JPS5982466A - Surface modification of carbon fiber - Google Patents

Surface modification of carbon fiber

Info

Publication number
JPS5982466A
JPS5982466A JP57188526A JP18852682A JPS5982466A JP S5982466 A JPS5982466 A JP S5982466A JP 57188526 A JP57188526 A JP 57188526A JP 18852682 A JP18852682 A JP 18852682A JP S5982466 A JPS5982466 A JP S5982466A
Authority
JP
Japan
Prior art keywords
discharge
voltage
electrodes
low
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57188526A
Other languages
Japanese (ja)
Inventor
進 上野
鎌田 秀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP57188526A priority Critical patent/JPS5982466A/en
Priority to US06/543,891 priority patent/US4487880A/en
Priority to EP83110618A priority patent/EP0110118B1/en
Priority to DE8383110618T priority patent/DE3378770D1/en
Publication of JPS5982466A publication Critical patent/JPS5982466A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/16Chemical after-treatment of artificial filaments or the like during manufacture of carbon by physicochemical methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はカーボン繊維の表面改質方法に関するものであ
り、特には特定の条件下に低温グロー放電を行わせて発
生させた低温プラズマで処理することにより、該カーボ
ン繊維と他の材料(合成樹脂等)との間の接着性を改良
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for surface modification of carbon fibers, and in particular, the present invention relates to a method for surface modification of carbon fibers, and in particular, by treating the carbon fibers with low-temperature plasma generated by low-temperature glow discharge under specific conditions. and other materials (synthetic resins, etc.).

カーボン繊維は、そのすぐれた機械的強度、高弾性、耐
熱性、耐食性、電気伝導性、軽量性等の特性により、航
空機、自動車、電子・電気杓料あるいはスポーツ用品の
分野等各種の用途に幅広く使われている。例えばカーボ
ン繊維は強化相としてすぐれているので合成樹脂等のマ
トリックス樹脂と複合化して使用されることが多いが、
この場合にカーボン繊維についてはマトリックス樹脂と
の接着性に劣る問題があるため、あらかじめわ1脂コー
ト等の化学処理を施すことが必要とされる。
Due to its excellent mechanical strength, high elasticity, heat resistance, corrosion resistance, electrical conductivity, and light weight, carbon fiber is used in a wide variety of applications, including aircraft, automobiles, electronic and electric ladle materials, and sporting goods. It is used. For example, carbon fiber is an excellent reinforcing phase and is often used in combination with matrix resins such as synthetic resins.
In this case, carbon fibers have a problem of poor adhesion with the matrix resin, so it is necessary to apply a chemical treatment such as wax coating in advance.

しかしながら、このような前処理を行っても十分とは言
えず、さらに効果的な改善策が望まれている。
However, even such pretreatment is not sufficient, and more effective improvement measures are desired.

一般に上記のような強化材とマトリックス樹脂とからな
る複合化製品については、その機械的強度等の性能が強
化材とマ) IIラックス脂との接着性に依存するとこ
ろが大きく、よりすぐれた複合化製品の出現が待望され
る業界ではこの接着性σ)改善が強く望まれている。
In general, for composite products made of a reinforcing material and a matrix resin as described above, performance such as mechanical strength largely depends on the adhesion between the reinforcing material and the matrix resin. This improvement in adhesiveness σ) is strongly desired in the industry, where new products are eagerly awaited.

本発明者らはかかる技術的課題について鋭意研究ン重ね
た結果、カーボン繊維をきわめて高電圧の放電電圧のも
とに形成させた〆無機ガスの低温プラズマで処理すれば
よいことを確認し、本発明を完成した。
As a result of intensive research into this technical problem, the present inventors confirmed that carbon fibers can be treated with a low-temperature plasma of an inorganic gas formed under an extremely high discharge voltage. Completed the invention.

すなわち、本発明はカーボン繊維を、装置内にいずれか
一方がアースされた対放電電極を有する内部電極型イバ
温プラズマ発生装置に入れ、減圧下に無機ガスケ流通さ
せながら両電極間に4,000ボルト以上の放電電圧を
与えてグロー放電を行わせることにより発生させた低温
プラズマで処理することを特徴とするカーボン繊維の表
面改質方法に関するものである。
That is, in the present invention, carbon fibers are placed in an internal electrode type Ibara temperature plasma generator having a counter-discharge electrode, one of which is grounded, and 4,000 m The present invention relates to a method for surface modification of carbon fibers, which is characterized in that carbon fibers are treated with low-temperature plasma generated by applying a discharge voltage of volts or higher to cause glow discharge.

上記本発明の方法によればカーボン繊維はその表面が改
質されて他の横腹等との間の接着性が顕著に改善される
ので、このものの例えばフィラメント、ヤーン、クロス
等を他の合成樹脂の強化材料として使用した複合化製品
は機械的、電気的特性が従来に比べ著しく改善されると
いう効果が与えられる。
According to the above-mentioned method of the present invention, the surface of carbon fiber is modified and the adhesion between it and other flanks is significantly improved. The composite product used as a reinforcing material has the effect of significantly improving mechanical and electrical properties compared to conventional products.

本発明が対象とするカーボン繊維としてはフィラメント
、マルチフィラメントヤーン、チョップ、クロス等が包
含され、その形態については特に制限がない。
Carbon fibers targeted by the present invention include filaments, multifilament yarns, chopped fibers, cloth fibers, and the like, and there are no particular restrictions on their forms.

上記カーボン繊維の改質処理は、前記した対放電電極を
有する内部電極型低温プラズマ発生装置に減圧下に無機
ガスを流通させながらグロー放電を行わせることにより
発生させた03:堀プラズマで行われるが、ここに使用
される無義ガスとしてはヘリウム、ネオン、アルゴン、
−′ヘー、酵素、窒気、亜酸化窒素、−酸化窒素、二酸
化窒素、−酸化炭素、二酸化炭素、シアン化臭累、曲硫
酸ガス、硫化水素などが例示され、これらは小独または
二種以上のものが温合して使用される。X発明において
はこの無機ガスとして酸素ガスもしくは酸素ガスを少な
くとも10容量%含むものを使tiltろことが好まし
い。なお、これら無機ガスに有機化合物のガスヲ混入し
てもよいがその混入割合は小さい範囲にとどめるべきで
ある。
The above-mentioned modification treatment of the carbon fibers is carried out using 03: Hori plasma generated by performing glow discharge while flowing an inorganic gas under reduced pressure in the internal electrode type low temperature plasma generator having the above-mentioned counter-discharge electrode. However, the meaningless gases used here are helium, neon, argon,
Examples include enzymes, nitrogen, nitrous oxide, -nitric oxide, nitrogen dioxide, -carbon oxide, carbon dioxide, cyanide odors, diluted sulfuric acid gas, and hydrogen sulfide. The above ingredients are heated and used. In invention X, it is preferable to use oxygen gas or a gas containing at least 10% by volume of oxygen gas as the inorganic gas. Incidentally, an organic compound gas may be mixed with these inorganic gases, but the mixing ratio should be kept within a small range.

装置内におけるガス雰囲気の圧力は0.001〜10ト
ル(特には0.0l−1)ル)の範囲が望ましく、この
ようなガス圧力下で対放電電極間に、例えば、周波数1
0 KHz〜100 MHzの高周波で、IOW〜10
0KWの電力を与えることにより安定なグロー放電1行
わせることができる。なお、数箱;周波数帯としては上
記高周波のほかに低周波、マイクロ波、直流などを用い
ることができる。
The pressure of the gas atmosphere in the device is preferably in the range of 0.001 to 10 Torr (particularly 0.0 l-1 Torr), and under such gas pressure, the pressure of the gas atmosphere at a frequency of 1
At high frequencies from 0 KHz to 100 MHz, IOW ~ 10
Stable glow discharge 1 can be performed by applying 0 KW of power. In addition to the above-mentioned high frequency, low frequency, microwave, direct current, etc. can be used as the frequency band.

不発明では装置は内部電極型であることが好ましいが、
場合によって外部電極型であってもよいし、またコイル
型などの容量結合、誘導結合のいずれであってもよい。
In the present invention, it is preferable that the device is an internal electrode type,
Depending on the case, it may be an external electrode type, or it may be a coil type, capacitive coupling, or inductive coupling.

電極の形状については特に制限はなく、対電極の両者が
后I−形状でもあるいは異なった形状のいずれでもよく
、それらは平板状、リング状、棒状、シリンダー状等種
々可能であり、さらには処理装置の金属内壁を一方の箪
Ji!I!とじてアースした形式のものであってもよい
There is no particular restriction on the shape of the electrodes, and both counter electrodes may have a back I-shape or a different shape, and they can be in various shapes such as a flat plate, a ring shape, a rod shape, a cylinder shape, etc. Place the metal inner wall of the device on one side! I! It may be of a type that is closed and grounded.

本発明の方法において、その但l昌プラズマは減圧下に
無機ガスを流通させながら対放電電極間に4.000ボ
ルト以上の放電電圧苓・与えてグミー放電ン行わせるこ
とにより発生させたもθ)であることが必要とされ、こ
の条件での低1品プラズマ処理により前記[7たカーボ
ン繊維(フィラメント、マルチフィラメントヤーン、チ
ョップ、クロス等)に顕著な接着性改良効果がもたらさ
れる。この接着性改良は該放電−F+−をさらに例えば
5,000.7.000.10,000ボルトと上昇さ
せるとそれに応じて向上する。一方、該放?jj tg
、IFが4.000ボルトよりも小さい場合でもある程
度の接着性改良はなされるが、効果が低く、十分な接着
性改Jくの効果を達成するには長時間の処理を必゛)!
jとし、経済的に不利である。なお、放電型IEの上昇
と共に発熱量も多くなり、エネルギーロスもふえてくる
ため、コスト的に最適な条件を選定する必要がある。
In the method of the present invention, however, the plasma is generated by causing a gummy discharge by applying a discharge voltage of 4,000 volts or more between the counter discharge electrode while circulating an inorganic gas under reduced pressure. ), and low-one-product plasma treatment under these conditions brings about a remarkable adhesion-improving effect on the above-mentioned carbon fibers (filament, multifilament yarn, chopped, cloth, etc.). This improvement in adhesion increases as the discharge -F+- is further increased, for example to 5,000.7.000.10,000 volts. On the other hand, the release? jj tg
Although some adhesion improvement can be achieved when the IF is less than 4,000 volts, the effect is low and long treatment times are required to achieve sufficient adhesion modification effect)!
j, which is economically disadvantageous. Note that as the discharge type IE increases, the amount of heat generated increases and energy loss also increases, so it is necessary to select optimal conditions in terms of cost.

対放電電極間に4,000ボルト以上の電圧を印加し、
安定な低温プラズマを維持するためには、入力電極にか
なりの耐電圧をもった絶縁被覆を施す必要がある。例え
ば、銅、鉄、アルミニウム等の金属むき出しの電極では
、放電電流が優先する放電となり、放電電圧は1,00
0ボルト前後が限界であり、かつ不安定な放電となり、
また、不発明の目的とするカーボン繊維の表面接着性改
善にもほとんど効果ケ示さない。
Applying a voltage of 4,000 volts or more between the counter discharge electrode,
In order to maintain stable low-temperature plasma, it is necessary to cover the input electrode with an insulating coating that has a considerable withstand voltage. For example, with exposed metal electrodes such as copper, iron, aluminum, etc., the discharge current has priority, and the discharge voltage is 1,000
The limit is around 0 volts, and the discharge is unstable.
Furthermore, it has little effect on improving the surface adhesion of carbon fibers, which is the object of the invention.

電極の絶縁被覆は、鏑、鉄、アルミニウム等の電極に対
してはホーローフート、ガラスコート、セラミックコー
ト等が好ましく、かつ直流印加時の場合での耐電圧とし
て10,000ボルト/■以上であることが望ましい。
The insulating coating of the electrode is preferably a hollow foot, glass coat, ceramic coat, etc. for electrodes made of iron, iron, aluminum, etc., and the withstand voltage when applying direct current is 10,000 volts/■ or more. This is desirable.

対数−°電極間に4,000ボルト以上の放電電圧を与
え、グロー放電を行わせることにより低温プラズマの発
生を安定に維持する条件としては、装置内のガス雰囲気
の圧力を前記した0、001〜10トルとすることのほ
か、放電電極面の消費電力密度乞入力電極の単位面積当
))25ワツ) / cn?以上、電極間距離を1〜2
0cmとすることが好ましい。ガス圧力が10トル以上
高くなるとイハ渦プラズマを発生させるために高いη)
力を必要とし、かつ熱の発生も多く、また000】以下
の11テ、合には放電が不安定となり、いずれの場合に
も接着性の改良効果は低くなり、不発明の目的に合致し
ない。放電電極面の消費電力密度が25ワツト/Cイ以
下の場合には本発明の目的とする高′市庄放嶌を維持す
るのが困難となり、接着性改良が得られない。さらに電
極間距離が1cm以下のtJ、’i合には電極の熱的影
響が大きくなって好ましくなく、かつ操作上の困難をと
もない、一方20 cm以上では装置の設計上電力ロス
が大きくなる不利益ン生じるし、これを解決するために
は装置の容量を大きくする必要があり、経済的に好まし
くない。
The conditions for stably maintaining the generation of low-temperature plasma by applying a discharge voltage of 4,000 volts or more between the logarithmic electrodes and causing glow discharge are as follows: In addition to ~10 Torr, the power consumption density of the discharge electrode surface is 25 Watts) / cn? per unit area of the input electrode. Above, the distance between the electrodes is 1 to 2
It is preferable to set it to 0 cm. When the gas pressure increases by 10 Torr or more, the high η increases to generate Iha vortex plasma.
It requires a lot of force and generates a lot of heat, and in the following 11 cases, the discharge becomes unstable, and in either case, the effect of improving adhesion is low, which does not meet the purpose of non-invention. . If the power consumption density of the discharge electrode surface is less than 25 W/C, it will be difficult to maintain the high power density that is the object of the present invention, and no improvement in adhesion will be obtained. Furthermore, if the distance between the electrodes is less than 1 cm, the thermal influence of the electrodes will become undesirable and cause operational difficulties, while if it is more than 20 cm, the power loss will increase due to the design of the device. However, in order to solve this problem, it is necessary to increase the capacity of the device, which is not economically desirable.

低温グロー放電で発生させた低温プラズマ処理による改
質は表面層のみに限定される特徴がある。
Modification by low-temperature plasma treatment generated by low-temperature glow discharge is characteristically limited to only the surface layer.

このため本発明が対象とするカーボン繊維はそのすぐれ
た本来的特性を損うことなく、接着性が改善され、マ)
 11ツクス樹脂との間ですぐれた機械的・電気的特性
を有する複合材料を形成し、このものは例えば接着力の
目安となるせん断強度において200%も増加したすぐ
れた製品である。
Therefore, the carbon fibers targeted by the present invention have improved adhesion without losing their excellent inherent properties.
11Tx resin to form a composite material with excellent mechanical and electrical properties, and this product is an excellent product with a 200% increase in shear strength, which is a measure of adhesive strength.

つぎに具体的実施例をあげるが1本発明はこれに限定さ
れるものではない、l 以下に挙げる実施例では図面に示す低温プラズマ発生装
置全使用した。図中の処理槽1はステンレス製であり、
これは真空ポンプ2によって0.001トルまで減圧す
ることができる設計とされている。処理槽1にはガス導
入管8が取り付けてあり、各種の処理ガスが必要に応じ
て分流されて槽内に導入される。処理槽1内には回転式
のステンレス製円筒陰極4が設置されており、この円筒
陰極は駆動装置5により回転速度の調整が連続的に可能
となっている。この円筒陰極1は処理槽1ヶ通じて大地
に電気的に接地しである。またこの回転式円筒陰極は内
部に温水または冷水を通じて温度m整ができる構造とな
っている。さらに処理槽1内には槽とは電気的に絶縁−
された棒状電極6が設けられており、円筒陰極4とは等
間隔を保っている。さらに処理槽l内の圧力を測定する
ためにビラニー真空計7が処理槽1に取り付けである。
Next, specific examples will be given, but the present invention is not limited thereto.In the examples listed below, all of the low-temperature plasma generators shown in the drawings were used. Processing tank 1 in the figure is made of stainless steel.
This is designed to be able to reduce the pressure to 0.001 Torr using a vacuum pump 2. A gas introduction pipe 8 is attached to the processing tank 1, and various processing gases are divided as necessary and introduced into the tank. A rotating stainless steel cylindrical cathode 4 is installed in the processing tank 1, and the rotation speed of this cylindrical cathode can be continuously adjusted by a drive device 5. This cylindrical cathode 1 is electrically grounded to the earth through one processing tank. Further, this rotary cylindrical cathode has a structure in which the temperature can be adjusted by passing hot or cold water inside the cathode. Furthermore, the inside of the processing tank 1 is electrically insulated from the tank.
A rod-shaped electrode 6 is provided, and is spaced from the cylindrical cathode 4 at equal intervals. Furthermore, a Villany vacuum gauge 7 is attached to the processing tank 1 to measure the pressure inside the processing tank 1.

また電極間に高周波電力を与えるために高周波電源8が
備えられている。そしてhQ[L電圧を測定するための
高電圧プローブ(岩崎通信機(株)HV−p−30)9
と放電電流を測定するためのカレントプローブ・(岩崎
通信機(株)CP−502)I Oとダーミネーション
(岩崎通信機(株)CP−512)11が、2現象観測
用シンクロスコープ12に接続されている。
Further, a high frequency power source 8 is provided to apply high frequency power between the electrodes. and a high voltage probe (Iwasaki Tsushinki Co., Ltd. HV-p-30) 9 for measuring hQ[L voltage.
A current probe (Iwasaki Tsushinki Co., Ltd. CP-502) IO and a determination (Iwasaki Tsushinki Co., Ltd. CP-512) 11 for measuring the discharge current are attached to the synchroscope 12 for observing two phenomena. It is connected.

放電電圧の尖頭値CV    >はシンクロスコー−p プの管面振幅より続み取れる電圧値とプローブの減衰量
の逆数の積として求めることができる。放電電流はシン
クロスコープの管面振幅より読み取れる電圧値とターミ
ネーションの電流感度の積として求めることができる。
The peak value CV > of the discharge voltage can be determined as the product of the voltage value obtained from the tube surface amplitude of the synchroscope and the reciprocal of the attenuation amount of the probe. The discharge current can be determined as the product of the voltage value read from the tube surface amplitude of the synchroscope and the current sensitivity of the termination.

放電電流と放電電圧の位相差はシンクロスコープ上の電
流波形と電圧波形のズレより求めることができる。
The phase difference between the discharge current and the discharge voltage can be determined from the difference between the current waveform and voltage waveform on a synchroscope.

放電電流と放電電圧が正弦波とみなせるならば放電電力
Pは 】 ”−E4− C!03ψ P:放電電力(W) E:放電電圧(p−p尖頭値)(V) ■=放電電流(T)−1)尖頭値)(A)ψ:放電電流
と放電電圧の位相差 で求めることができる。
If the discharge current and discharge voltage can be regarded as a sine wave, the discharge power P is] ”-E4- C!03ψ P: Discharge power (W) E: Discharge voltage (p-p peak value) (V) ■=Discharge current (T)-1) Peak value) (A) ψ: It can be determined from the phase difference between the discharge current and the discharge voltage.

実施例1 ポリアクリル品トリル繊維を炭素化処理して得られた高
強変炭素繊維(直径7μ、引張り強さ280 KP/m
、弾性率23. OOO[7/m)の表面未処理マルチ
フィラメントヤーンを先に示した低温プラズマ処理装置
の円筒陰極上に巻きつけ、処理槽内を減圧にした。内圧
が0.001)ルになったのち、酸素ガス3 Q Q 
N+fi/分をガス導入管より導入して内圧を01トル
とした。
Example 1 High strength carbon fiber obtained by carbonizing polyacrylic trill fiber (diameter 7μ, tensile strength 280 KP/m
, elastic modulus 23. A surface-untreated multifilament yarn of OOO [7/m) was wound around the cylindrical cathode of the low-temperature plasma processing apparatus shown above, and the pressure inside the processing tank was reduced. After the internal pressure becomes 0.001), oxygen gas 3 Q Q
N+fi/min was introduced through the gas inlet tube to bring the internal pressure to 0.1 Torr.

放電処理をするにあたり高周波電源の出力電力を調整す
ることにより、電極間尖頭亀用(p−p)を2,000
.3,000.4,000.5,000゜7.000.
10,000ボルトと変化させた。このと・きのそれぞ
れの入力電力は1.2 KW、 2.’OKW、2.9
KW、 3.9 KW、 6.6KW、14.4 xw
であった。放電面積は500dであったので単位面積あ
たりの放電電力密度はそれぞれ2.4W/aI!?、4
.OW /crt15.8 W/ e11?、 7.8
 W/ crl、13.2 W/art。
By adjusting the output power of the high-frequency power source during discharge treatment, the point-to-point distance between the electrodes (p-p) can be reduced to 2,000.
.. 3,000.4,000.5,000°7.000.
The voltage was changed to 10,000 volts. The input power at each time is 1.2 KW, 2. 'OKW, 2.9
KW, 3.9 KW, 6.6 KW, 14.4 xw
Met. Since the discharge area was 500 d, the discharge power density per unit area was 2.4 W/aI! ? , 4
.. OW /crt15.8 W/ e11? , 7.8
W/crl, 13.2 W/art.

28.8W/arFである。これらの放電電力において
放電処理総電力が40W・秒/d、80W・秒/d、1
60W−秒/cnr、320w、秒/alとなるように
処理時間を調整した。ただし、本実施例での放電周波数
は200 KHz 、電極間距離は5cmとした。
It is 28.8W/arF. At these discharge powers, the total discharge processing power is 40 W・sec/d, 80 W・sec/d, 1
The processing time was adjusted to 60 W-sec/cnr, 320 W, sec/al. However, in this example, the discharge frequency was 200 KHz, and the distance between the electrodes was 5 cm.

上記のようにしてフィラメントヤーンの片側の処理が終
ったのち、同一条件でフィラメントヤーンの裏側も同様
にプラズマ処理を行った。
After one side of the filament yarn had been treated as described above, the back side of the filament yarn was similarly plasma treated under the same conditions.

このようにして両面を低温プラズマ処理したフィラメン
トヤーンを織って平織クロスとしたのち、ハンドレイア
ップ法によりエポキシ樹脂(Amerioan  Cy
anamid  BP−907)を用いて成形して常温
硬化した。この複合成形品中の炭素≠学繊維の体積含有
率は60%である。この成型品をJ工5K7113に基
づいて引張り試験をした結果を81表に示す。
The filament yarns treated with low-temperature plasma on both sides were woven into a plain weave cloth, and then epoxy resin (Amerioan Cy) was woven using the hand lay-up method.
anamid BP-907) and cured at room temperature. The volume content of carbon fiber in this composite molded product was 60%. Table 81 shows the results of a tensile test of this molded product based on J-K 5K7113.

第1表に示すように、炭素繊維を上記条件で低温プラズ
マ処理することにより、エポキシ樹脂とのコンポジット
の引張強度が顕著に向上する。電極間尖頭電圧値が30
00ポルl下では大幅な引張強度の向上は放電処理の総
電力を増しC+得られないが、電極間尖頭電圧が400
0ポル)Y越えると大幅に引張強度が向上する。この場
合放電処理総電力が小さくとも十分に引張強度を向上さ
せることができる。
As shown in Table 1, by subjecting carbon fiber to low-temperature plasma treatment under the above conditions, the tensile strength of the composite with epoxy resin is significantly improved. Peak voltage between electrodes is 30
Under 00 pol, a significant improvement in tensile strength increases the total power of the discharge treatment and C+ cannot be obtained, but the peak voltage between the electrodes is 400 por.
Exceeding 0pol)Y significantly improves the tensile strength. In this case, the tensile strength can be sufficiently improved even if the total electric power for the discharge treatment is small.

実施例 2 ポリアクリルニトリル繊維乞炭素化処理して得られた高
強度炭素繊維(直径7μ、引張り強さ280砂/−1弾
性率23.0001%り/rri>の表面未処理マルチ
フィラメントヤーンな先に示したプラズマ処理装置の円
筒陰極上に巻きつけ、処理槽内を減圧とした。内圧が0
.001)ルに達したのち、槽内にアルゴンガス30O
N−7分と酸素ガス300 Nd1分をガス導入管より
導入して内H−を04トルとした。
Example 2 High-strength carbon fiber obtained by carbonization treatment of polyacrylonitrile fiber (surface-untreated multifilament yarn with a diameter of 7 μm and a tensile strength of 280 sand/-1 and a modulus of elasticity of 23.0001%/rri). It was wrapped around the cylindrical cathode of the plasma processing apparatus shown earlier, and the pressure inside the processing tank was reduced.The internal pressure was 0.
.. 001) After reaching 300 ml of argon gas in the tank
N-7 minutes and oxygen gas 300 Nd1 minutes were introduced from the gas introduction tube to bring the internal H- to 0.4 Torr.

放電処理をするにあたり高周波電源の出力電力を調整す
ることにより、電極間尖頭電圧(p−pv)を2,00
0.3,000,4,000.5,000.7.000
、No、000ボルトと変化させた。このときのそれぞ
れの入力電力は1.OKW、1.5KW。
By adjusting the output power of the high frequency power source during the discharge process, the peak voltage between the electrodes (p-pv) can be adjusted to 2,000
0.3,000,4,000.5,000.7.000
, No., 000 volts. At this time, each input power is 1. OKW, 1.5KW.

2.3KW、3.IKW、5.3KW、11.6KWで
あった。放電面積は500dであったので単位面積あた
りの放電電力密度は2 W/cr&、3’W/7.4.
6W/an?、6.2 W/i、10.6 W/7.2
3.2W/dである。これらの放電電力において放電処
理総電力が] 60W・秒/cn?で一定となるように
処理時間を調整した。このときの放電周波数tj13.
56MHz、電極間距離は3cmとした。
2.3KW, 3. The IKW was 5.3KW and 11.6KW. Since the discharge area was 500 d, the discharge power density per unit area was 2 W/cr&, 3'W/7.4.
6W/an? , 6.2 W/i, 10.6 W/7.2
It is 3.2 W/d. At these discharge powers, the total discharge processing power is] 60 W・sec/cn? The processing time was adjusted so that it remained constant. The discharge frequency tj13 at this time.
The frequency was 56 MHz, and the distance between the electrodes was 3 cm.

上記のようにしてフィラメントヤーンの片側の処理が終
ったのち、同一条件でフィラメントヤーンの裏側も同様
にプラズマ処理を行った。
After one side of the filament yarn had been treated as described above, the back side of the filament yarn was similarly plasma treated under the same conditions.

このようにして両面ン低温プラズマ処理したフィラメン
トヤーン?3〜6Mの長さに切り、ナイロン66槓1脂
と配合して押出機で混線賦形してベレット化した。この
ベレット中に含まれる炭素ね(維の束切は30%であっ
た。
Filament yarn treated with low-temperature plasma on both sides in this way? It was cut into lengths of 3 to 6 m, mixed with nylon 66 and 1 fat, and cross-wire-shaped using an extruder to form pellets. The amount of carbon fibers contained in this pellet was 30%.

このベレットを通常の射出成形加工法により成形して、
棒状成形体を作った。この棒状試料についてJIS K
 7113に塞づいて引張りWA、齢を行った結果ケ第
2表に示す。
This pellet is molded using a normal injection molding process,
A rod-shaped molded body was made. Regarding this rod-shaped sample, JIS K
Table 2 shows the results of tensile WA and aging performed after blocking 7113.

第  2  表 第2表に示すように、プラズマ処理をした炭素繊維を用
いたナイロン66樹脂複合成形体の引張強度の同上は顕
著である。また電極間尖頭電圧が4.000ポル)Y越
えると引張強度が大幅に向上する。
Table 2 As shown in Table 2, the tensile strength of the nylon 66 resin composite molded article using plasma-treated carbon fiber is remarkable. Moreover, when the peak voltage between the electrodes exceeds 4.000 pol)Y, the tensile strength is significantly improved.

実施例3 実施例】と同様の炭素繊維の表面禾処理品の平織クロス
を先に示した低温プラズマ処理装置の円筒陰極上に巻き
つけ、処理槽内を減圧にした。内圧が0.001)ルに
達した後、柄内に窒素ガス・と酸素ガス′l:r:泪合
して導入した。2種のガスの流量の合計は100Nd/
分であり、内圧は0.1トルとした。
Example 3 A plain-woven cloth made of surface-treated carbon fiber similar to Example 3 was wrapped around the cylindrical cathode of the low-temperature plasma processing apparatus shown above, and the pressure inside the processing tank was reduced. After the internal pressure reached 0.001), nitrogen gas and oxygen gas were introduced into the handle. The total flow rate of the two types of gas is 100Nd/
minute, and the internal pressure was 0.1 torr.

酸素(0□)ガスと窒素(N2)ガスの混合比は0  
:  100.5 : 95、10:90、20:80
.40  :60、60  :40、80:20  、
90 :10、100:0  とした。
The mixing ratio of oxygen (0□) gas and nitrogen (N2) gas is 0
: 100.5 : 95, 10:90, 20:80
.. 40:60, 60:40, 80:20,
The ratios were 90:10 and 100:0.

電極間尖頭電圧は7,0(10ボルトで一定であり、電
極間距離は4 cu+である。処理時間はオペて40秒
とし、放電周波数は110KHzである。
The peak voltage between the electrodes is constant at 7.0 (10 volts), and the distance between the electrodes is 4 cu+. The processing time is 40 seconds after operation, and the discharge frequency is 110 KHz.

上々己のようにしてクロスの’h−iA+ k O!:
 ンMプラス゛マ処理した後、同一条件でクロスの裏[
7i’rプラズマ処理した。このプラズマ処理クロスを
へンドレイアップ法によりエポキシ樹脂(実施例1で使
用したもの)を用いて成形し常温硬化した。この成型品
中の炭素繊維含有率は体積比率で60’/nである。
Cross'h-iA+ k O! :
After treating the cloth with M plasma, the back of the cloth [
7i'r plasma treatment. This plasma-treated cloth was molded using an epoxy resin (used in Example 1) by the hendry-up method and cured at room temperature. The carbon fiber content in this molded product was 60'/n in volume ratio.

この成型品をJIS K 7]13に基づいて引張り試
験をした結果を第3表に示す。
This molded product was subjected to a tensile test based on JIS K 7]13, and the results are shown in Table 3.

第  3  表 第3表に示したように、プラズマ処理された炭素細、し
維を使用した成型品の強度の向上は顕著であるが、さら
に酸素ガスの体積比率が1o%yz[えると引張強度が
大幅f二面上する。
Table 3 As shown in Table 3, the strength of molded products using plasma-treated carbon fibers is significantly improved. The strength is significantly increased by f2.

【図面の簡単な説明】[Brief explanation of drawings]

図面は内部電極型低温プラズマ発生装置の一例を示す概
略構成図である。 l・・・ステンレス製処理檜、2・・・身空ポンプ。 3・・・ガス導入管、4・・・円筒陰極、5・・・駆動
装置、  6・・・棒状電極、7・・・ピラニー真空針
、8・・・高周波電源、9・・・直重」プローブ、1o
・・・カレントプローブ、11・・・ターミネーション
、 12・・・2現象観測用シンクロスコープ。 特許出願人 4h越化学工業株式会社
The drawing is a schematic configuration diagram showing an example of an internal electrode type low temperature plasma generation device. l... Stainless steel treated cypress, 2... Body pump. 3... Gas introduction tube, 4... Cylindrical cathode, 5... Drive device, 6... Rod-shaped electrode, 7... Pirani vacuum needle, 8... High frequency power supply, 9... Straight weight ” probe, 1o
...Current probe, 11... Termination, 12... Synchronoscope for observing 2 phenomena. Patent applicant 4H Etsu Chemical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、 カーボン繊維を、装置内にいずれか一方がアース
された対放電電極を有する内部電極型低温プラズマ発生
装置に入れ、減圧下に無機ガスを流通させながら両電極
間に4,000ボルト以上の放電電圧を与えてグロー放
電を行わせることにより発生させた低温プラズマで処理
することを特徴とするカーボン繊維の表面改質方法
1. Carbon fibers are placed in an internal electrode type low-temperature plasma generator that has a counter-discharge electrode, one of which is grounded, and a voltage of 4,000 volts or more is applied between both electrodes while flowing inorganic gas under reduced pressure. A method for surface modification of carbon fibers characterized by treatment with low-temperature plasma generated by applying a discharge voltage to cause glow discharge.
JP57188526A 1982-10-27 1982-10-27 Surface modification of carbon fiber Pending JPS5982466A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57188526A JPS5982466A (en) 1982-10-27 1982-10-27 Surface modification of carbon fiber
US06/543,891 US4487880A (en) 1982-10-27 1983-10-20 Method for imparting improved surface properties to carbon fibers and composite
EP83110618A EP0110118B1 (en) 1982-10-27 1983-10-25 A method for imparting improved surface properties to carbon fibers
DE8383110618T DE3378770D1 (en) 1982-10-27 1983-10-25 A method for imparting improved surface properties to carbon fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57188526A JPS5982466A (en) 1982-10-27 1982-10-27 Surface modification of carbon fiber

Publications (1)

Publication Number Publication Date
JPS5982466A true JPS5982466A (en) 1984-05-12

Family

ID=16225248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57188526A Pending JPS5982466A (en) 1982-10-27 1982-10-27 Surface modification of carbon fiber

Country Status (4)

Country Link
US (1) US4487880A (en)
EP (1) EP0110118B1 (en)
JP (1) JPS5982466A (en)
DE (1) DE3378770D1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341000A (en) * 1989-07-07 1991-02-21 Nikkiso Co Ltd Method for modifying whisker
CN102345228A (en) * 2010-08-05 2012-02-08 中国石油天然气股份有限公司 Carbon fiber surface treatment method
JP2020501029A (en) * 2016-11-30 2020-01-16 コンチネンタル ストラクチュラル プラスティックス, インコーポレイテッド Distributed fiber mat formation
CN115142255A (en) * 2022-06-24 2022-10-04 青岛华世洁环保科技有限公司 Carbon fiber surface treatment device and method for performing surface treatment on carbon fiber

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0158181B1 (en) * 1984-04-09 1987-09-16 Siemens Aktiengesellschaft Process for producing large-surface silicon crystal bodies for solar cells
US4603157A (en) * 1984-05-23 1986-07-29 Mitsubishi Rayon Co., Ltd. Intermediate for composite material
DE3426918A1 (en) * 1984-07-21 1986-01-23 Bayer Ag, 5090 Leverkusen FIBER REINFORCED POLYPHENYLENE SULFIDE
DE4113085A1 (en) * 1991-04-22 1992-10-29 Philips Patentverwaltung METHOD FOR PRODUCING A GLOWING CATHODE ELEMENT
JPH05202483A (en) * 1991-04-25 1993-08-10 Shipley Co Inc Method and composition for electroless metallization
US5648201A (en) * 1991-04-25 1997-07-15 The United Sates Of America As Represented By The Secretary Of The Navy Efficient chemistry for selective modification and metallization of substrates
CH684831A5 (en) * 1991-12-11 1995-01-13 Alusuisse Lonza Services Ag Device for producing extrusion-coated laminates.
KR100321804B1 (en) * 1995-10-19 2002-06-20 구광시 Production of dipped cord
DE69730719T2 (en) * 1996-09-17 2005-09-22 Hyperion Catalysis International, Inc., Cambridge PLASMA-TREATED CARBON BILLIANS AND MANUFACTURING METHOD
EP1073091A3 (en) * 1999-07-27 2004-10-06 Matsushita Electric Works, Ltd. Electrode for plasma generation, plasma treatment apparatus using the electrode, and plasma treatment with the apparatus
DE10331608A1 (en) * 2003-07-12 2005-01-27 Hew-Kabel/Cdt Gmbh & Co. Kg Process for coating and / or partially overmolding flexible elongate material
EP2628239B1 (en) * 2010-10-15 2019-07-24 Cyprian Emeka Uzoh Method and substrates for making photovoltaic cells
KR101888586B1 (en) * 2011-04-12 2018-08-14 (주)엘지하우시스 Method for surface treatment of continuous fiber and method for manufacturing thermoplastic-continuous fiber hybrid complex using the same
US20140127424A1 (en) * 2012-11-08 2014-05-08 Ford Global Technologies, Llc Method and Apparatus for Bonding Functional Groups to the Surface of a Substrate
WO2015168360A1 (en) * 2014-04-30 2015-11-05 3M Innovative Properties Company Methods for treating reinforcing fiber and treated reinforcing fibers
DE102016220682A1 (en) * 2016-10-21 2018-04-26 Tesa Se Physical pretreatment for filament incorporation
US20180179464A1 (en) * 2016-12-23 2018-06-28 Uht Unitech Co., Ltd Carbon fiber surface oiling agent changing metod
GB201718387D0 (en) 2017-11-07 2017-12-20 Univ College Dublin Nat Univ Ireland Dublin Surface preparation
CN115847949A (en) * 2023-01-20 2023-03-28 太原科技大学 Method for preparing laminated plate by brazing stainless steel ultra-thin strip and carbon fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786275A (en) * 1980-11-14 1982-05-29 Eisai Co Ltd Bag-shaped container

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE577912A (en) * 1958-04-30 1959-08-17 Inst Textile De France Process for improving the properties of textile materials.
US3634220A (en) * 1968-09-19 1972-01-11 Us Navy Method for improving graphite fibers for plastic reinforcement and products thereof
DE1965003A1 (en) * 1969-12-27 1971-07-01 Bayer Ag Process for the continuous graphitization of carbon threads, carbon fiber tapes, carbon yarns

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5786275A (en) * 1980-11-14 1982-05-29 Eisai Co Ltd Bag-shaped container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341000A (en) * 1989-07-07 1991-02-21 Nikkiso Co Ltd Method for modifying whisker
CN102345228A (en) * 2010-08-05 2012-02-08 中国石油天然气股份有限公司 Carbon fiber surface treatment method
JP2020501029A (en) * 2016-11-30 2020-01-16 コンチネンタル ストラクチュラル プラスティックス, インコーポレイテッド Distributed fiber mat formation
US11904502B2 (en) 2016-11-30 2024-02-20 Teijin Automotive Technologies, Inc. Dispersed fiber mat formation
CN115142255A (en) * 2022-06-24 2022-10-04 青岛华世洁环保科技有限公司 Carbon fiber surface treatment device and method for performing surface treatment on carbon fiber

Also Published As

Publication number Publication date
EP0110118A2 (en) 1984-06-13
DE3378770D1 (en) 1989-02-02
US4487880A (en) 1984-12-11
EP0110118A3 (en) 1985-12-11
EP0110118B1 (en) 1988-12-28

Similar Documents

Publication Publication Date Title
JPS5982466A (en) Surface modification of carbon fiber
JPS6366334B2 (en)
US3745104A (en) Surface modification of carbon fibers
Li et al. Application of plasma technologies in fibre-reinforced polymer composites: a review of recent developments
Jie‐Rong et al. Studies on the surface free energy and surface structure of PTFE film treated with low temperature plasma
Nishi et al. High fracture resistance of carbon fiber treated by electron beam irradiation
KR102461416B1 (en) Surface-treated carbon fiber, surface-treated carbon fiber strand, and manufacturing method therefor
CN103321035A (en) Surface modification method of carbon fibre plasma grafted graphene oxide
Yuan et al. Plasma surface treatments of carbon fibers. Part 2: Interfacial adhesion with poly (phenylene sulfide)
van Ooij et al. Surface modification of textile fibers and cords by plasma polymerization
Chang Plasma surface treatment in composites manufacturing
US3634220A (en) Method for improving graphite fibers for plastic reinforcement and products thereof
Nakahara et al. Modification of pyrolytic graphite surface with plasma irradiation
US3627466A (en) Heat treatment of graphite fibers
JP6522971B2 (en) Method of manufacturing fiber bundle
US3767774A (en) Surface treatment of previously graphitized carbonaceous fibers
Andreopoulos et al. A review on various treatments of UHMPE fibers
Gaur et al. Interfacial effects of plasma treatment on fiber pull-out
Chang et al. The Effects of Fiber Surface Treatments by a Cold Plasma in Carbon Fiber/Bismaleinide Composites
JPH0376661B2 (en)
Weisweiler et al. Surface modification of carbon fibres by plasma polymerization
Shengru et al. The internal friction of unidirectional CC composites fabricated in a magnetic field
Jinzhou et al. Characteristics of coaxial dielectric barrier discharge at an atmospheric pressure with a swirling gas argon/oxygen mixture for the surface modification of polyester fiber cord
JP2001336063A (en) Method for producing metal-carbon fiber composite material
JPH03227325A (en) Method for modifying surface of carbon fiber