JPS5982194A - Coating method of flux on covered arc welding rod - Google Patents

Coating method of flux on covered arc welding rod

Info

Publication number
JPS5982194A
JPS5982194A JP19412982A JP19412982A JPS5982194A JP S5982194 A JPS5982194 A JP S5982194A JP 19412982 A JP19412982 A JP 19412982A JP 19412982 A JP19412982 A JP 19412982A JP S5982194 A JPS5982194 A JP S5982194A
Authority
JP
Japan
Prior art keywords
screw
flux
zone
supply section
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19412982A
Other languages
Japanese (ja)
Inventor
Masanosuke Tejima
手島 政之助
Yoshinobu Okubo
大久保 義信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19412982A priority Critical patent/JPS5982194A/en
Publication of JPS5982194A publication Critical patent/JPS5982194A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • B23K35/404Coated rods; Coated electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To perform smooth and stable continuous coating with a screw extruder by specifying the ratio of the shaft diameters of the screw in a feed zone and a constant volume feeding zone for the flux as well as the ratio between the shaft diameter and the outside diameter of a screw blade respectively. CONSTITUTION:A screw 1 which consists of a shaft 1a and a blade 1b and constitutes a feed zone (a), a compression zone (b) and a constant volume feeding zone (c) for a flux F is provided in a cylinder 2 to increase stepwise the degree of compression of the flux F. A core wire 6 inserted in a die block 3 through a nipple 5 is extruded together with the flux F from a die 4 thereby forming a coated arc welding rod. The ratio d1/d2 between the shaft diameter d1 of the screw in the zone (a) and the shaft diameter d2 of the screw in the zone (c) of said screw 1 is set at 0.7-0.9 and the ratio d1/D between the shaft diameter d1 of the screw in the zone (a) and the outside diameter D of the screw blade is set at 0.4-0.8, and the ratio d2/D between the diameter d2 of the screw in the zone (c) and the outside diameter D of the screw blade is set at 0.6-0.8.

Description

【発明の詳細な説明】 本発明はスクリュー押出方式によシ被覆アーク溶接棒用
・6紗(以下銀に1・心線」という)にフラックスを塗
装する方法に関し、特に押出時にフラックスが発熱しな
いようにすることにょシフラックヌ硬化現象を予防しす
ると共に必要十分な吐出圧力を確保せしめ、塗装の安定
性を高めて連続的塗装の効果を十分に発揮せしめる様に
したものである。
[Detailed Description of the Invention] The present invention relates to a method of coating flux on 6-gauze (hereinafter referred to as "silver wire") for coated arc welding rods using a screw extrusion method, and in particular, the flux does not generate heat during extrusion. By doing so, it is possible to prevent the curing phenomenon and ensure necessary and sufficient discharge pressure, thereby increasing the stability of the coating and fully demonstrating the effect of continuous coating.

・心線へのフラックス塗装に当っては、フラックス成分
を混練し更に成形してなるフラックスケーキをシリンダ
内に挿入してシリンダ先端部のダイスから心線と共に押
出す、いわゆるプランジャ押出方式が一般に採用されて
いる。しかしプランジャ押出方式においては、押出終了
1晴がら次回押出開始までの間は新規なフラックスケー
キをシリンダ内に詰込む操作の為に塗装は完全に停止し
、いわゆるアイドルタイム(非操業時間帯)が発生する
ので、生産性の面で問題がある。
・When applying flux to the core wire, the so-called plunger extrusion method is generally used, in which a flux cake made by kneading the flux components and further molding is inserted into a cylinder and extruded together with the core wire from a die at the tip of the cylinder. has been done. However, in the plunger extrusion method, from the end of one extrusion to the start of the next extrusion, coating is completely stopped in order to fill the cylinder with new flux cake, resulting in so-called idle time (non-operating time). This poses a problem in terms of productivity.

そこで生産性を向上させる為に上記の如きアイドルタイ
ムを生じさせない塗装方法の実現が強ぐ要望される様に
なシ、そのような方法の一つとして、スクリューによる
連続押出方式の採用が提案されている。しかしこの方式
の長所を享受し得る為には、スクリューの回転に応じて
被押出物の前進運動が確実に行なわれるようにしなけれ
ばならない。ところが被押出物が、フラックスの様に流
動性が極めて悪く、且つ昇温(40〜50℃程度以上)
によシ硬化が始する様な物質である場合には、押出操作
条件を最適な状態に設定しなければ、連続押出を安定に
維持することは困難である。更にフラックスを心線に一
定量ずつ確実に塗装していく為には、押出機先端のダイ
ブロック内のフラックスが一定の吐出圧ノJを発揮でき
る程度に寸で投入フラックスをシリンダ内で昇圧する必
要もある。しかしながら現在のところこの様な要請を満
足するヌクリュー押出方式が未開発であるところからス
クリュー押出方式を利用した塗装方法は実用化されてい
ない。
Therefore, in order to improve productivity, there is a strong demand for a coating method that does not cause idle time as described above, and as one such method, the adoption of a continuous extrusion method using a screw has been proposed. ing. However, in order to enjoy the advantages of this method, it is necessary to ensure that the forward movement of the extruded material is carried out in accordance with the rotation of the screw. However, the material to be extruded has extremely poor fluidity like flux, and the temperature rises (about 40 to 50 degrees Celsius or higher).
If the material is one that begins to harden quickly, it is difficult to maintain stable continuous extrusion unless the extrusion operating conditions are set to the optimum conditions. Furthermore, in order to reliably apply a constant amount of flux to the core wire, the pressure of the input flux is increased in the cylinder in small steps to the extent that the flux in the die block at the tip of the extruder can exert a constant discharge pressure. There is also a need. However, since the screw extrusion method that satisfies these requirements has not yet been developed, coating methods using the screw extrusion method have not been put into practical use.

本発明はこうした状況下になされたものであって、その
目的はスクリュー押出時にフラックスが発熱して硬化す
る現象を完全に防止すると共に必要十分な吐出圧力を、
確保せしめることによシ、部続塗装を円滑且つV定に行
なえるフラックス塗装方法を提供しようとする点にある
The present invention was made under these circumstances, and its purpose is to completely prevent the phenomenon in which flux heats up and hardens during screw extrusion, as well as to maintain the necessary and sufficient discharge pressure.
The object of the present invention is to provide a flux coating method that can perform partial coating smoothly and at a constant V by ensuring that the coating is maintained.

しかしてこの様な目的を達成し得た本発明の塗装方法と
は、羽根ピッチが一定で且つ軸径が先端側jで大きくな
るスクリューをシリンダに内装することにより、該シリ
ンダ内に被押出物の上流側から順次供給部、圧縮部、定
量供給部を形成させてなるスクリュー押出機によシ被覆
アーク#接棒用心線にフラックスを塗装するに当シ、前
記供給部におけるスクリュー軸径と前記定量供給部にお
けるスクリュー軸径の比を0.7〜0,9に設定すると
共に、前記供給部におけるスクリューl1lliI径と
スクリュー羽根外径の比が0.4〜0.7で且つ前記定
量供給部におけるスクリュー軸径とスクリュー518根
外径の比が0.6〜0.8となるように股矩して押出し
を行なう様にした点に要旨を有する。
However, the coating method of the present invention, which has achieved these objectives, has a screw in which the pitch of the blades is constant and the diameter of the shaft increases toward the tip end. When applying flux to the coated arc #contact rod using a screw extruder, which has a supply section, a compression section, and a quantitative supply section sequentially formed from the upstream side of the screw shaft diameter in the supply section and the The ratio of the screw shaft diameter in the quantitative supply part is set to 0.7 to 0.9, and the ratio of the screw l1lliI diameter to the screw blade outer diameter in the supply part is 0.4 to 0.7, and the quantitative supply part The gist is that the extrusion is carried out in a rectangular manner so that the ratio of the screw shaft diameter to the root outer diameter of the screw 518 is 0.6 to 0.8.

以下実施例図面に基づき本発明の構成及び作用勺裁を、
実験経過及び結果を説明しつつ明らかにする・ 第1図は本発明のフラックス塗装実験で使用したスクリ
ュー押出機の概略縦断面図であシ、1はスクリュー、2
Fiスクリユーlを内装してなるシリンダ、8はシリン
ダ2の先端に取付けられたダイブロックであシ、また1
)はスクリュー羽根の外径、■、■、θはフラックスF
の夫々供給部、圧縮部、定量供給部、Pl s P 2
 * P 3はこれらの各部位におけるスクリュー羽根
のピッチ〔P1=P 2 z P 3 = P c (
一定)の等ピッチ〕、dlは供給部■におけるスクリュ
ー軸径、d2は定量供給部θにおけるスクリュー軸径を
夫々示している。
The structure and operation of the present invention will be explained below based on the drawings of the embodiments.
The progress and results of the experiment will be explained and explained. Figure 1 is a schematic vertical cross-sectional view of the screw extruder used in the flux coating experiment of the present invention, where 1 is the screw, 2
A cylinder with a Fi screw l inside, 8 is a die block attached to the tip of cylinder 2, and 1
) is the outer diameter of the screw blade, ■, ■, θ are the flux F
supply section, compression section, quantitative supply section, Pl s P 2
* P 3 is the pitch of the screw blades at each of these parts [P 1 = P 2 z P 3 = P c (
(constant pitch)], dl indicates the screw shaft diameter in the supply section (2), and d2 indicates the screw shaft diameter in the quantitative supply section θ.

即ち図においてスクリュー押出部はスクリュー羽根1b
のピッチが一定量、で且つ軸径が先端側で大きくなる(
dl<d2 )スクリュー1をシリンダ2に内装すると
とにより、該シリンダ2内にフラックス°Fの流れ方向
順に前記各部(イ)、@、θを形成している。従ってス
クリュτ1の溝巾は一定であるが、スクリュー軸外径と
シリンダ内径で囲まれた断面積は先端側へ行くほど小さ
くなるので、投入されたフラックスFは、供給部のから
圧縮部@、定量供給部θへと移送されるにつれ、各段階
毎にその圧縮度が増加するように構成されている。
That is, in the figure, the screw extrusion part is the screw blade 1b.
The pitch is a certain amount, and the shaft diameter increases on the tip side (
dl<d2) By installing the screw 1 in the cylinder 2, the above-mentioned parts (A), @, and θ are formed in the cylinder 2 in the order of the flow direction of the flux °F. Therefore, although the groove width of the screw τ1 is constant, the cross-sectional area surrounded by the screw shaft outer diameter and the cylinder inner diameter becomes smaller as it goes toward the tip. It is configured such that the degree of compression increases at each stage as it is transferred to the quantitative supply section θ.

更に供給部のからシリンダ2内へ投入されたフラックス
Fは、スクリュー1の回転によってダイブロック8方向
へ送られる。ダイブロック8には出口部にダイス4が設
けられると共に、ダイス4と同心的に心線案内用ニップ
ル5が挿設されておシ、該ニップル5から送給されてぐ
る心線6をフラックスFと共にダイス4から押出すこと
によって心線外周にフラックスFを塗装し、被覆アーク
溶接棒が製造される。
Further, the flux F introduced into the cylinder 2 from the supply section is sent toward the die block 8 by the rotation of the screw 1. The die block 8 is provided with a die 4 at the outlet, and a core wire guiding nipple 5 is inserted concentrically with the die 4, and the core wire 6 fed from the nipple 5 is guided by a flux F. At the same time, by extruding from the die 4, the outer periphery of the core wire is coated with flux F, and a coated arc welding rod is manufactured.

この様に構成された押出機を使用して、フラックスFの
連続塗装を円滑に行なう為には、(1)供給部ωから投
入されたフラックスFをヌクリュー1によってダイブロ
ック8内まで確実に移送できると共に、(2)ダイブロ
ック8内のフラックスFの圧力を、ニップル5から心線
を引き抜くと共にダイス4から確実に吐出できる圧力ま
で昇圧させるという条件が同時に充足されなければなら
ない。ところで(11の条件は要するにスクリュー1に
おける軸トルりの問題でめ抄、又(2)の条件はスクリ
ューIを回転させたときのフラックスの圧縮程度の問題
であると言える。
In order to smoothly perform continuous coating of flux F using the extruder configured in this way, (1) the flux F introduced from the supply section ω must be reliably transferred to the inside of the die block 8 by the screw 1; At the same time, the condition (2) that the pressure of the flux F in the die block 8 is raised to a pressure that allows the core wire to be pulled out from the nipple 5 and reliably discharged from the die 4 must be met at the same time. By the way, it can be said that the condition (11) is basically a problem of axial torque in the screw 1, and the condition (2) is a problem of the degree of compression of the flux when the screw I is rotated.

そこで本発明者等は(11の条件を満足できる様な技術
的手段の究明に当っては、供給部■におけるスクリュー
軸径と定量供給部Oにおけるスクリュー軸径との比(d
 1 / d 2 )を種々変化させることにより行な
い、又(2)の条件に対しては、供給部りにおけるヌク
リュー軸径とスクリュー羽根外径の比(d1/I))と
、定量供給部におけるスクリュー軸径とスクリュー羽根
外径の比(d2/D)との組合わせを種々変化させるこ
とによシ行なった。
Therefore, the present inventors (in investigating a technical means that can satisfy the condition 11) found that the ratio (d
1 / d2), and for condition (2), the ratio of the screw shaft diameter to the screw blade outer diameter (d1/I)) in the supply section and the ratio (d1/I) in the constant supply section. This was done by changing various combinations of the ratio of the screw shaft diameter to the screw blade outer diameter (d2/D).

その結果、(イ)d1/d2が0.7〜0,9よシ大き
い場合には第2図に示すデータが得られた。Ml]ち第
2図はd17d2=0.95の場合におけるフラックス
吐出圧力の経時変化を示すグラフであシ、このグラフか
ら下記のことが理解できる。供給部■と定量供給部(ハ
)忙おける各溝深さがほぼ等しくなるので、即ち圧縮程
度が極めて小さくなるので、いわゆるスクリューコンベ
ヤとしての機能に近いものとなってしまう。従って、L
)i6をニップル5から引き抜きつつ塗装するのに必要
な吐出圧力(一般的にはフラックス中に含まれる水分、
溶接棒サイズ、ダイブロックの形状等間よシ異るが30
0〜5 Q Okg/am”とされる。以下「必要H:
力」という)が得られず、押出塗装は不可能である。
As a result, (a) data shown in FIG. 2 was obtained when d1/d2 was larger than 0.7 to 0.9. Ml] FIG. 2 is a graph showing the change in flux discharge pressure over time in the case of d17d2=0.95, and the following can be understood from this graph. Since the depths of the grooves in the supply section (2) and the quantitative supply section (C) are approximately equal, the degree of compression is extremely small, resulting in a function similar to that of a so-called screw conveyor. Therefore, L
) The discharge pressure required to draw i6 from the nipple 5 while painting (generally the water contained in the flux,
Welding rod size, die block shape, etc. may vary, but 30
0~5 Q Okg/am".Hereinafter referred to as "Required H:
extrusion coating is not possible.

一方、(ロ)d1/d2が0.7〜0.9よシ小さい場
合には第8図に示すデータが得られた。即ち第8図はd
1/d2=0.6の場合におけるフラックス吐出圧力、
吐出量及び吐出fM度の経時変化を示すグラフであシ、
このグラフから次のことがflJJ解できる。即ち供給
部■におけるフラックスFの供給能力は十分安定してい
るものの、圧縮部@から定量供給部Oにかけての圧縮度
合が犬@すぎるので、供給部■における供給能力が定量
供給部θにおける供給能力を上回ることになる。その結
果、特に定量供給部Oでの発熱が盛んとなり、フワック
スF中の水分が減少するので、スクリューlとフラック
スFの滑りが縣〈なり、圧縮部◎及び定量供給部θでフ
ラックスFがブリッジ現象を起こす。
On the other hand, (b) when d1/d2 was smaller than 0.7 to 0.9, the data shown in FIG. 8 was obtained. That is, Fig. 8 is d
Flux discharge pressure in the case of 1/d2=0.6,
A graph showing changes in discharge amount and discharge fM degree over time,
From this graph, the following can be solved by flJJ. In other words, although the supply capacity of the flux F in the supply section ■ is sufficiently stable, the degree of compression from the compression section @ to the quantitative supply section O is too high, so that the supply capacity in the supply section ■ is equal to the supply capacity in the fixed quantity supply section θ. will exceed. As a result, heat generation increases especially in the metered supply section O, and the water content in the flux F decreases, resulting in tight slippage between the screw L and the flux F, and the flux F bridges in the compression section ◎ and the metered supply section θ. cause a phenomenon.

その為に押出塗装は断続的にしか行なわれず、しかも発
熱の影豐で塗装表面がかさかさした品質の懸い製品がで
きることになる。更にdlが余シ小さくなると押出能力
の割合に対して軸に大きな負荷がかかる様になシ、スク
リューIIIIi11aが非常に折れ易くなる。
For this reason, extrusion coating is only carried out intermittently, and furthermore, the effects of heat generation result in products of poor quality with a rough coated surface. Furthermore, if dl becomes smaller, a large load will be applied to the shaft relative to the proportion of the extrusion capacity, and the screw IIIi11a will become very likely to break.

これに対し、(ハ)d1/dgが0.7〜0.9 +7
)範囲内にある場合には第4区IK示すデータが得られ
た。
On the other hand, (c) d1/dg is 0.7 to 0.9 +7
), data indicating the 4th section IK was obtained.

即ち第4図はd1/d2=0.85の場合におけるフラ
ックス吐出圧力、吐出量及び吐出温度の経時変化を示す
グラフであシ、発熱もほとんど無く、吐出圧力はほぼ必
要圧力に達した状態で安定し、吐出量も安定して得られ
る様子がよく理解できる。
In other words, Fig. 4 is a graph showing changes in flux discharge pressure, discharge amount, and discharge temperature over time in the case of d1/d2 = 0.85, and there is almost no heat generation and the discharge pressure almost reaches the required pressure. It is easy to understand how it is stable and the discharge amount is also stable.

従って軸トルク上の間粗も全く無いことは明らかである
Therefore, it is clear that there is no roughness in shaft torque at all.

次に、に)d1/d2を0.7〜0.9FC維持シテ、
d1/Dを0.4〜0.7よ勺大きく設定した場合には
、第5図に示すデータが得られた。即ち第5図udl/
d2=0.7でdl/D=0.8の場合におけるフラッ
クス吐出圧力及び吐出量の経時灰化を示すグラフであシ
、このグラフから次のことが理解できる。即ちスクリュ
ーの溝深さが浅くなるので、その分フワックスFの供給
域は減少する。従ってダイブロック8内のフラックスF
は周期的にす1・圧される状態となシ、ダイス吐出圧力
が必要圧力に達している状態は断続的に〈シ返される。
Next, maintain d1/d2 at 0.7 to 0.9FC,
When d1/D was set larger than 0.4 to 0.7, the data shown in FIG. 5 was obtained. That is, Figure 5 udl/
This is a graph showing the ashing of flux discharge pressure and discharge amount over time in the case of d2=0.7 and dl/D=0.8, and the following can be understood from this graph. That is, since the groove depth of the screw becomes shallower, the supply range of fuwax F decreases accordingly. Therefore, the flux F in die block 8
The die is in a state where it is periodically pressed, and when the die discharge pressure has reached the required pressure, it is intermittently turned back.

その1ζめ押出塗装も断続的となる。The 1ζ extrusion coating will also be intermittent.

一方、(ホ)d1/dzを0.7〜0,9に維持して、
dl/Dを0.4〜0.7よル小さく設定した場合には
、第6図に示すデータが得られた。即ち第6し1i、i
d 1/d 2〜0.7”t’d l/D=0.8の場
合におけるフラックス吐出圧力及び吐出量の経時変化を
示すグラフであシ、このグラフから次のことが理解でき
る。Rljちスクリューの尚深さが更に深(なるので、
その分フヲックスFの供給域が増加し、それにつれてフ
ラックスFに作用する圧縮力は著しく大き(なるので発
熱が盛んとなる(図では吐出温度曲線を省略している)
。従ってフラックス中の水分率は急激に減少することに
なってスクリニーlとフラックスFの滑シが急激に懇〈
なり、これらが一体となって回転するようになるので、
その事態の進展に伴込吐出圧力は必要圧力以下に低下し
、押出塗装ができなくなる。
On the other hand, (e) maintaining d1/dz at 0.7 to 0.9,
When dl/D was set smaller by 0.4 to 0.7, the data shown in FIG. 6 was obtained. That is, the 6th 1i, i
This is a graph showing changes in flux discharge pressure and discharge amount over time in the case of d 1/d 2 to 0.7"t'd l/D=0.8. From this graph, the following can be understood. Rlj The depth of the screw becomes even deeper (because
The supply range of flux F increases accordingly, and the compressive force acting on flux F increases significantly (as a result, heat generation increases (the discharge temperature curve is omitted in the figure).
. Therefore, the moisture content in the flux decreases rapidly, and the lubricity between the screenie L and the flux F rapidly decreases.
and these will rotate as one, so
As the situation progresses, the entrainment discharge pressure drops below the required pressure, making extrusion coating impossible.

これに対し、ト)d l / (12を0.7へ・0.
9に維持すると共に、dl/Dを0.4〜0.7に維持
した場合には、編7図に示すデータが得られた。即ち第
7図は(11/ d z= 0.7でdl/D二0.5
の場合におけるフラックス吐出圧力及び吐出量の経時変
化を示すグラフであシ、このグラフから、吐出圧力はは
ぼ必要圧力に達した状態で安定し、吐出量も安定して得
られる様子がよ(分かる。
On the other hand, g) d l / (12 to 0.7・0.
When dl/D was maintained at 9 and 0.4 to 0.7, the data shown in Figure 7 was obtained. In other words, Fig. 7 shows (11/dz=0.7 and dl/D20.5
This is a graph showing changes in flux discharge pressure and discharge amount over time in the case of I understand.

しかし上記(へ)の押出条件を設定してもd 2/Dの
値によってはその安定な状態を維持できないばかりか、
−雉の範囲内においてのみはじめて押出塗装の安定な状
況が形成されることが分かった。
However, even if the above extrusion conditions are set, depending on the value of d2/D, it may not be possible to maintain a stable state.
- It has been found that stable conditions for extrusion coating are formed only within the range of pheasants.

即ち()) d 2 / Dを0.6〜0.8よシ大き
(設定した場合には第8図に示すデータが得られた。即
ち第8図はdl/D=0.9の場合におけるフラックス
吐出量及び吐出温度の経時変化を示すグラフであシ、こ
のグラフからは次のことが地解できる。即ち定量供給部
OではフラックスFの流路断面積が減少するので、スク
リュー10回転数を一尾にした場合の吐出能率は低下す
る。又運転初期から吐出1M度は昇温気味(60〜70
°C程度)となるので、製品の品質は余り期待できない
That is, ()) d 2 / D was set to be larger than 0.6 to 0.8, and the data shown in Fig. 8 was obtained. In other words, Fig. 8 shows the case when dl/D = 0.9. This is a graph showing changes over time in flux discharge amount and discharge temperature.The following can be understood from this graph.In other words, in the quantitative supply section O, the flow path cross-sectional area of flux F decreases, so when the screw rotates 10 times. If the number is reduced to one, the discharge efficiency will decrease.Also, from the beginning of operation, the temperature of the discharge 1M degree tends to rise (60 to 70 degrees).
(°C), so we cannot expect much from the quality of the product.

一方、(グ)d2/Dを0,6〜0.8よシ小さく設定
した場合には、第9図に示すデータが得られた。
On the other hand, when (g) d2/D was set smaller than 0.6 to 0.8, the data shown in FIG. 9 was obtained.

即ち第9図はd 2 / D −0,5の場合における
フワックス吐出圧力、吐出景及び吐出温度の経時変化を
示すグラフである。この場合にはフラックスFがほとん
ど圧縮されない状態となるので、吐出圧力が必要圧力の
半分程度しか得られず、吐出量が極めて少なくなること
は勿論、押出49−で装は全く行なえない。
That is, FIG. 9 is a graph showing temporal changes in fuwax discharge pressure, discharge pattern, and discharge temperature in the case of d 2 /D -0.5. In this case, the flux F is hardly compressed, so that the discharge pressure is only about half of the required pressure, and not only the discharge amount is extremely small, but also the extrusion 49- cannot perform any loading.

これに対し、(す)d2/Dを0.6〜0.8の範囲内
に設定した場合には第10図に示すデータが得られた。
On the other hand, when (S)d2/D was set within the range of 0.6 to 0.8, the data shown in FIG. 10 was obtained.

即ち第10図は(11/D=0.65の場合におけるフ
ラックス吐出圧力。吐出量及び吐出編度脅、経時虻化を
示すグラフであシ、このグラフから発熱もほとんど無く
(吐出温度は80℃以丁)、吐出圧力はほぼ必要圧力に
達した状態で安定し、吐出量もほぼ十分な状態で安定的
に得られる。従って押出塗装は連続的に行なわれ、品質
の良い製品が’&Mして得られることになる。
In other words, Fig. 10 is a graph showing the flux discharge pressure in the case of (11/D = 0.65), the discharge amount, the discharge knitting density, and the change over time, and this graph shows that there is almost no heat generation (the discharge temperature is 80 ℃ it), the discharge pressure is stable at almost the required pressure, and the discharge volume is also stable at almost the sufficient level.Therefore, extrusion coating is performed continuously, and high-quality products are produced. You can get it by doing this.

上記(イ)〜(す)の実験的裏付によシ、o、 74 
d工/d2(−0,9FC設定すると共に、0.4≦d
l/D≦0・7で且つ0・6≦d2/D≦0,8となる
ように設定して押出しを行なうことKよシ、良好な塗装
製品が連続的に得られるという本願発明に遂したもので
ある。
Based on the experimental support for (a) to (s) above, o, 74
d engineering/d2 (-0.9FC setting, 0.4≦d
The present invention has been achieved in that a good coated product can be continuously obtained by performing extrusion with settings such that l/D≦0.7 and 0.6≦d2/D≦0.8. This is what I did.

向上配設足操作範囲を確保し得る限り、押出機における
供給部やダイブロックS等をはじめ、押出機の附帯股需
等を適当に設計髪史して実施することは目出である。
As long as an improved foot operation range can be secured, it is a good idea to appropriately design and implement the supply section, die block S, etc. of the extruder, as well as the incidental parts of the extruder.

本発明は以上の様に構成されているので、連続的なフラ
ックス架装が安定して行なえるようになシ、アイドルタ
イムが無くなって、生産性を向上できることとなった。
Since the present invention is constructed as described above, continuous flux mounting can be performed stably, idle time is eliminated, and productivity can be improved.

又連続押出時にフラックスが発熱することがない様にし
たので、フラックス中の水分含有率を低下させることな
く、円滑な塗装をi]’能とし、製品たる被覆アーク溶
接棒の品質を良好に維持することができる。
In addition, since the flux does not generate heat during continuous extrusion, smooth coating is possible without reducing the moisture content in the flux, and the quality of the coated arc welding rod product is maintained in good condition. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のフラックス塗装方法を例示する概略説
明図、第2図〜第10図は本発明の11)1出塗装賽験
結果を示すグラフである。 l・・・スクリュー   2・・・ンリンダ8・・・ダ
イブロック D・・・スクリュー羽根の外径 ■・・・供給部     @・・・圧縮部O・・・定量
供給部 !’l、P2.P3・・・スクリュー羽根ピッチdl+
d2・・・スクリュー軸々経 出願人  株式会社神戸製鋼所
FIG. 1 is a schematic explanatory diagram illustrating the flux coating method of the present invention, and FIGS. 2 to 10 are graphs showing the results of 11) 1 coating tests of the present invention. l...Screw 2...Rinda 8...Die block D...Outer diameter of screw blade ■...Supply section @...Compression section O...Quantitative supply section! 'l, P2. P3...Screw blade pitch dl+
d2...Screw shaft applicant Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 11)羽根ピッチが一定で且つl1IIIl径が先端側
で・大きくなるスクリューをシリンダに内装することに
よシ、該シリンダ内に被押出物の上流側から順次供給部
、圧縮部、定量供給部を形成させてなるスクリュー押出
機によシ被覆アーク溶接棒用ID線にフラックスを塗装
するに当シ、前記供給部におけるスクリュー軸径と前記
定量供給部におけるスクリュー軸径の比を0.7〜0.
9に設定すると共に、前記供給部におけるスクリュー軸
径とスクリュー・羽根外径の比が0.4〜0.7で且つ
前記定量供給部におけるスクリュー軸径とスクリュー羽
根外径の比が0.6〜0.8となるように設定して押出
しを行なうことを特徴とする被覆アーク溶接棒のフラッ
クス塗装方法。
11) By installing a screw in the cylinder in which the pitch of the blades is constant and the l1IIIl diameter becomes larger on the tip side, a supply section, a compression section, and a quantitative supply section are sequentially installed in the cylinder from the upstream side of the extruded material. When applying flux to the formed ID wire for arc welding rods using a screw extruder, the ratio of the screw shaft diameter in the supply section to the screw shaft diameter in the quantitative supply section is set to 0.7 to 0. ..
9, and the ratio of the screw shaft diameter to the screw blade outer diameter in the supply section is 0.4 to 0.7, and the ratio of the screw shaft diameter to the screw blade outer diameter in the quantitative supply section is 0.6. A method for coating a coated arc welding rod with flux, the method comprising performing extrusion at a flux setting of 0.8 to 0.8.
JP19412982A 1982-11-04 1982-11-04 Coating method of flux on covered arc welding rod Pending JPS5982194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19412982A JPS5982194A (en) 1982-11-04 1982-11-04 Coating method of flux on covered arc welding rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19412982A JPS5982194A (en) 1982-11-04 1982-11-04 Coating method of flux on covered arc welding rod

Publications (1)

Publication Number Publication Date
JPS5982194A true JPS5982194A (en) 1984-05-12

Family

ID=16319385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19412982A Pending JPS5982194A (en) 1982-11-04 1982-11-04 Coating method of flux on covered arc welding rod

Country Status (1)

Country Link
JP (1) JPS5982194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104307688A (en) * 2014-11-04 2015-01-28 浙江大学 Disk type powder coating device with variable electrode diameter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104307688A (en) * 2014-11-04 2015-01-28 浙江大学 Disk type powder coating device with variable electrode diameter
CN104307688B (en) * 2014-11-04 2016-05-04 浙江大学 The coating device of the variable core diameter of disc type

Similar Documents

Publication Publication Date Title
US3698541A (en) Extruder, or extruder-like melting apparatus
JPS625776B2 (en)
JPS5982194A (en) Coating method of flux on covered arc welding rod
CN110509525B (en) Gap-adjustable, exhaustible and mixing conical double-screw melt fluid pressurizing device
JPS5982195A (en) Coating method of flux on covered arc welding rod
JP2009090544A (en) Compression screw extruder and compression extruding method of unvulcanized rubber
CN110328825A (en) One kind being used for the regenerated extrusion screw rod of scrap rubber
JPS62502677A (en) Method and apparatus for melting and transporting plasticized materials
JP4779007B2 (en) Injection device screw
JPS5919133A (en) Screw for molding thermoplastic resin
US20210252764A1 (en) No solid bed extruder screw
CN208827081U (en) Pipeline molding machine
JP6869622B2 (en) Extruder for fiber reinforced thermoplastic resin
CN208468999U (en) A kind of extrusion screw rod
CN102294820B (en) Equipment and method for manufacturing clad pipe through wet method sand addition from upper position, and clad pipe
CN206796505U (en) A kind of desktop level 3D printing consumptive material testing machine extrusion screw rod
KR101771120B1 (en) Screw for Thixomolding
RU2284914C1 (en) Double-screw extruder
JPS59125295A (en) Flux coating method of coated arc welding rod
US1741813A (en) Apparatus for producing composite articles
JPS58138594A (en) Production of wire for gouging
JPH09117954A (en) Twin-screw extruder
CN209492138U (en) A kind of high-precision injection molding machine
JPS58507Y2 (en) Screw for synthetic resin processing machinery
CN208964129U (en) Dosing device is used in refractory brick processing