)との間に潤滑油の分離室07)が形成される。
A suction chamber (9) is provided between the front housing (IA) and the front side grate (3A).
) is provided with a suction port (9)' connected to a suction pipe (not shown) on the front bousing (IA) side. Further, a suction hole (10) is opened in the front side dale 1-(3A) corresponding to one end of the compression chamber (6), that is, the starting end along the rotational direction of the rotor (5). Furthermore, a bypass hole (]l) is provided through the front side plate (3A), located approximately midway between the suction stroke and the compression stroke (at the beginning of the compression stroke) of the compression chamber (6). The bypass hole (11) is provided so as to communicate between the compression chamber (6) and the suction chamber (9).
There is a control valve mechanism (1) in the front side brake (3A).
21 is provided in the direction perpendicular to the bypass hole (marked). (The control valve mechanism (12) will be described later.) On the other hand, the other end of the compression chamber (6), that is, along the rotation direction of the rotor (5) A part of the cylinder block (2) is cut out at a position corresponding to the terminal end.
A discharge chamber 03) is formed between the inner wall surface of A) and the inner wall surface of 71. The discharge chamber (13) and the terminal end of the compression chamber (6) are communicated with each other through a discharge hole. (15) is the same discharge hole Q4) k N
There is a rear sight plate (3) in the rear housing (IB).
A lubricating oil separation chamber 07) is formed between the lubricating oil and B).

同分離室071はりャサイドプレート(3B)に開口す
る通孔(18)e介して上記吐出室(12)と連通ずる
如く設けられる。同通孔08)の開口部にはフィルター
(図示省略)が設けられる一方、分離室(I7)内には
同フィルターによって分離される潤滑油の溜り部が設け
られる。そして又同分離室07)にはリヤ/・ウジング
(IB)側に吐出管路(図示省略)に接続する吐出口θ
7)′が設けられる。
The separation chamber 071 is provided so as to communicate with the discharge chamber (12) through a through hole (18) e opened in the barrier side plate (3B). A filter (not shown) is provided at the opening of the through hole 08), and a lubricating oil reservoir separated by the filter is provided in the separation chamber (I7). The same separation chamber 07) also has a discharge port θ connected to a discharge pipe (not shown) on the rear housing (IB) side.
7)' is provided.

前記制御弁機構(12)にはバイパス孔旧)と相対応し
て同バイパス孔(11)開閉用のスプール09)がバイ
パス孔(団に対して直交する方向に向けて摺動自在に設
けられる。そして同スプール09)の両端部には高圧室
(20)と低圧室(21)より成る一対の圧力室が対峙
させて設けられる。低圧室(21)内にははね(22j
が介装され、スプール09)は同ばね(22)’を介し
て常時は高圧室(20)方向に向けて付勢されてバイパ
ス孔Cl1)全開放する状態にある様に設けられる。そ
して高圧室(20)から(は第1導圧孔(23)が延設
され、その先端部(圧力検出部(231’ )は圧縮室
(6)の圧縮行程中に、又低王室(21)からは第2導
圧孔(24)が延設され、その先端部(圧力検出部(2
41”Jは圧縮室(6)の吸入行程中(圧縮作用の初期
段階をも含む位置)に夫々臨丑ぜるに面圧力検出部(2
3)’(24)iは相互に90度の位相角を存して(即
ち各ベーン(8)・・・間の位相角と同じ)設けられる
。換言すれば面圧力検出部(23)′(2(イ)′は同
時に同一の圧縮ブロック内に臨むことなく圧縮途中にあ
って隣接する圧縮ブロックに対して夫々臨む状態が得ら
れる様に設けられる。そして又同圧力検出部(23)’
(24)′ハ圧縮ブロックに対して同一の位相角を存し
て臨む状態にある様に設けられる0換言すれは一力の圧
力検出部(231′が特定の圧縮ブロック内に臨む状態
が得られるのと同期して他方の圧力検出部(24)’も
又隣接する圧縮ブロック内に臨む状態が得られる様に設
けられる。
A spool 09) for opening and closing the bypass hole (11) is provided in the control valve mechanism (12) in correspondence with the bypass hole (old) so as to be slidable in a direction perpendicular to the bypass hole (old). A pair of pressure chambers consisting of a high pressure chamber (20) and a low pressure chamber (21) are provided facing each other at both ends of the spool 09). There is a splash (22j) inside the low pressure chamber (21).
is installed, and the spool 09) is normally biased toward the high pressure chamber (20) via the spring (22)', so that the bypass hole Cl1) is fully opened. A first pressure guiding hole (23) is extended from the high pressure chamber (20), and its tip (pressure detection part (231') ) from which a second pressure guiding hole (24) extends, and its tip (pressure detection part (24)
41"J is a surface pressure detection part (2
3)'(24)i are provided with a phase angle of 90 degrees from each other (ie, the same as the phase angle between each vane (8)...). In other words, the surface pressure detectors (23)'(2(a)' are provided so that they do not face the same compression block at the same time, but instead face each of the adjacent compression blocks in the middle of compression. .And the same pressure detection part (23)'
(24) 'c) In other words, a single-force pressure detection unit is installed so that it faces the compression block with the same phase angle (231' can face the inside of a specific compression block). At the same time, the other pressure detecting section (24)' is also provided so as to face into the adjacent compression block.

第6図及び第7図は第2の実施例を表わす図面であって
、両図面において(31)は圧縮機の外殻を構成するハ
ウジングを示す。同ノーウジング(31)はフロントハ
ウジング(3渇とリャノ・ウジフグ(33)により構成
され、フロントノ1ウジング(32)は前壁部(32a
)  と、同前壁部(32a)の外周縁を囲繞する周壁
部(32b)を存して有底円筒状に形成される○そして
リャノ・ウジング(33)も又後壁部(33a)と、同
後壁部(33a)の外周縁を囲繞する周壁部(33b)
 ’を存して有底円筒状に形成される。
6 and 7 are drawings showing the second embodiment, and in both drawings (31) indicates a housing forming the outer shell of the compressor. The nousing (31) is composed of the front housing (3) and the Liano Ujifugu (33), and the front nozzle 1 (32) is the front wall part (32a).
) and a peripheral wall (32b) surrounding the outer periphery of the front wall (32a), which is formed into a cylindrical shape with a bottom. , a peripheral wall portion (33b) surrounding the outer periphery of the rear wall portion (33a).
It is formed into a cylindrical shape with a bottom.

そしてフロントノ・ウジング02)内はその略中間部に
嵌着する仕切り盤(341’に介して二室に分割される
The interior of the front housing 02) is divided into two rooms via a partition plate (341') fitted approximately in the middle thereof.

即ち前壁部(32a )側に位置して吸入室(35)が
設けられ、開口部側に位置して圧縮作用室(36)が設
けられる。吸入室(35)と圧縮作用室(36)間は仕
切り盤(34)に開口する通孔(34)’・・・を介し
て連通可能に設けられ圧縮作用室(36)には固定スク
ロール(37)と後述する回転スクロール(38)が設
けられる。固定スクロールC37)はフロントハウジン
グ(32の開口縁に沿ってその内壁面に嵌着する基盤(
37a)と、同基盤(37a)よりフロントハウジング
(3つの前壁部(32a)方向に向けて渦巻き状に突設
するスクロール片(37b)により形成される。吸入室
(35)には周壁部(32b)に吸入管路(図示省略)
に接続する吸入口(=IO)が開口され、前壁部(32
a)には軸受は部(41)が設けられる。そして軸受は
部6+11には駆動軸(42)が回転自在に支承される
○同側動軸(42)はフロントノ・ウジング(32)外
に突出する一端を電磁クラッチ(図示省略)に接続する
一方、フロントハウジング(321内に延在する他端に
はクランク軸部(42)’が圧縮作用室(36)内に臨
む如く設けられ、同クランク軸部G42)’には前述の
回転スクロール(38)が揺動回転自在に軸架される。
That is, a suction chamber (35) is provided on the front wall (32a) side, and a compression chamber (36) is provided on the opening side. The suction chamber (35) and the compression chamber (36) are provided to communicate with each other through a through hole (34)' opened in the partition panel (34), and the compression chamber (36) is provided with a fixed scroll ( 37) and a rotating scroll (38), which will be described later. The fixed scroll C37) has a base (C37) that fits into the inner wall surface of the front housing (32) along the opening edge thereof.
37a) and a scroll piece (37b) that protrudes spirally from the base (37a) toward the front housing (three front walls (32a).The suction chamber (35) has a peripheral wall part. (32b) is a suction pipe (not shown)
The inlet (=IO) connected to the front wall part (32
A) is provided with a bearing section (41). A drive shaft (42) is rotatably supported in bearing section 6+11. One end of the drive shaft (42) on the same side that protrudes outside the front nozzle (32) is connected to an electromagnetic clutch (not shown). On the other hand, a crankshaft (42)' is provided at the other end extending into the front housing (321) so as to face the compression chamber (36), and the crankshaft (G42)' is provided with the aforementioned rotating scroll (42)'. 38) is mounted on an axis so as to be swingable and rotatable.

回転スフロー ルC38)は基盤(38a)と、同基盤
(38a)より前記固定スクロール(、司方向に向けて
41′、i巻き状に突出するスクロール片(38b)に
より形成され、同スクロール片(38b)id固定スク
ロール(3ηのスクロール片(37b)に対してその巻
き方向を相違させて設けられる。
The rotating scroll roll C38) is formed by a base (38a) and a scroll piece (38b) that protrudes from the base (38a) in an i-wound shape toward the fixed scroll (41'). 38b) ID fixed scroll (3η scroll piece (37b) is provided with its winding direction different from that of the scroll piece (37b)).

そして又同スクロール片(38b) H固定スクロール
(37)側の基盤(37a)に対して摺接可能な如く設
ける一方、基盤(38a)に対しては固定スクロールC
37)側のスクロール片(37b)が摺接可能な如く設
けられ、両スクロール片(37b ) (38b )間
には渦巻き状に圧縮室6つが形成される。そして同圧縮
室(イ)は両スクロール片(37b)(38b)の摺接
作用を介して複数個の圧縮ブロック(55a)(55b
)(55cH55dH55e)  に分割され、各圧縮
ブロックは吸入側より吐出側に向けて連続移行可能に設
けられる。
The same scroll piece (38b) is provided so as to be able to slide against the base (37a) on the H fixed scroll (37) side, while the fixed scroll C is attached to the base (38a).
The scroll piece (37b) on the side 37) is provided so as to be able to come into sliding contact with each other, and six compression chambers are formed in a spiral shape between both the scroll pieces (37b) and (38b). The compression chamber (a) is formed by a plurality of compression blocks (55a) (55b) through the sliding action of both scroll pieces (37b) (38b).
) (55cH55dH55e) Each compression block is provided so as to be able to move continuously from the suction side to the discharge side.

一方前記の様にフロントノ・ウジング(3渇の開口部に
固定スクロール(3γ)の基盤(37a)が嵌着される
ことにより、リャノ・ウジング(33)側には同基盤(
37a)と後壁部(33a)間に吐出室(431及び通
孔(,3・1)′ヲ介して圧縮作用室(36)と連通さ
せて吸入室(39′が形成される。
On the other hand, as mentioned above, by fitting the base (37a) of the fixed scroll (3γ) into the opening of the front nozzle (33), the base (37a) is attached to the rear nozzle (33) side.
A suction chamber (39') is formed between the compression chamber (36) and the compression chamber (36) via the discharge chamber (431) and the through hole (3.1)'.

同吐出室(431,Kは周壁部(33b)に吐出管路(
図示省略)に接続する吐出El (441が設けられる
。そして基盤(37a)にはスクロール片(37b)に
より形成される渦巻きの中心部と相対応して吐出孔(4
5)が開口され、同吐出孔(45)には吐出弁(45)
’が開閉自在に設けられる。(4G)は同吐出弁(4ツ
′の開き角度を規制するためのりテーナーを示す。
The discharge chamber (431, K has a discharge pipe line (
A discharge hole (441) is provided in the base (37a), which is connected to a discharge hole (441, not shown), which corresponds to the center of the spiral formed by the scroll piece (37b).
5) is opened, and the discharge hole (45) has a discharge valve (45).
' is provided so that it can be opened and closed freely. (4G) indicates a glue retainer for regulating the opening angle of the discharge valve (4').

そして又固定スクロール(3力の基盤(37a)には上
記吸入室(,35)’と圧縮室(4)(吸入行程寄り)
間を連通する如くバイパス孔(39)が貫設され、同バ
イパス孔(39)には同バイパス孔(39)の制御弁機
構t=17+が設けられる。同制御弁機構(47)には
スプール(48)がバイパス孔(39)に対して直交す
る方向に向けて摺動自在に設けられる。そして同スプー
ル(48)の両端部には高圧室6191と低圧室(50
)より成る一対の圧力室が対峙させて設けられる。低圧
室(50)にはばね◎1)が介装され、スプール(18
1iよ同ばね(51)によって常時は高圧室(=19)
方向に向けて伺勢されて上記バイパス孔(39) を開
く状態にある様に設けられる。そして高圧室(49) 
力)らは第1導圧孔tbsか延設され、その先端部(圧
力検出部6ツ′)は圧縮室(へ)の圧縮行程中に、又低
圧室(50)からは第2導圧孔■が延設され、その先端
部(圧力検出部(イ)′)は圧縮室(5ツの吸入行程中
(圧縮作用の初期段階をも含む位置)に夫々臨ませるに
同圧力検出部0→′Q′は中心部より半径方向に延出す
る直線上に一列状に配設することにより設けられる。換
言すれば同圧力検出部6つ′Q′は同時に同一の圧縮ブ
ロック内に臨むことはなく、圧縮途中にあって両スクロ
ール片(37b)(38b)の摺接を介して半径方向に
隣接する圧縮ブロック(55a )(55c )に対し
て夫々臨む状態が得られる様に設けられる。なお、スク
ロール片(37b ) (38b )のうず巻き回数が
多いj賜金には、1つおいた圧縮ブロックにそれぞれ臨
1せる様にしてもよい。
Also, the fixed scroll (3-force base (37a) has the above-mentioned suction chamber (, 35)' and compression chamber (4) (closer to the suction stroke).
A bypass hole (39) is provided so as to communicate therebetween, and a control valve mechanism t=17+ for the bypass hole (39) is provided in the bypass hole (39). A spool (48) is provided in the control valve mechanism (47) so as to be slidable in a direction perpendicular to the bypass hole (39). A high pressure chamber 6191 and a low pressure chamber (50
) A pair of pressure chambers are provided facing each other. A spring ◎1) is installed in the low pressure chamber (50), and the spool (18
1i and the same spring (51) always create a high pressure chamber (=19)
The bypass hole (39) is provided so as to be biased toward the direction to open the bypass hole (39). and hyperbaric chamber (49)
The first pressure guiding hole TBS extends from the first pressure guiding hole TBS, and its tip (pressure detecting part 6') receives the second guiding pressure from the low pressure chamber (50) during the compression stroke of the compression chamber (toward). A hole (2) is extended, and its tip (pressure detection part (a)') faces each of the compression chambers (positions during the five suction strokes (including the initial stage of compression action)). →'Q' are provided by arranging them in a line on a straight line extending radially from the center.In other words, the six pressure detecting parts 'Q' face the same compression block at the same time. Rather, they are provided so that during compression, they can face the radially adjacent compression blocks (55a) and (55c) through sliding contact between both scroll pieces (37b) and (38b), respectively. Incidentally, in cases where the scroll pieces (37b) (38b) have a large number of spiral windings, they may be placed on one compression block, respectively.

次にその作用について説明する。Next, its effect will be explained.

第1図乃至第5図に示す第1の実施例において、電磁ク
ラッチ(図示省略)の接続操作を介してエンジンの駆動
力を駆動軸(4)に伝達し、同駆動力を介してローター
(5) ff:回転させることにより、同ローター(5
)及Dベーン(8)・・・の回転作用を介して圧縮室(
6)内に送り込まれた冷媒ガスが、同圧縮室(6)内を
吐出側に向けて圧送される。そしてこの様にして圧縮室
(6)内を圧送される冷媒ガスの一部はバイパス狂的)
が開放状態にあることにより、その圧縮途中において同
バイパス孔(II)を経て吸入室(9)側に流出する。
In the first embodiment shown in FIGS. 1 to 5, the driving force of the engine is transmitted to the drive shaft (4) through the connection operation of an electromagnetic clutch (not shown), and the driving force is transmitted to the rotor (4) through the driving force. 5) ff: By rotating, the same rotor (5
) and D vane (8)... through the rotational action of the compression chamber (
6) The refrigerant gas sent into the compression chamber (6) is pumped toward the discharge side. A part of the refrigerant gas that is pumped through the compression chamber (6) in this way is bypassed.
Since it is in an open state, it flows out to the suction chamber (9) side through the bypass hole (II) during compression.

又圧縮室(6)内をその終端位置迄送られた冷媒ガスは
吐出孔(141,吐出室(13)、通孔(18)、分離
室(17)を経て吐出口07)′より吐出管路内をコン
デンサー(図示省略)方向に向けて送り出される。
In addition, the refrigerant gas sent through the compression chamber (6) to its terminal position passes through the discharge hole (141, discharge chamber (13), through hole (18), and separation chamber (17), and then from the discharge port 07)' to the discharge pipe. It is sent out along the road toward a condenser (not shown).

そして上記の様な作用が繰り返されることにより、圧縮
室(6)内の圧縮圧力は次第に高められる一方、同圧縮
室(6)内の圧力変化は同圧力検出部(23+’(24
)’において検出される。そして同圧力検出部(23+
’(241’において検出された側圧力(圧縮行程圧力
PHと吸入行程圧力PL  )間に生ずる差圧か、制御
弁機構(12)においてばね(22)の設定圧力を上回
った状態においてスプール09)はばね(22)の付勢
圧に打ち勝って低圧室(2υ方向に押圧されてバイパス
孔(印を塞ぐ状態が得られる。そしてこの様にスプール
(19)によってバイパス狂的)が塞れることにより圧
縮室(6)内の冷媒ガスはその一部がこれ迄の様にバイ
パス孔fll+’i経て吸入室(9)側に流出すること
なくその全てが圧縮されて100%運転状態が得られる
By repeating the above action, the compression pressure in the compression chamber (6) is gradually increased, while the pressure change in the compression chamber (6) is controlled by the pressure detection part (23+' (24).
)' is detected. And the same pressure detection part (23+
'(241') Either the differential pressure generated between the side pressures (compression stroke pressure PH and suction stroke pressure PL) detected at spool 09) exceeds the set pressure of the spring (22) in the control valve mechanism (12). By overcoming the biasing pressure of the spring (22) and being pressed in the low pressure chamber (2υ direction), a state is obtained in which the bypass hole (marked) is blocked.And by blocking the bypass hole (marked) by the spool (19) in this way, A part of the refrigerant gas in the compression chamber (6) does not flow out to the suction chamber (9) side through the bypass hole fll+'i as before, but all of it is compressed and a 100% operating state is obtained.

一方室内の冷房負荷が減少し、吸入室(9)内の圧力が
低下するのに伴ない吸入行程圧力PL と圧縮行程圧力
pH間の差圧も小さくなる。そしてその差圧がばね(2
2)の設定圧力を下回った状態においてこれ迄上記差圧
によって低圧室(21)側に押圧されてバイパス孔(l
lla−塞ぐ状態にあったスプール09)ばばね+22
)’を介して高圧室(20)方向に向けて付勢されてバ
イパス狂的)を開放する状態が得られる。即ち圧縮室(
6)において圧縮途中にある冷媒ガスの一部が吸入室(
9)側に流出することによって圧縮室(6)内における
圧縮圧力が低下し圧縮容量を減らす作用が得られる。
On the other hand, as the cooling load in the room decreases and the pressure in the suction chamber (9) decreases, the differential pressure between the suction stroke pressure PL and the compression stroke pressure pH also decreases. And that differential pressure is the spring (2
In the state where the pressure is lower than the set pressure in step 2), the pressure is pushed toward the low pressure chamber (21) by the differential pressure, and the bypass hole (l
lla - Spool in the blocked state 09) Spring + 22
)' toward the high pressure chamber (20), and a state is obtained in which the bypass mechanism (20) is opened. That is, the compression chamber (
In 6), a part of the refrigerant gas in the middle of compression enters the suction chamber (
By flowing out to the side 9), the compression pressure in the compression chamber (6) decreases, resulting in an effect of reducing the compression capacity.

しかして上記同圧力検出部(2場′(24)′は各ベー
ン(8)・・・の位相角と一致させて90度の位相角を
存して配設されているととKより、圧力検出部(23)
’において同圧力検出部(23)’に対してベーン(8
)が接近するに従って次第に圧力が高められ、その検出
圧力はベーン(8)が圧力検出部(23)’を通過する
直前において最高となると同時に同ベーン(8)が圧力
検出部(23)’を通過した直後においてその圧力は急
激に低下し、最低値となる(第8図におけるpH)。そ
して又後続のベーン(8)が接近するに従って再O・圧
力が次第に高められるというパターンかローター(5)
のち回転毎に連続的に繰り返される一方、圧力検出部C
24J’においても上記と同様のパターンが上記パター
ンと同期して繰り返される(第8図におけるPL)。
According to K, the same pressure detecting section (field 2'(24)') is arranged with a phase angle of 90 degrees to match the phase angle of each vane (8)... Pressure detection part (23)
' At ', the vane (8
) approaches the pressure detection part (23)', the detected pressure reaches its maximum just before the vane (8) passes the pressure detection part (23)', and at the same time the vane (8) passes the pressure detection part (23)'. Immediately after passing through, the pressure drops rapidly and reaches its lowest value (pH in Figure 8). Also, as the succeeding vane (8) approaches, the re-O pressure is gradually increased in the rotor (5).
After that, the pressure detection part C is continuously repeated for each rotation.
24J', the same pattern as above is repeated in synchronization with the above pattern (PL in FIG. 8).

そしてこの様に同圧力検出部+231′(2,I)’に
おいて上記の様な圧力変動のパターンが同期して繰り返
されることにより、両者間に生ずる差圧の変動幅を縮め
ることが出来る。即ち同圧力検出部t23)’(’(イ
)′において検出される圧縮行程圧力PHと吸入行程圧
力PL間に生ずる差圧の変動幅(ΔPm1n→ΔPma
x )を小さくすることが出来、これによりスプール0
9)の動きを安定させることが出来る。
In this way, the above-described pressure fluctuation pattern is repeated synchronously in the same pressure detection section +231'(2,I)', thereby making it possible to reduce the range of fluctuation in the differential pressure that occurs between the two. That is, the fluctuation range of the differential pressure (ΔPm1n → ΔPma
x ) can be made small, which makes the spool 0
9) It is possible to stabilize the movement.

第6図及び第7図に示す第2の実施例において、駆動軸
(口の一端に設けられる電磁クラッチ(図示省略)の接
続操作を介してエンジンの駆動力を、駆動軸(42)に
伝えることにより、同駆動軸(42)のクランク軸部(
12+’に軸架する回転スクロール(38)がその自転
全規制された状態にて揺動回転(公転)する状態が得ら
れる。即ち回転スクロール(:(8)のスクロール片(
38b)が固定スクロール(371側のスクロール片(
37b)に摺接し乍ら渦巻きの中上・方向に向けて揺動
回転する状態が得られる。そしてこの様に回転スクロー
ル(38)がそのスクロール片(38b)を固定スクロ
ール(37)側のスクロール片(37b)に摺接させ乍
ら揺動回転することにより圧縮室鰻)ヲ複数個の圧縮ブ
ロック(55a)(55b)(55c)(55dH55
e)に区画し、各圧縮ブロックを中心部方向に向けて連
続移行させ乍ら冷媒ガスを圧縮する作用が得られる。そ
して各圧縮ブロックの吐出側に向けての連続移行を介し
て中心部方向に向けて圧送される冷媒ガスの内、その一
部は圧縮途中においてバイパス孔(39) k経て吸入
室(35)’側に流出する。そして又両スクロール(3
7)(38)の中心位置迄圧送された冷媒ガスはその圧
縮圧力を介して吐出弁(45)’を押し開き、吐出室(
43)に送り込まれる。
In the second embodiment shown in FIGS. 6 and 7, the driving force of the engine is transmitted to the drive shaft (42) through the connection operation of an electromagnetic clutch (not shown) provided at one end of the drive shaft (mouth). By doing so, the crankshaft portion of the drive shaft (42) (
A state is obtained in which the rotary scroll (38) mounted on the shaft 12+' oscillates (revolutions) in a state where its rotation is completely restricted. That is, the rotating scroll (: (8) scroll piece (
38b) is fixed scroll (371 side scroll piece (
37b), while swinging and rotating toward the center of the spiral. In this way, the rotating scroll (38) swings and rotates while its scroll piece (38b) is in sliding contact with the scroll piece (37b) on the fixed scroll (37) side, thereby compressing a plurality of compression chambers. Block (55a) (55b) (55c) (55dH55
e), it is possible to obtain the effect of compressing the refrigerant gas while continuously moving each compression block toward the center. Of the refrigerant gas that is continuously transferred toward the discharge side of each compression block and pumped toward the center, part of it passes through the bypass hole (39) and the suction chamber (35)' during compression. It flows out to the side. And also both scrolls (3
7) The refrigerant gas pressure-fed to the center position of (38) pushes open the discharge valve (45)' through its compression pressure, and the discharge chamber (
43).

そしてこの様な作用が連続的に繰り返さね、ることによ
って圧縮室(へ)内の圧力は次第に高められる。
As this action is repeated continuously, the pressure within the compression chamber is gradually increased.

そして両圧力検出部U’(52’において検出された圧
力(吸入行程圧力PLと圧縮行程圧力PH1間に生ずる
差圧がばねり9の設定圧を上回った状態において制御弁
機構(旬においてスプール(48)は同ばね(5I)の
付勢圧に打ち勝って低圧室(50)方向に抑圧さね、て
・・イ・2ス孔(39)を塞ぐ状態が得られる。これに
より100%運転状態が得られる。
Then, when the pressure detected in both pressure detection parts U'(52') (the differential pressure generated between the suction stroke pressure PL and the compression stroke pressure PH1 exceeds the set pressure of the spring 9), the control valve mechanism 48) overcomes the biasing pressure of the spring (5I) and is suppressed in the direction of the low pressure chamber (50), resulting in a state in which the hole (39) is closed.This results in a 100% operating state. is obtained.

一方室内の冷房負荷が減小し、吸入室(35!内の圧力
が低下することにより、圧縮行程圧力PHと吸入行程圧
力PLも相対的に低下することとなるのであるが、この
様に両圧力が低下するのに伴いその差圧かばね(51)
の設定圧を下回った状態において、これ迄上記差圧によ
って低圧室(50)側に押圧されてバイパス孔(39)
を塞ぐ状態にあったスプール(=1811はばね(5]
)を介して高圧室(49)方向に向けて付勢さね、てバ
イパ□ス孔(3つ)を開放する状態が得らハる。これに
より圧縮容量を減らす作用が得られる。
On the other hand, as the cooling load in the room decreases and the pressure in the suction chamber (35!) decreases, the compression stroke pressure PH and suction stroke pressure PL also decrease relatively. As the pressure decreases, the differential pressure or spring (51)
In the state where the pressure is lower than the set pressure of
The spool (=1811 is the spring (5)
) in the direction of the high pressure chamber (49) to open the bypass holes (three). This has the effect of reducing compression capacity.

しかして圧縮室印に臨1せて設けらねる両圧力検出部c
ツ′ハに針いては回転スクロール(38)の回転を介し
て各圧縮ブロックが連続移行するのにともないその度毎
に圧力変動が繰り返されるのであるが、両圧力検出部←
2’6”i’は半径方向に隣接する圧縮ブロック内に臨
む如く設けられ、且つ両検出部62’ E、(l’は同
圧縮ブロックに対してその位相を一致させて設けられて
いることにより、両圧力検出部Gψ’63’において圧
力変動のパターンを同期させて得ることが出来る。そし
てこの様に圧力変動のパターンを同期させて得ることが
出来ることにより、検出部ばにおける検出圧力(圧縮行
程圧力Po)と検出部6艷′における検出圧力(吸入行
程圧力Pt、)間に生ずる差圧のその変動幅を相殺させ
ることが出来、第1の実施例と同様スプール(48)の
動きを安定させることが出来る。
However, both pressure detection parts c are provided facing the compression chamber mark.
The key point is that as each compression block continuously moves through the rotation of the rotating scroll (38), pressure fluctuations are repeated each time.
2'6"i' is provided so as to face into the compressed block adjacent in the radial direction, and both detectors 62'E and (l' are provided so that their phases match with respect to the same compressed block. As a result, pressure fluctuation patterns can be obtained in synchronization in both pressure detection sections Gψ'63'.By being able to obtain pressure variation patterns in synchronization in this way, the detected pressure ( The fluctuation range of the differential pressure generated between the compression stroke pressure (Po) and the detection pressure (suction stroke pressure Pt) at the detection unit 6' can be offset, and the movement of the spool (48) as in the first embodiment can be canceled out. can be stabilized.

尚」二記の様にローター(5)若しくは回転スクロール
(38)の回転角度が変化するのに伴って生ずる圧力変
動に対しては制御弁機構における第1導圧孔及び第2導
圧孔の直径寸法を可及的に小さく形成し、回部に絞り効
果を与えることによっても一応解決することは可能であ
る。しかしてこの絞り効果に期待する方法にあっては高
速回転時には有効に作用する反面、低速回転時あるいは
構造的に絞り効果を期特出来ない場合にはその効果を期
特出来ない点に問題点を有する。これに対して本発明に
あってローター(5)若しくは回転スクロール片38)
の回転速度に左右されることなく、又構造的に絞り効果
を期特出来ない場合においてもスプールの動きを安定さ
せる作用を得ることが可能である。
In addition, as described in Section 2, pressure fluctuations that occur as the rotation angle of the rotor (5) or the rotating scroll (38) changes can be handled by controlling the first and second pressure holes in the control valve mechanism. It is possible to temporarily solve this problem by making the diameter as small as possible and giving a constricting effect to the round part. However, while this method relies on the squeezing effect of the lever, it works effectively when rotating at high speeds, but the problem is that it cannot be expected to produce the squeezing effect when rotating at low speeds or when the structure does not allow for the squeezing effect. has. In contrast, in the present invention, the rotor (5) or the rotating scroll piece 38)
It is possible to obtain the effect of stabilizing the movement of the spool regardless of the rotational speed of the spool, and even when the throttling effect cannot be expected structurally.

又従来差圧の変動幅が大きいことに起因して発生する処
の脈動を吸収する手段としてはmi制御弁機構における
圧力室を大きく形成し、これを第1導圧孔及び第2導圧
孔と組合せることによってマフラー効果を期待する方法
が用いられているのであるが、本発明にあっては差圧の
変動幅自体を小さく抑えることが出来ることにより、上
記の様に圧力室を大きく形成する必要はなく、その分だ
け制御弁機構をコンパクトに形成することか可能である
Conventionally, as a means of absorbing the pulsation that occurs due to the large fluctuation range of the differential pressure, the pressure chamber in the mi control valve mechanism is formed large, and this is connected to the first pressure guiding hole and the second pressure guiding hole. A method is used in which a muffler effect is expected by combining it with There is no need to do so, and the control valve mechanism can be made more compact.

本発明は以上の様に構成されるものであって、上記の様
に圧縮行程圧力PH・の検出部と、吸入行程圧力P+−
の検出部において生ずる圧力変動のパターンを同期させ
て得る様にしたこと1/こより、圧縮行程圧力PHと吸
入行程圧力PL間に生ずる差圧の変動幅を相殺させて小
さく抑えることが出来るに至り、その結果スプールの動
きを安定さぜ、その誤作動を防止することが出来るに至
った。
The present invention is constructed as described above, and includes a compression stroke pressure PH and a suction stroke pressure P+- as described above.
By synchronizing the patterns of pressure fluctuations that occur in the detection section of As a result, we have been able to stabilize the movement of the spool and prevent its malfunction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は第1の実施例を表わす図面であって
、第1図はスライドベーン型圧縮機の側断面図(第3図
におけるA−B−C線断面図)、第2図は第1図におけ
るD−D線断面図、第3図は同F、E線断面図、第4図
及び第5図は制御弁機構における作用状態を示す断面図
である。第6図及び第7図は第2の実施例を表わす図面
であって、第6図はスクロール型圧縮機の側断面図、第
7図は第6図におけるF−F線断面図である。又第8図
は本発明に係る差圧の変動幅を表わすグラフ図、第9図
は従来構造に係る差圧の変動幅を表わすグラフ図である
。 (])ハウジング、(iA)フロントノ・ウジング、(
IB)リヤハウジング、(2)シリンダーブロック、(
3A)フロントサイドプレート、(3B)リヤサイトプ
レート、(4)駆動軸、(5)ロークー、(6)圧縮室
、(6a)(6b ) (6c ) (6d )圧縮ブ
ロック、(7)ベーン溝、(8)ベーン、(9)吸入室
、(9)′吸入口、(10)吸入孔、(印バイパス孔、
(12)制御弁機構、(13)吐出室、(14)吐出孔
、(15)吐出弁、(16)リテーナ−1(17)分離
室、(17)’吐出口、(18)通孔、09)スプール
、(20)高圧室、(21)低圧室、(22)ばね、(
23)第1導圧孔、(24)第2導圧孔、(231′(
2・1ど圧力検出部、(31)ハウジング、(32)フ
ロントハウジング、(32a)前壁部、(32b)周壁
部、(33)リヤハウジング、(33a)後壁部、(3
3b)周壁部、(34)仕切り盤、(34)’通孔、(
35)(351′吸入室、(3G)圧縮作用室、(37
)固定スクロール、(37a)基盤、(37b)スクロ
ール片、(38)回転スクロール、(38a)基盤、<
3sb)スクロール片、(39)バイパス孔、(=I(
It吸入口、(刊軸受は部、(42)駆動軸、(42ト
クランク軸、(1131吐出室、G14)吐出口、(4
5)吐出孔、(45)’吐出弁、(4G)リテーナ−1
j47j制御弁機構、(48)スプール、(49)高圧
室、(50)低圧室、の1)ばね、6■第1導圧孔、鏝
第2導圧孔、Gの′G■′圧力検出部、霞圧縮室、(5
5a)(55bH55c)(55d)(55e)圧縮ブ
ロック。 特許出願人 株式会社豊田自動織機製作所2 ED 第2図
1 to 5 are drawings showing a first embodiment, in which FIG. 1 is a side sectional view of a slide vane compressor (cross sectional view taken along line A-B-C in FIG. 3), and FIG. The figure is a sectional view taken along the line DD in FIG. 1, FIG. 3 is a sectional view taken along lines F and E, and FIGS. 4 and 5 are sectional views showing the operating state of the control valve mechanism. 6 and 7 are drawings showing a second embodiment, in which FIG. 6 is a side sectional view of the scroll compressor, and FIG. 7 is a sectional view taken along the line FF in FIG. 6. Further, FIG. 8 is a graph diagram showing the variation range of the differential pressure according to the present invention, and FIG. 9 is a graph diagram showing the variation range of the differential pressure according to the conventional structure. (])Housing, (iA)Front housing, (
IB) rear housing, (2) cylinder block, (
3A) Front side plate, (3B) Rear sight plate, (4) Drive shaft, (5) Loco, (6) Compression chamber, (6a) (6b) (6c) (6d) Compression block, (7) Vane groove , (8) vane, (9) suction chamber, (9)' suction port, (10) suction hole, (marked bypass hole,
(12) control valve mechanism, (13) discharge chamber, (14) discharge hole, (15) discharge valve, (16) retainer-1 (17) separation chamber, (17) 'discharge port, (18) through hole, 09) Spool, (20) High pressure chamber, (21) Low pressure chamber, (22) Spring, (
23) First pressure hole, (24) second pressure hole, (231'(
2.1 pressure detection section, (31) housing, (32) front housing, (32a) front wall, (32b) peripheral wall, (33) rear housing, (33a) rear wall, (3
3b) Peripheral wall part, (34) partition panel, (34)' through hole, (
35) (351' suction chamber, (3G) compression action chamber, (37
) fixed scroll, (37a) base, (37b) scroll piece, (38) rotating scroll, (38a) base, <
3sb) Scroll piece, (39) bypass hole, (=I(
It suction port, (print bearing part, (42) drive shaft, (42 crankshaft, (1131 discharge chamber, G14) discharge port, (4)
5) Discharge hole, (45)'discharge valve, (4G) retainer-1
j47j control valve mechanism, (48) spool, (49) high pressure chamber, (50) low pressure chamber, 1) spring, 6 ■ first pressure guiding hole, trowel second pressure guiding hole, G'G■' pressure detection Department, Kasumi compression chamber, (5
5a) (55bH55c) (55d) (55e) Compressed block. Patent applicant Toyota Industries Corporation 2 ED Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)圧縮室を吸入側より吐出側に向けて連続移行可能
な如く複数個の圧縮ブロックに区画する圧縮機であって
、圧縮室と吸入室間を連通ずるバイパス孔に対してスプ
ールを開閉自在に設け、同スプールは開き方向に向けて
付勢するとともに同スプールの両端部には一対の圧力室
を対峙させて設ける一方、上記圧縮室には上記両圧力室
の圧力検出部をその夫々の圧力検出部が別の圧縮ブロッ
クに臨むことが可能な如く設け、且つ面圧力検出部は両
圧縮ブロックに対してその位相を一致させるとともに低
圧側の圧力検出部を圧縮作用の初期段階にある圧縮室に
臨むように設けて成る容量可変型圧縮機。
(1) A compressor in which the compression chamber is divided into a plurality of compression blocks so as to be able to move continuously from the suction side to the discharge side, and the spool is opened and closed with respect to the bypass hole that communicates between the compression chamber and the suction chamber. The spool is biased in the opening direction, and a pair of pressure chambers are provided at both ends of the spool facing each other. The pressure detection section is provided so that it can face another compression block, and the surface pressure detection section is arranged in such a way that its phase is matched with respect to both compression blocks, and the pressure detection section on the low pressure side is placed in the initial stage of compression action. A variable capacity compressor installed facing the compression chamber.
(2)  ローターより圧縮室内に向けて出没自在に設
けられるベーンによって圧縮室を複数個の圧縮ブロック
に区画するスライドベーン型圧縮機であって、上記面圧
力検出部は上記各ベーン間の位相角と同一の位相角を存
して配設させて成る特許請求の範囲第1項に記載の容量
可変型圧縮機。
(2) A slide vane compressor in which the compression chamber is divided into a plurality of compression blocks by vanes provided so as to be freely protrusive and retractable toward the inside of the compression chamber from the rotor, and the surface pressure detection section detects the phase angle between each vane. The variable capacity compressor according to claim 1, wherein the variable capacity compressor is arranged with the same phase angle as.
(3)  固定スクロールと、同固定スクロールに対し
て揺動回転自在に設けられる回転スクロールによって、
圧縮室を複数個の圧縮ブロックに区画するスクロール型
圧縮機であって、上記面圧力検出部は異なる圧縮ブロッ
クに配置され半径方向に沿って直列させて設けて成る特
許請求の範囲第1項に記載の容量可変型圧縮機。
(3) With a fixed scroll and a rotating scroll that is provided to be able to swing and rotate with respect to the fixed scroll,
A scroll compressor in which a compression chamber is divided into a plurality of compression blocks, wherein the surface pressure detection parts are arranged in different compression blocks and arranged in series along the radial direction. The variable capacity compressor described.
JP19275882A 1982-11-02 1982-11-02 Capacity varying type compressor Pending JPS5982597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19275882A JPS5982597A (en) 1982-11-02 1982-11-02 Capacity varying type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19275882A JPS5982597A (en) 1982-11-02 1982-11-02 Capacity varying type compressor

Publications (1)

Publication Number Publication Date
JPS5982597A true JPS5982597A (en) 1984-05-12

Family

ID=16296557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19275882A Pending JPS5982597A (en) 1982-11-02 1982-11-02 Capacity varying type compressor

Country Status (1)

Country Link
JP (1) JPS5982597A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200102834A (en) * 2019-02-22 2020-09-01 엘지전자 주식회사 Vain rotary compressor
US11499555B2 (en) 2019-02-28 2022-11-15 Lg Electronics Inc. Vane rotary compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200102834A (en) * 2019-02-22 2020-09-01 엘지전자 주식회사 Vain rotary compressor
US11346344B2 (en) 2019-02-22 2022-05-31 Lg Electronics Inc. Vane rotary compressor
US11499555B2 (en) 2019-02-28 2022-11-15 Lg Electronics Inc. Vane rotary compressor
US11971032B2 (en) 2019-02-28 2024-04-30 Lg Electronics Inc. Vane rotary compressor with pressure reducing member inserted into the oil supply passage

Similar Documents

Publication Publication Date Title
US5993177A (en) Scroll type compressor with improved variable displacement mechanism
KR101253135B1 (en) Compressor having piston assembly
JPH0756274B2 (en) Scroll compressor
US4222716A (en) Combined pressure matching and capacity control slide valve assembly for helical screw rotary machine
US5015161A (en) Multiple stage orbiting ring rotary compressor
JPH0419395B2 (en)
US4737090A (en) Movable vane compressor
JPH0833158B2 (en) Capacity control compressor
JPS5982597A (en) Capacity varying type compressor
JPS59105994A (en) Capacity control mechanism in scroll type compressor
USRE31379E (en) Combined pressure matching and capacity control slide valve assembly for helical screw rotary machine
JPS59108896A (en) Capacity control mechanism for scroll type compressor
US4890986A (en) Variable capacity compressor
JPS58222994A (en) Variable capacity compressor
JPH024796B2 (en)
JPH03202691A (en) Variable volume scroll type compressor
JPS5968593A (en) Variable capacity type compressor
JPS601397A (en) Compressor of variable compression capacity type
JP2884529B2 (en) Variable displacement vane pump
JPS5999089A (en) Variable capacity type compressor
US4948345A (en) Variable capacity compressor having a widened variable range of capacity
JP3599762B2 (en) Variable displacement pump
JPH02227590A (en) Variable capacity compressor
JPS6176782A (en) Capacity control mechanism for scroll type compressor
JP2001241392A (en) Variable displacement type gas compressor