JPH0376661B2 - - Google Patents

Info

Publication number
JPH0376661B2
JPH0376661B2 JP59139586A JP13958684A JPH0376661B2 JP H0376661 B2 JPH0376661 B2 JP H0376661B2 JP 59139586 A JP59139586 A JP 59139586A JP 13958684 A JP13958684 A JP 13958684A JP H0376661 B2 JPH0376661 B2 JP H0376661B2
Authority
JP
Japan
Prior art keywords
plain
discharge
woven material
temperature plasma
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59139586A
Other languages
Japanese (ja)
Other versions
JPS6119343A (en
Inventor
Susumu Ueno
Koichi Kuroda
Hajime Kitamura
Shuji Takahashi
Yasuo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Yokohama Rubber Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Yokohama Rubber Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP59139586A priority Critical patent/JPS6119343A/en
Priority to EP85401337A priority patent/EP0172057A1/en
Publication of JPS6119343A publication Critical patent/JPS6119343A/en
Publication of JPH0376661B2 publication Critical patent/JPH0376661B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0809Fabrics
    • B29K2105/0845Woven fabrics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides
    • D06M2101/36Aromatic polyamides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/50Modified hand or grip properties; Softening compositions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Tyre Moulding (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はタイヤコード平織状物の低温プラズマ
処理方法に関し、特にはポリエステル繊維、芳香
族ポリアミド繊維等の補強材を用いてなるタイヤ
コード平織状物を低温プラズマ処理することによ
りゴムとの接着性改良を図り、プラズマ処理後た
だちにタイヤ加工に供し得る処理法の提供を目的
とする。 (従来の技術) 従来、タイヤコード平織状物の補強材としてナ
イロン、ビニロン、レーヨン等が使用されている
が、より高強度の補強材としてポリエステル繊
維、芳香族ポリアミド繊維等が注目され、種々の
検討がなされてきた。しかし、ポリエステル繊
維、芳香族ポリアミド繊維は、抗張力、耐衝撃
性、耐伸性、寸法安定性、耐熱性、耐水性、耐薬
品性、耐候性などの点ですぐれた特性を有してい
るものの、ゴムとの接着性が悪く、タイヤ補強材
としての十分な強度を出し得ない状況にある。こ
のためゴムとの接着性を改良すべく種々の検討が
なされているがいまだ充分な改良効果を得るに至
つていない。 たとえば特開昭55−1393号公報には、ポリアミ
ド繊維等の繊維を撚り合せたコード状物をプラズ
マ処理し接着性を向上させることが開示されてい
るが、この処理されたコード状物をタイヤ成形用
に製織する時に高度の解撚現象等によつて表面に
未処理部分が露出し、処理の効果を減ずる不利益
を生じる。これはプラズマ処理の効果が表面のみ
にしか及ばないという基本的な理由によるもので
あり、微細な繊維を撚り集めたタイヤコードにお
いては、コード表面の繊維のみが処理され、内部
にかくれた部分は処理されていないので、高度の
解撚等により未処理繊維が表面に出る欠点があ
る。 (発明の構成) 本発明者らはかかる技術的課題にかんがみ鋭意
研究を重ねた結果、タイヤコード平織状物の表面
を無機ガスの低温プラズマで処理することによ
り、タイヤコード平織状物のゴムとの接着性が顕
著に改良されること、この低温プラズマ処理され
たタイヤコード平織状物をただちに連続的にタイ
ヤ加工に供し得ることを確認し、本発明を完成し
た。 すなわち、本発明は内部に放電電極を備えた真
空処理槽に無機ガスを導入して槽内を0.001トル
ないし10トルの減圧雰囲気とし、電極間にタイヤ
コード平織状物を連続的に通過させながら、グロ
ー放電させることにより該無機ガスの低温プラズ
マを発生させ、放電電圧3000V以上、放電電流5
〜30Aに維持して前記平織り状物を処理すること
を特徴とするタイヤコード平織状物の低温プラズ
マ処理方法に関するものであり、このタイヤコー
ド平織状物として特に長手方向にコードが多数本
引きそろえられその密度が20本/5cmから70本/
5cmの範囲にあり、それと直角に交差してなるヨ
コ糸が2.0本/5cmから6.0本/5cmの範囲として
なるすだれ状平織り構造のものを対象とする発明
に関する。 以下本発明を詳細に説明する。 本発明において対象とされるタイヤコード平織
状物は、特に望ましくはタテ糸にポリエステル繊
維または芳香族ポリアミド繊維を撚つてコードと
したものを用い、ヨコ糸には20番手〜30番手ある
いは50D(デニール)〜250Dの細い糸を用い、上
記したようにタテ糸密度が20本/5cmから70本/
5cm、ヨコ糸密度が2.0本/5cmから6.0本/5cm
の打込み数で、幅が100cmから200cmの平織状の組
織を有する織物である。 タテ糸密度はタイヤコードの太さおよび強度に
よつて任意に選択されるものであるが、タテ糸密
度が少なすぎると織物としての形態を保持するこ
とが実質的に困難となり、また多すぎるとタテ糸
コード間隔が狭くなり、プラズマ処理後にゴムを
コートした場合、コード/コード間にゴムが浸透
せず接着に不利であることから前記範囲の密度と
する必要がある。一方ヨコ糸密度はタテ糸コード
の解撚防止および織物の平坦性を保持する目的か
ら前記範囲とすることが必要で、2.0本/5cm以
下であるとコードの解撚を抑制することができな
いだけでなく連続処理中のヨコ糸の切断を生じや
すいため、目的とする処理織物を安定して得るこ
とが困難となる。6.0本/5cm以下とすることは
織物の形態を保持するうえで実質的に不必要であ
るほか、低温プラズマ処理効果の及ばないタテ糸
とヨコ糸の接触部分が多くなることから好ましい
ものではない。 また該織物の両耳部のタテ糸には、上ヨリ方向
がS方向のコードとZ方向のコードを交互に2〜
10組挿入することが、処理中の耳部のカールによ
る処理むらを防止するうえで好ましい。さらに該
織物に使用するヨコ糸は前記したように、20番手
〜30番手あるいは50D〜250Dの細い糸を用いる
ことが接着上好ましい。 タテ糸に用いられるコードは通常原糸を製造す
る段階でいわゆるコード油剤が付与されている
が、油剤の付着量が多すぎるとプラズマ処理の雰
囲気を乱すだけでなく副生成物等が生じるため接
着上好ましくない。したがつて使用するコードの
油剤付着量は1.0%以下であることが好ましい。 なお、平織状物を構成するコードとしては前記
したようにポリエステル繊維または芳香族ポリア
ミド繊維を用いることが望ましく、この芳香族ポ
リアミド繊維としては、ポリパラフエニレンテレ
フタルアミド、ポリメタフエニレンテレフタルア
ミド、ポリパラベンズアミドなどの繊維が例示さ
れる。 タイヤコード平織状物を低温プラズマ処理する
方法は、内部に放電電極を備えた真空処理槽に無
機ガスを導入して槽内を0.001トルないし10トル
の減圧雰囲気とし、電極間にタイヤコード平織状
物を連続的に通過させながらグロー放電させて該
無機ガスの低温プラズマを発生させることにより
行われる。プラズマ放電の方式としては大別して
外部電極型、アフターグロー、内部電極型等があ
るが、平織状物のできるだけ内部にまで処理効果
を及ぼしめ、しかも短時間の処理で効果を達成す
るためには、処理槽内に電極を備えた形式のもの
で、かつ処理槽内のガス雰囲気の圧力を上記した
0.001トルないし10トルの範囲とすることが望ま
しい。 真空処理槽内に導入する無機ガスとしては、ヘ
リウム、ネオン、アルゴン、窒素、酸素、空気、
亜酸化窒素、一酸化窒素、二酸化窒素、一酸化炭
素、二酸化炭素などが例示されるが、これらは1
種類に限られず2種以上のものを混合して用いて
もよい。本発明の目的においては特に酸素プラズ
マが有効であり、したがつて上記無機ガスとして
は酸素ガスもしくは酸素ガスを少なくとも10容量
%含むものを用いることが望ましい。なお、これ
ら無機ガスには有機化合物ガスを混入してもよい
が、その混入割合は少量にとどめるべきである。 グロー放電を行わせる条件としては、たとえば
真空処理槽内を前記した範囲の減圧に保持し、入
力電極とアース電極との間に周波数10KHz〜
100KMHzの高周波で、10W〜100KWの電力を与
えればよく、これにより安定なグロー放電を行わ
せることができる。なお、放電周波数帯としては
上記高周波のほかに低周波、マイクロ波あるいは
直流を用いることができる。処理槽内のガス圧力
を10トル以上とするとグロー放電時の温度上昇が
著しく、処理対象物である平織状物の表面を変質
させ処理効果が損われるおそれがあるので好まし
くなく、一方0.001トル以下ではグロー放電が安
定せず、正常な処理を行わせることが困難であ
る。なお、放電時電極間に放電電圧、放電電流が
発生するが、処理効果をより顕著にするためには
放電電圧3000V以上、放電電流5〜30Aの範囲に
調節する必要がある。平織状物の望ましい処理時
間は数秒ないし数十秒であり、これにより接着性
が効果的に付与される。 真空処理槽内に設置される電極の構造について
は特に制限がなく、棒状、平板状、リング状等の
種々の構造のものが使用できるが、熱的影響を除
去するためには内部冷却型の電極を用いることが
望ましい。電極の材質としては、銅、鉄、アルミ
ニウム、ステンレス等が好ましく、また安定な低
温プラズマを維持するためには、入力電極に耐電
圧10000V/mm以上を有する絶縁被覆を設けるこ
とがよく、この絶縁被覆材料としてはホーローコ
ート、ガラスチユーブコート、セラミツクコート
が望ましい。接地(アース)電極については入力
電極と同様に銅、鉄、アルミニウム、ステンレス
製の棒状、平板状、ドラム状等いずれの構造、形
状のものでもよいが、表面をコートする必要性は
特になく、たとえば金属製処理槽内壁を接地電極
として使用してもよい。いずれにしても接地側電
極は放電の熱的影響を除去するため十分に冷却さ
れていることが好ましい。 入力電極と接地電極の距離は、グロー放電を安
定に行わせ、平織状物に十分なる接着性を付与す
るたには1〜30cm好ましくは3〜15cmの範囲とす
ることがよく、30cm以上とすると高周波等の電源
入力の同調がとりにくく十分なる電力を安定して
供給し得ずまた接着性付与効果も小さい。一方距
離がせますぎると熱的影響が大きく、平織状物の
表面を変質する。 平織状物を本発明の方法により処理する具体的
態様は各図面に示すとおりである。第1図は本発
明の方法を実施するための低温プラズマ処理装置
を概略的に示した断面図である。図中1は真空処
理槽であり、2,2′はドラム型の接地電極、3
は入力電極を示す、巻回されている平織状物4は
駆動ローラ5、真空室6を経て真空処理槽内に
入り、接地電極2および2′の表面を順に移動し
両面低温プラズマ処理が施こされたのち真空室
6′駆動ローラ5′を経て巻回体4′として巻き取
られる。巻回体4′として巻き取る代りにそのま
まタイヤ加工に導くこともできる。 第2図、第3図、第4図ロはそれぞれ別の装置
を概略的に例示したものであり、第2図中の11
は真空処理槽、12は接地電極、13は入力電
極、第3図中の21は真空処理槽(同時に接地電
極として使用する)、22は入力電力、第4図ロ
中の31は真空処理槽、32は接地電極、33は
入力電極をそれぞれ示す。なお、第3図は平織状
物が2列に配置された入力電極の間を通過し低温
プラズマ処理される場合を示したものである。 第4図イは外部電極型の装置を示したもので、
41は真空処理槽、42は高周波コイルを示す。 つぎに具体的実施例をあげる。 実施例 1 〔タイヤコード平織状物の作製〕 1500d/2(40Z×40S回/10cm)のポリエステ
ルコードをタテ糸とし、タテ糸密度50本/5cm、
ヨコ糸密度4.0本/5cmの打込み数でヨコ糸には
30番手ポリノジツク糸を用い、幅160cmのタイヤ
コード平織状物を作製した。 〔低温プラズマ処理〕 上記平織状物を第1図に示す装置により低温プ
ラズマ処理した。すなわち、O2ガスを2/分
で真空処理槽内に導入し、減圧にすることにより
槽内を0.1トルに保持し、平織状物を連続的に電
極間を通過させながら、入力電極に110KHz、
40KWの電力を印加しグロー放電させることによ
り低温プラズマ処理した。なお、入力電極はガラ
スチユーブコーテイング棒状電極を使用し、また
5cmの距離に配置された接地電極には水冷ドラム
電極を使用し、平織状物はこのドラム電極上を通
過しながら処理された。 平織状物が電極間に滞在した時間は10秒で、こ
のとき電極間に生じた放電電圧、放電電流は各々
5.5KV、20Aであつた。 放電電圧および放電電流:高周波出力の測定にお
いては出力電圧は分圧器−整流器−直流電圧計
の回路を設け出力電圧の波高値を計測し、出力
電流は電流変圧器−電流・電圧変換器−直流電
圧計の回路を設けることにより出力電流の実効
値を計測している。 (電流・電圧変換器では入力電流によりヒータ
ーを加熱し入力電流に比例して上昇するヒータ
ーの温度を熱電対で検出しmVに変換してい
る。従つて計測電流は実効値を示すことにな
る) 比較例 1 実施例1において、真空処理槽内の圧力を20ト
ルに保持して放電させた以外は同様にしてプラズ
マ処理を行つたところ、平織状物は表面がやや硬
くなり、実施例1の場合と比べてゴムとの接着性
が低下した。 実施例 2 1500d/2(30Z×30S回/10cm)のポリパラフ
エニレンテレフタルアミドマルチフイラメントを
使用し実施例1と同様にして平織状物を作製し、
第2図に示す装置により低温プラズマ処理した。
すなわち、真空処理槽内にO22/分、Ar 3
/分で導入し槽内を0.5トルに保持し、平織状
物を連続的に電極間を通過させながら、入力電極
に13.56MHz、5KWの高周波電力を印加しグロー
放電させることにより低温プラズマ処理した。な
お、入力電極はホーローコート平板型電極を使用
し、また10cmの距離に配置された接地電極には水
冷ドラム電極を使用し、平織状物はこのドラム電
極上を通過しながら処理された。 平織状物が電極間に滞在した時間は50秒で、こ
のとき電極間に生じた放電電圧、放電電流は各々
4.0KV、15Aであつた。 実施例 3 実施例1と同様にして作製した平織状物を第3
図に示す装置により低温プラズマ処理した。すな
わち、真空処理槽内にO21/分、N21/分で
導入し槽内を0.2トルに保持し、平織状物を連続
的に入力電極間を通過させながら、入力電極に
110KHz、20KWの電力を印加しグロー放電させ
ることにより低温プラズマ処理した。なお、入力
電極はガラスチユーブコート棒状電極を10cmの間
隔で上下5本平行に配列し、また処理槽内壁を接
地電極として、平織状物は入力電極間を通過しな
がら処理された。電極間滞在時間は50秒で、この
ときの放電電圧は4.0KV、放電電流は25Aであ
る。 実施例4、比較例2 実施例2と同様に作製した平織状物を第4図の
イ(比較例2)またはロ(実施例4)に示す装置
で低温プラズマ処理し、比較した。いずれにおい
ても真空処理槽内にO2100ml/分で導入し槽内を
0.7トルに保持し、110KHz、2KWの電力を印加す
ることにより低温プラズマを発生させ処理した。
ロ図の装置の場合電極間距離は5cmで行い、両極
供に冷却型平板状電極を使用した。いずれの場合
もプラズマ処理時間は3分間で、このとき電極間
に生じた放電電圧、放電電流はそぞれ3.3KV、
18Aであつた。 以上述べた実施例1〜4、比較例1および比較
例2でプラズマ処理を施こした平織状物からタテ
糸(タイヤコード)を採取し、また比較としてプ
ラズマ処理を施こしてないコードをそれぞれ採取
し、下記に示すゴム組成物AおよびBにコード長
さ8mmで埋込み150℃で30分間加硫したものにつ
いて、加硫ゴムからコードを引き抜く力を測定す
る引抜テストで接着力を調べた。第1表にそれら
の結果を示した。このデータからわかるように本
発明の方法による場合は未処理コードおよび比較
例コードに比較し、明らかに接着性が向上してお
り、またゴム組成物としてヘキサメチレンテトラ
ミン(ホルマリンドナー)とレゾルシン(アクセ
プター)を配合する(ゴム組成物B)ことでさら
に良好な接着性が得られる。 〔ゴム組成物A〕 NR(RSS#3) 70重量部 SBR 1500 20 〃 IR 2200 10 〃 亜鉛華 5 〃 ステアリン酸 2 〃 カーボンブラツク(GPF) 50 〃 ポリ(2,2,4−トリメチルジヒドロキノリ
ン) 2 〃 パラフインオイル 5 〃 硫 黄 3 〃 N−シクロヘキシル−2−ベンゾチアジルスルフ
エンアミド 1 〃 〔ゴム組成物B〕 NR(RSS#1) 100重量部 亜鉛華 5 〃 ステアリン酸 3 〃 カーボンブラツク(HAF) 40 〃 含水ケイ酸 10 〃 ポリ(2,2,4−トリメチルジヒドロキノリ
ン) 1 〃 パラフインオイル 5 〃 レゾルシン 3 〃 ヘキサメチレンテトラミン 2 〃 硫 黄 3 〃 N−オキシジエチレン−2−ベンゾチアジルスル
フエンアミド 0.5 〃 【表】
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a low-temperature plasma treatment method for plain-woven tire cords, and particularly to a method for treating plain-woven tire cords using reinforcing materials such as polyester fibers and aromatic polyamide fibers. The purpose of the present invention is to provide a treatment method that improves the adhesion to rubber by subjecting objects to low-temperature plasma treatment, and which enables them to be used for tire processing immediately after plasma treatment. (Prior art) Conventionally, nylon, vinylon, rayon, etc. have been used as reinforcing materials for tire cord plain-woven materials, but polyester fibers, aromatic polyamide fibers, etc. have attracted attention as reinforcing materials with higher strength, and various Consideration has been made. However, although polyester fibers and aromatic polyamide fibers have excellent properties such as tensile strength, impact resistance, elongation resistance, dimensional stability, heat resistance, water resistance, chemical resistance, and weather resistance, However, it has poor adhesion to rubber and cannot provide sufficient strength as a tire reinforcing material. For this reason, various studies have been made to improve the adhesion to rubber, but a sufficient improvement effect has not yet been achieved. For example, JP-A No. 55-1393 discloses that a cord-like material made of twisted fibers such as polyamide fibers is treated with plasma to improve its adhesion. When weaving for molding, untreated areas are exposed on the surface due to a high degree of untwisting, etc., resulting in disadvantages that reduce the effectiveness of the treatment. This is due to the basic reason that the effect of plasma treatment only affects the surface, and in tire cords made of fine fibers twisted together, only the fibers on the surface of the cord are treated, and the parts hidden inside are treated. Since it is not treated, it has the disadvantage that untreated fibers are exposed to the surface due to high degree of untwisting. (Structure of the Invention) The present inventors have conducted extensive research in view of the above technical problems, and have found that by treating the surface of the plain woven tire cord with low-temperature plasma of an inorganic gas, the rubber of the plain woven tire cord can be The present invention was completed by confirming that the adhesion of the tire cord was significantly improved and that this low-temperature plasma-treated tire cord plain woven material could be immediately and continuously used for tire processing. That is, the present invention introduces an inorganic gas into a vacuum processing tank equipped with a discharge electrode inside to create a reduced pressure atmosphere of 0.001 Torr to 10 Torr, and while continuously passing a tire cord plain woven material between the electrodes. , a low-temperature plasma of the inorganic gas is generated by glow discharge, and the discharge voltage is 3000 V or more and the discharge current is 5.
This invention relates to a low-temperature plasma treatment method for a tire cord plain woven material, characterized in that the plain woven material is treated with a temperature maintained at . The density is from 20/5cm to 70/
The present invention relates to a blind-like plain weave structure in which the weft yarns are in the range of 5 cm and the weft yarns intersecting at right angles to the weft yarns are in the range of 2.0 yarns/5 cm to 6.0 yarns/5 cm. The present invention will be explained in detail below. The tire cord plain woven material targeted by the present invention is particularly preferably made of warp yarns twisted with polyester fibers or aromatic polyamide fibers, and the weft yarns of 20 to 30 counts or 50D (denier). )~250D thin thread is used, and the warp thread density ranges from 20 threads/5cm to 70 threads/
5cm, weft thread density from 2.0/5cm to 6.0/5cm
It is a woven fabric with a plain weave structure with a width of 100cm to 200cm and a number of stitches. The warp thread density is arbitrarily selected depending on the thickness and strength of the tire cord, but if the warp thread density is too low, it will be practically difficult to maintain the form of the fabric, and if it is too high, it will become difficult to maintain the shape of the fabric. If the warp cord spacing becomes narrow and rubber is coated after plasma treatment, the rubber will not penetrate between the cords, which is disadvantageous for adhesion, so the density must be within the above range. On the other hand, the weft yarn density needs to be within the above range for the purpose of preventing untwisting of the warp yarn cord and maintaining the flatness of the fabric, and if it is less than 2.0 threads/5 cm, untwisting of the cord cannot be suppressed. However, the weft yarns are likely to be cut during continuous treatment, making it difficult to stably obtain the desired treated fabric. Setting the number to 6.0 threads/5 cm or less is not preferable because it is not practically necessary to maintain the shape of the fabric, and it increases the contact area between the warp and weft threads, which is not affected by the low-temperature plasma treatment. . In addition, in the warp yarns of both edges of the fabric, two to two cords are alternately arranged in the S direction and the Z direction in the top weave direction.
It is preferable to insert 10 sets in order to prevent uneven processing due to curling of the ears during processing. Further, as described above, it is preferable for the weft used in the woven fabric to be a thin yarn of 20 to 30 count or 50D to 250D from the viewpoint of adhesion. Cords used for warp yarn are usually coated with a so-called cord oil at the stage of manufacturing the yarn, but if too much oil adheres, it will not only disturb the atmosphere of the plasma treatment but also produce by-products, resulting in adhesion. Not good. Therefore, it is preferable that the amount of oil applied to the cord used is 1.0% or less. As described above, it is desirable to use polyester fibers or aromatic polyamide fibers as the cords constituting the plain woven material, and examples of the aromatic polyamide fibers include polyparaphenylene terephthalamide, polymethaphenylene terephthalamide, Examples include fibers such as polyparabenzamide. The method of low-temperature plasma treatment of tire cord plain-woven materials involves introducing an inorganic gas into a vacuum treatment tank equipped with a discharge electrode inside the tank to create a reduced pressure atmosphere of 0.001 Torr to 10 Torr, and treating tire cord plain-woven materials between the electrodes. This is carried out by generating a low-temperature plasma of the inorganic gas by causing a glow discharge while passing an object continuously. Plasma discharge methods can be broadly classified into external electrode type, afterglow type, internal electrode type, etc., but in order to exert the treatment effect as far inside the plain woven material as possible and to achieve the effect in a short time, it is necessary to , which is equipped with electrodes inside the processing tank, and the pressure of the gas atmosphere inside the processing tank is as above.
A range of 0.001 Torr to 10 Torr is desirable. Inorganic gases introduced into the vacuum processing tank include helium, neon, argon, nitrogen, oxygen, air,
Examples include nitrous oxide, nitric oxide, nitrogen dioxide, carbon monoxide, and carbon dioxide.
The types are not limited, and two or more types may be mixed and used. Oxygen plasma is particularly effective for the purpose of the present invention, and therefore it is desirable to use oxygen gas or a gas containing at least 10% by volume of oxygen gas as the inorganic gas. Incidentally, an organic compound gas may be mixed with these inorganic gases, but the mixing ratio should be kept to a small amount. The conditions for performing glow discharge include, for example, keeping the inside of the vacuum processing tank at a reduced pressure in the range described above, and applying a frequency of 10KHz to 10KHz between the input electrode and the earth electrode.
It is sufficient to apply a power of 10W to 100KW at a high frequency of 100KMHz, which allows stable glow discharge to occur. Note that, in addition to the above-mentioned high frequency, low frequency, microwave, or direct current can be used as the discharge frequency band. If the gas pressure in the treatment tank is 10 Torr or more, the temperature rise during glow discharge will be significant, and the surface of the plain woven material to be treated may be altered and the treatment effect may be impaired, so it is not preferable; In this case, glow discharge is unstable and it is difficult to perform normal processing. Note that a discharge voltage and a discharge current are generated between the electrodes during discharge, and in order to make the treatment effect more noticeable, it is necessary to adjust the discharge voltage to 3000 V or more and the discharge current to a range of 5 to 30 A. The preferred treatment time for plain woven materials is from several seconds to several tens of seconds, which effectively imparts adhesive properties. There are no particular restrictions on the structure of the electrodes installed in the vacuum processing tank, and various structures such as rod-like, flat-plate, and ring-like structures can be used, but in order to eliminate thermal effects, internally cooled Preferably, electrodes are used. The material of the electrode is preferably copper, iron, aluminum, stainless steel, etc. In order to maintain stable low-temperature plasma, the input electrode is often provided with an insulating coating having a withstand voltage of 10,000 V/mm or more. Preferable coating materials include enamel coat, glass tube coat, and ceramic coat. As with the input electrode, the grounding (earth) electrode may be made of copper, iron, aluminum, or stainless steel and may have any structure or shape such as a rod, flat plate, or drum, but there is no particular need to coat the surface. For example, the inner wall of the metal processing tank may be used as the ground electrode. In any case, it is preferable that the ground-side electrode be sufficiently cooled to eliminate the thermal effects of discharge. The distance between the input electrode and the ground electrode is preferably 1 to 30 cm, preferably 3 to 15 cm, and 30 cm or more in order to stably perform glow discharge and provide sufficient adhesiveness to the plain woven material. This makes it difficult to synchronize the power input such as high frequency, making it impossible to stably supply sufficient power, and the effect of imparting adhesive properties is also small. On the other hand, if the distance is too small, the thermal influence will be large and the surface of the plain woven material will change in quality. Specific embodiments of treating the plain woven material by the method of the present invention are as shown in each drawing. FIG. 1 is a sectional view schematically showing a low-temperature plasma processing apparatus for carrying out the method of the present invention. In the figure, 1 is a vacuum processing tank, 2 and 2' are drum-shaped ground electrodes, and 3
indicates an input electrode. The wound plain woven material 4 passes through a drive roller 5 and a vacuum chamber 6, enters the vacuum processing tank 1 , moves sequentially over the surfaces of the ground electrodes 2 and 2', and undergoes low-temperature plasma treatment on both sides. After this, it passes through a vacuum chamber 6' and a driving roller 5' and is wound up as a roll 4'. Instead of winding it up as a roll 4', it can also be directly used for tire processing. 2, 3, and 4B schematically illustrate different devices, and 11 in FIG.
is a vacuum processing tank, 12 is a ground electrode, 13 is an input electrode, 21 in Fig. 3 is a vacuum processing tank (used at the same time as a ground electrode), 22 is input power, 31 in Fig. 4 B is a vacuum processing tank , 32 represents a ground electrode, and 33 represents an input electrode, respectively. Note that FIG. 3 shows a case where a plain woven material passes between input electrodes arranged in two rows and is subjected to low-temperature plasma treatment. Figure 4A shows an external electrode type device.
41 is a vacuum processing tank, and 42 is a high frequency coil. Next, a specific example will be given. Example 1 [Preparation of plain woven tire cord] 1500d/2 (40Z x 40S times/10cm) polyester cord was used as warp thread, warp thread density was 50 threads/5cm,
The weft yarn density is 4.0 threads/5cm and the number of strokes is
A plain woven tire cord with a width of 160 cm was produced using 30 count polynosic yarn. [Low-temperature plasma treatment] The plain woven material was subjected to low-temperature plasma treatment using the apparatus shown in FIG. That is, O 2 gas is introduced into the vacuum processing tank at a rate of 2/min, the pressure inside the tank is maintained at 0.1 torr by reducing the pressure, and while the plain woven material is continuously passed between the electrodes, 110KHz is applied to the input electrode. ,
Low-temperature plasma treatment was performed by applying 40KW of power and causing glow discharge. A glass tube coated rod-shaped electrode was used as the input electrode, and a water-cooled drum electrode was used as the ground electrode placed at a distance of 5 cm, and the plain woven material was processed while passing over this drum electrode. The time that the plain woven material stayed between the electrodes was 10 seconds, and the discharge voltage and discharge current generated between the electrodes were respectively
It was 5.5KV, 20A. Discharge voltage and discharge current: When measuring high frequency output, the output voltage is measured by a voltage divider - rectifier - DC voltmeter circuit and the peak value of the output voltage is measured, and the output current is measured by a current transformer - current/voltage converter - DC voltmeter circuit. By providing this circuit, the effective value of the output current is measured. (In a current/voltage converter, the heater is heated by the input current, and the temperature of the heater, which rises in proportion to the input current, is detected by a thermocouple and converted to mV. Therefore, the measured current shows the effective value. ) Comparative Example 1 When plasma treatment was carried out in the same manner as in Example 1 except that the pressure in the vacuum treatment tank was maintained at 20 Torr and discharge was performed, the surface of the plain woven material became slightly hard, and Example 1 Adhesion to rubber was lower than in the case of . Example 2 A plain woven material was produced in the same manner as in Example 1 using 1500d/2 (30Z x 30S times/10cm) polyparaphenylene terephthalamide multifilament,
A low temperature plasma treatment was performed using the apparatus shown in FIG.
In other words, O 2 2/min, Ar 3/min in the vacuum treatment tank
/min, the inside of the tank was maintained at 0.5 torr, and while the plain woven material was passed continuously between the electrodes, high-frequency power of 13.56 MHz and 5 KW was applied to the input electrode to cause glow discharge, resulting in low-temperature plasma treatment. . Note that a hollow-coated flat plate type electrode was used as the input electrode, and a water-cooled drum electrode was used as the ground electrode placed at a distance of 10 cm, and the plain woven material was processed while passing over this drum electrode. The time the plain woven material stayed between the electrodes was 50 seconds, and the discharge voltage and discharge current generated between the electrodes were respectively
It was 4.0KV and 15A. Example 3 A plain woven material produced in the same manner as in Example 1 was
Low-temperature plasma treatment was performed using the apparatus shown in the figure. That is, O 2 is introduced into the vacuum treatment tank at a rate of 1/min and N 2 is introduced at a rate of 1/min, the inside of the tank is maintained at 0.2 Torr, and the plain woven material is continuously passed between the input electrodes.
Low-temperature plasma treatment was performed by applying a power of 110 KHz and 20 KW to cause glow discharge. The input electrodes were five glass tube-coated rod-shaped electrodes arranged vertically and in parallel at intervals of 10 cm, and the inner wall of the processing tank was used as a ground electrode, and the plain woven material was processed while passing between the input electrodes. The residence time between the electrodes was 50 seconds, the discharge voltage at this time was 4.0KV, and the discharge current was 25A. Example 4, Comparative Example 2 A plain woven material produced in the same manner as in Example 2 was subjected to low temperature plasma treatment using the apparatus shown in FIG. 4 A (Comparative Example 2) or B (Example 4) and compared. In either case, O 2 was introduced into the vacuum treatment tank at a rate of 100ml/min to
A low temperature plasma was generated and processed by maintaining the temperature at 0.7 Torr and applying a power of 110 KHz and 2 KW.
In the case of the apparatus shown in Figure 2, the distance between the electrodes was 5 cm, and cooled flat plate electrodes were used for both electrodes. In either case, the plasma treatment time was 3 minutes, and the discharge voltage and discharge current generated between the electrodes were 3.3KV and 3.3KV, respectively.
It was 18A. Warp threads (tire cords) were collected from the plain woven fabrics subjected to plasma treatment in Examples 1 to 4, Comparative Example 1, and Comparative Example 2 described above, and cords not subjected to plasma treatment were collected for comparison. The cords were sampled and embedded in rubber compositions A and B shown below with a cord length of 8 mm and vulcanized at 150°C for 30 minutes.The adhesion strength was examined in a pull-out test to measure the force with which the cord was pulled out from the vulcanized rubber. Table 1 shows the results. As can be seen from this data, the adhesiveness of the method of the present invention was clearly improved compared to the untreated cord and the comparative example cord, and the rubber composition contained hexamethylenetetramine (formalin donor) and resorcinol (acceptor). ) (rubber composition B), even better adhesion can be obtained. [Rubber composition A] NR (RSS#3) 70 parts by weight SBR 1500 20 IR 2200 10 Zinc white 5 Stearic acid 2 Carbon black (GPF) 50 Poly(2,2,4-trimethyldihydroquinoline) 2 Paraffin oil 5 Sulfur 3 N-cyclohexyl-2-benzothiazyl sulfenamide 1 [Rubber composition B] NR (RSS#1) 100 parts by weight Zinc white 5 Stearic acid 3 Carbon black ( HAF) 40 Hydrous silicic acid 10 Poly(2,2,4-trimethyldihydroquinoline) 1 Paraffin oil 5 Resorcinol 3 Hexamethylenetetramine 2 Sulfur 3 N-oxydiethylene-2-benzothiadylsulfate Phenamide 0.5 〃 [Table]

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図および第4図ロは本発
明の方法を実施するための低温プラズマ処理装置
を概略的に示したものであり、また第4図イは比
較のための処理装置を概略的に示したものであ
る。 ……真空処理槽、2,2′……ドラム型接地
電極、3……入力電極、4……平織状物、4′…
…低温プラズマ処理された平織状物、5,5′…
…駆動ローラ、6,6′……真空室。
Figures 1, 2, 3, and 4B schematically show a low-temperature plasma processing apparatus for carrying out the method of the present invention, and Figure 4A shows a diagram for comparison. 1 schematically shows a processing device. 1 ... Vacuum processing tank, 2, 2'... Drum type ground electrode, 3... Input electrode, 4... Plain woven material, 4'...
...Low temperature plasma treated plain woven material, 5,5'...
...Drive roller, 6,6'...Vacuum chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 内部に放電電極を備えた真空処理槽に無機ガ
スを導入して槽内を0.001トルないし10トルの減
圧雰囲気とし、電極間に、長手方向にコードが多
数本引き揃えられ、その密度が20本/5cmから70
本/5cmの範囲にあり、それと直角に交差してな
るヨコ糸が2.0本/5cmから6.0本/5cmの範囲の
すだれ状平織り構造のタイヤコード平織り状物を
連続的に通過させながら、グロー放電させること
により該無機ガスの低温プラズマを発生させ、放
電電圧3000V以上、放電電流5〜30Aに維持して
前記平織り状物を処理することを特徴とするタイ
ヤコード平織り状物の低温プラズマ処理方法。
1 Inorganic gas is introduced into a vacuum processing tank equipped with a discharge electrode inside to create a reduced pressure atmosphere of 0.001 Torr to 10 Torr. Between the electrodes, a large number of cords are arranged in the longitudinal direction, and their density is 20 Torr. Book/70 from 5cm
Glow discharge is carried out while continuously passing through a tire cord plain-woven material with a blind-like plain-woven structure in which the weft yarns are in the range of 2.0 yarns/5 cm to 6.0 yarns/5 cm and are intersected at right angles. A low-temperature plasma treatment method for a plain-woven tire cord material, comprising: generating low-temperature plasma of the inorganic gas, and treating the plain-woven material by maintaining a discharge voltage of 3000 V or more and a discharge current of 5 to 30 A.
JP59139586A 1984-07-05 1984-07-05 Low-temperature plasma treatment of plain weave state fabric of tire cord Granted JPS6119343A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59139586A JPS6119343A (en) 1984-07-05 1984-07-05 Low-temperature plasma treatment of plain weave state fabric of tire cord
EP85401337A EP0172057A1 (en) 1984-07-05 1985-07-02 An improvement in a fabric-reinforced rubber article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59139586A JPS6119343A (en) 1984-07-05 1984-07-05 Low-temperature plasma treatment of plain weave state fabric of tire cord

Publications (2)

Publication Number Publication Date
JPS6119343A JPS6119343A (en) 1986-01-28
JPH0376661B2 true JPH0376661B2 (en) 1991-12-06

Family

ID=15248714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59139586A Granted JPS6119343A (en) 1984-07-05 1984-07-05 Low-temperature plasma treatment of plain weave state fabric of tire cord

Country Status (1)

Country Link
JP (1) JPS6119343A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197467A (en) * 1984-10-09 1986-05-15 株式会社クラレ Fiber structure excellent in additive transfer preventing effect and its production
DE19715296C2 (en) 1997-04-11 1999-05-27 Continental Ag Process for the production of a blank for vehicle tires
KR20030093526A (en) * 2002-06-03 2003-12-11 금호타이어 주식회사 Adhesion improvement method of tire belt cord
CN104411479A (en) * 2012-06-01 2015-03-11 米其林集团总公司 Reinforcing element having polyester layers
JP7306638B2 (en) * 2018-04-26 2023-07-11 株式会社ブリヂストン RESIN-RUBBER COMPOSITE, TIRE, AND METHOD FOR MANUFACTURING RESIN-RUBBER COMPOSITE
JP7269573B2 (en) * 2018-04-26 2023-05-09 株式会社ブリヂストン RESIN-RUBBER COMPOSITE, TIRE, AND METHOD FOR MANUFACTURING RESIN-RUBBER COMPOSITE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210844A (en) * 1982-06-01 1983-12-08 Sando Iron Works Co Ltd Method and device for controlling temperature of material to be treated in low temperature plasma atmosphere
JPS58210845A (en) * 1982-06-01 1983-12-08 Sando Iron Works Co Ltd Control device for plasma density

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210844A (en) * 1982-06-01 1983-12-08 Sando Iron Works Co Ltd Method and device for controlling temperature of material to be treated in low temperature plasma atmosphere
JPS58210845A (en) * 1982-06-01 1983-12-08 Sando Iron Works Co Ltd Control device for plasma density

Also Published As

Publication number Publication date
JPS6119343A (en) 1986-01-28

Similar Documents

Publication Publication Date Title
US3745104A (en) Surface modification of carbon fibers
EP3026150B1 (en) Carbonization method and carbon fiber production method
EP3279374B1 (en) Carbon fiber and method for producing carbon fiber
US4487880A (en) Method for imparting improved surface properties to carbon fibers and composite
Benerito et al. Modifications of cotton cellulose surfaces by use of radiofrequency cold plasmas and characterization of surface changes by ESCA
JPH0376661B2 (en)
GB2168966A (en) High-strength carbonaceous fiber
EP0172057A1 (en) An improvement in a fabric-reinforced rubber article
US3692577A (en) Carbon filaments
Nadiger et al. Effect of plasma treatment on the structure and allied textile properties of mulberry silk
US3627571A (en) Heat treatment of graphite fibers
EP0125905B1 (en) Process for the stabilisation of acrylic fibres
EP0111795B1 (en) A method for increasing hydrophilicity of a fabric material of synthetic fibers
EP3931381A1 (en) Method of ionizing irradiation of textile polyacrylonitrile fibres and use thereof as carbon fibre precursor
GB2373793A (en) A method of crimping oxidised acrylic fibres
US4251589A (en) Production of a substantially inert flexible textile material
JPH037209B2 (en)
WO1994024358A2 (en) Process for coating yarns and fibres in textile objects
DE4335573A1 (en) CVD coating process, and device for its implementation
Jinzhou et al. Characteristics of coaxial dielectric barrier discharge at an atmospheric pressure with a swirling gas argon/oxygen mixture for the surface modification of polyester fiber cord
US3451773A (en) Method of producing electromagnesia having improved electric insulating power
JP2003064539A (en) Carbon fiber fabric and method for producing the same
KR890003550B1 (en) Method for improving surface of plastic
DE19960403C2 (en) Process for plasma treatment of flat fiber composite materials and device for carrying out the process
JPH05295662A (en) Method for making fiber structure hydrophilic