JPS5982154A - Production of composite casting - Google Patents

Production of composite casting

Info

Publication number
JPS5982154A
JPS5982154A JP19099182A JP19099182A JPS5982154A JP S5982154 A JPS5982154 A JP S5982154A JP 19099182 A JP19099182 A JP 19099182A JP 19099182 A JP19099182 A JP 19099182A JP S5982154 A JPS5982154 A JP S5982154A
Authority
JP
Japan
Prior art keywords
particles
casting
mold
powder
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19099182A
Other languages
Japanese (ja)
Inventor
Atsushi Funakoshi
淳 船越
Kazuyuki Takubo
和之 田久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP19099182A priority Critical patent/JPS5982154A/en
Publication of JPS5982154A publication Critical patent/JPS5982154A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould
    • B22D23/10Electroslag casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To produce a composite casting having uniformly distributed particles and an optional packing rate of particles by melting successively from an end, a molding of a mixture composed of metallic powder and hard ceramic powder, and laminating and solidifying the melt thereof from the bottom in a casting mold. CONSTITUTION:Metallic powder and ceramic powder having a high melting point are compounded at the ratio determined adequately according to the packing rate of the particles in an intended composite casting and after the two are thoroughly and intimately stirred and mixed, the mixture is made into a molding A having substantial strength in handling by press molding or the like. Such molding is attached as a consumable electrode to an electrode clamp 3 and the lower end part thereof is immersed into a molten slag S in a water-cooled moving casting mold 1 then electricity is conducted between the same and a casting ingot C from a power source 4. The molding A is then successively melten by the electric resistance heat from the end thereof thereby forming a pool B of the melt wherein the molten metal M and the ceramic particles Pc exist uniformly and mixedly in the mold 1. Such melt is cooled with the cooling water flowing between supply and drain ports 2 and 2 and is laminated and solidified from the bottom toward the upper part whereby the casting ingot C of the composite casting is obtd.

Description

【発明の詳細な説明】 本発明は、金属と炭化タングステン粒子等のセラミック
粒子が混在してなる複合鋳物の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a composite casting made of a mixture of metal and ceramic particles such as tungsten carbide particles.

金属とセラミック粒子、例えば炭化タングステン粒子な
どの硬質粒子を混在させたものは、いわば粒子強化型複
合材料であって、金属のみでは得られない材料特性、就
中、高硬度、高耐摩耗性を有する。このような複合材料
の製造法として、本発明者等は、先に、遠心力または静
置方式の鋳造による製造方法を提案した(特願昭57−
1431.20号、同57−143121号、同57−
1.43122号、同57−143128号等)。その
原理は、鋳型内に母料金属溶湯と、該溶湯より比重の大
きい粒子とを混合状態もしく(a各別に鋳造したのち、
比重差により粒子を溶湯中に沈降・凝集させるにあり、
この鋳造沈澱法によって、凝集した粒子間隙内に金属が
充填してなる緻密かつ金属−粒子間結合の強固な複合組
織を有する鋳物を得ることかできる。
A mixture of metal and ceramic particles, such as hard particles such as tungsten carbide particles, is a so-called particle-reinforced composite material that has material properties that cannot be obtained with metal alone, especially high hardness and high wear resistance. have As a manufacturing method for such composite materials, the present inventors previously proposed a manufacturing method using centrifugal force or static casting (Japanese Patent Application No.
No. 1431.20, No. 57-143121, No. 57-
1.43122, 57-143128, etc.). The principle is that a molten base metal and particles with a higher specific gravity than the molten metal are mixed in a mold (a) and then each is cast separately.
The purpose is to cause particles to settle and coagulate in the molten metal due to the difference in specific gravity.
By this casting precipitation method, it is possible to obtain a casting having a dense composite structure in which the spaces between aggregated particles are filled with metal and strong metal-particle bonding.

しかしながら、上記鋳造沈澱法では、その原理上、次の
ような制約がある。
However, the casting precipitation method has the following limitations due to its principle.

(1)溶湯中の粒子の沈澱に長時間を要すると、途中で
溶湯の降温による粘稠化・凝固が生じ、その後の沈降・
凝集が妨げられるため、均一で琢密な複合組織を形成す
ることができない。従って、粒子の沈降・凝集を短時間
内に完了させる必要上、使用される粒子は、沈降速度の
速い粗粒のものに限定される。通常、粒径が50μm以
下の細粒子を使用することができない。また、微細でフ
ラワー状の粒子では、流動性が悪く、均一な速度で添加
すること自体不可能となる。
(1) If it takes a long time for the particles in the molten metal to settle, the molten metal will become viscous and coagulate as the temperature drops, and the subsequent sedimentation and
Since aggregation is prevented, a uniform and dense composite structure cannot be formed. Therefore, since it is necessary to complete sedimentation and aggregation of particles within a short period of time, the particles used are limited to coarse particles that have a high sedimentation rate. Normally, fine particles with a particle size of 50 μm or less cannot be used. Furthermore, fine, flower-like particles have poor fluidity, making it impossible to add at a uniform rate.

(11)粒子が溶湯に対しなじみにくいものであると、
溶湯に投与しても直ちに溶湯内に取込まれず、一定時間
場面上を浮遊する。その間に溶湯の降温塁占稠化が進行
するだけでなく、浮遊する粒子は湯面上を移動し、局部
的に偏在する傾向がある。そのため、粒子を均等に分散
投与するにもかかわらず、形成される複合組織には層厚
の厚薄や凝集の粗密ムラが生じる。また、粒子が酸化さ
れ易いものであると、湯面上に浮遊している間に表面酸
化を生じる。従って、このような不具合を回避するため
に、粒子は溶湯との濡れ性の良好なものに限定される。
(11) If the particles are not compatible with the molten metal,
Even when administered into the molten metal, it is not immediately absorbed into the molten metal, but floats on the surface for a certain period of time. During this time, not only does the temperature of the molten metal progress and the base becomes more concentrated, but the floating particles tend to move on the surface of the molten metal and become locally unevenly distributed. Therefore, even though the particles are evenly distributed and administered, the formed composite structure has uneven layer thickness and uneven density of agglomeration. Furthermore, if the particles are easily oxidized, surface oxidation occurs while floating on the surface of the hot water. Therefore, in order to avoid such problems, the particles are limited to those that have good wettability with the molten metal.

(ti+ )形成される複合組織における粒子の占める
割合(粒子充填率)の制御か困婦である。これは、鋳造
沈澱法が、溶湯中の粒子を比重分離にて沈積させたのち
、溶湯を凝固させるプロセスをとるためであって、粒子
充填率は、粒子の粒度構成にもよるが通常は約80%(
容積%)と非常に高く、目的とする鋳物の用途や要求性
能に応じた高低任意の充填率に制御することは極めて難
しい。実際上、充填率60%以下の複合組織の形成は不
可能である。
(ti+) It is difficult to control the proportion of particles in the composite tissue formed (particle filling rate). This is because the casting precipitation method uses a process in which particles in the molten metal are deposited by specific gravity separation and then solidified, and the particle filling rate is usually approximately 80% (
It is extremely difficult to control the filling rate to any high or low level depending on the intended use and required performance of the casting. In reality, it is impossible to form a composite structure with a filling rate of 60% or less.

(iv)鋳型形状が複雑な場合には、場まゎりゃ粒子の
沈降集積にムラが生じ易いため、実際上鋳物形状は単純
で厚肉の形状に限られ、複雑な形状や中空筒状鋳物など
の製造は困靴である。
(iv) When the shape of the mold is complex, particles tend to settle and accumulate unevenly, so in practice the shape of the casting is limited to simple and thick shapes, and castings with complex shapes or hollow cylindrical shapes Manufacturing such as these is difficult.

本発明の複合鋳物の製造法は、上記の諸制約を一挙に解
消したものであり、その特徴とするところは、金属の粉
末と、硬質セラミック粉末との混合物からなる成形体を
溶解原料とし、これを鋳型にのぞませて、端部から順次
溶解せしめ、その金属溶湯と粒子との混合溶融物を鋳型
内にて底部から上方に向って積層凝固させるようにした
点にある。その粉末成形体の溶解は、例えば、該成形体
を消耗電極としてエレクトロスラグ再溶解法(以下、「
ESR法」という)や真空アーク溶解法(以下、「vA
R−1という)、あるいは該成形体を溶解棒とする真空
プラズマ溶解法(以下、 JPAMJという)など、あ
るいはそれに準じた溶解方式により行うことができる。
The method for manufacturing composite castings of the present invention eliminates the above-mentioned restrictions at once, and its characteristics include using a molded body made of a mixture of metal powder and hard ceramic powder as a melting raw material, This is poured into a mold and melted sequentially from the ends, and the mixed melt of the molten metal and particles is layered and solidified in the mold from the bottom upward. The powder compact can be melted using, for example, the electroslag remelting method (hereinafter referred to as "
(hereinafter referred to as "ESR method") and vacuum arc melting method (hereinafter referred to as "vA
R-1), a vacuum plasma melting method using the molded body as a melting rod (hereinafter referred to as JPAMJ), or a similar melting method.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

本発明は、金属粉末とセラミック粉末との混合物を固型
化した成形体を溶解原料とする。
In the present invention, a molded body obtained by solidifying a mixture of metal powder and ceramic powder is used as a melting raw material.

金属粉末は、目的とする複合鋳物の用途、要求性能に応
じて選らばれる鉄系もしくは非鉄系金属塊、°または所
要の成分組成を有する合金塊を適当な粒径に破砕したも
のである。また、必要に応じ成分調整のためにフェロア
ロイなとの粉末を適宜配合してよい。これらの金属粉末
の粒径は、10〜150μm程度あればよい。
The metal powder is obtained by crushing a ferrous or non-ferrous metal ingot, or an alloy ingot having a desired composition, into an appropriate particle size, which is selected depending on the intended use and required performance of the composite casting. In addition, ferroalloy powder may be appropriately blended to adjust the ingredients if necessary. The particle size of these metal powders may be about 10 to 150 μm.

セラミック粉末は、炭化物系、窒化物系、酸化物系、は
う化物系などの各種化合物から目的に応じて選らばれる
。むろん、その粉末は、成形体の溶解過程で容易に溶融
消失しない高融点を有するものでなければならない。例
えば、母材金属がニハード系鋳鉄などの鉄系金属であっ
て、かつ複合鋳物の材料特性として特に耐摩耗性の改善
を目的とする場合等には、タングステン炭化物(WC1
w2c)やタングステンチタン複炭化物などが極めて好
適である。使用されるセラミック粒子の粒径に特別の制
限はないが、得られる複合鋳物の性能上、過度に粗粒の
ものは避けるべきで、通常は粒径約300μm以下のも
のが力ましい。なお、セラミック粒子の比重は、金属溶
湯中での均一な分散状態を確保するために、溶湯の比重
と同一のものが最も好ましいことは言うまでもないが、
溶湯より比重の大きい粒子であっても、実際上何ら支障
はなく、また溶湯より若干比重の小さい粒子であっても
、それほど分散の均一性が損なわれることはない。
The ceramic powder is selected from various compounds such as carbide, nitride, oxide, and ferride compounds depending on the purpose. Of course, the powder must have a high melting point so that it does not easily melt and disappear during the melting process of the compact. For example, when the base metal is a ferrous metal such as nihard cast iron and the purpose is to particularly improve wear resistance as a material property of composite castings, tungsten carbide (WC1
w2c), tungsten titanium double carbide, etc. are extremely suitable. Although there is no particular restriction on the particle size of the ceramic particles used, excessively coarse particles should be avoided in view of the performance of the resulting composite casting, and particles with a particle size of about 300 μm or less are usually preferred. It goes without saying that the specific gravity of the ceramic particles is most preferably the same as that of the molten metal in order to ensure uniform dispersion in the molten metal.
Even if the particles have a higher specific gravity than the molten metal, there is no problem in practice, and even if the particles have a slightly lower specific gravity than the molten metal, the uniformity of dispersion will not be significantly impaired.

上記金属粉末とセラミック粉末からなる粉末成形体にお
ける金属粉末とセラミック粉末の配合割合は、目的とす
る鋳物の複合組織における所望の粒子充填率に応じて適
宜定められる。その成形体の形状は通常棒状体である。
The blending ratio of the metal powder and ceramic powder in the powder compact made of the metal powder and ceramic powder is determined as appropriate depending on the desired particle filling rate in the composite structure of the intended casting. The shape of the molded body is usually a rod-like body.

また、得られる鋳物においてセラミック粒子の均一に分
散した複合組織を得るためには、成形体内においてセラ
ミック粉末の分散状態に偏りがないように原料粉末混合
物を十分撹拌混和しておくことを要する。
In addition, in order to obtain a composite structure in which ceramic particles are uniformly dispersed in the resulting casting, it is necessary to sufficiently stir and mix the raw material powder mixture so that the ceramic powder is evenly dispersed in the molded body.

成形体の製作は、例えばプレス成形、静水圧成形、ラバ
ープレス、その他適宜の加圧成形法によることができる
。むろん、その成形体は、ハンドリングに際し、容易に
破損してはならず、例えばESR法などにおける消耗電
極、あるいはPAM法における溶解枠として十分な強度
(堅牢性)をもつものであることを要する。そのために
必要ならば、予め原料粉末混合物に、成形助剤として、
溶解上支障のない添加剤(例えば、メチルセルロース)
などを配合するのも一法であり、あるいは加圧成形後、
もしくは加圧成形と同時に軽度の焼成を施すことも効果
的である。
The molded body can be manufactured by, for example, press molding, isostatic molding, rubber press, or other appropriate pressure molding methods. Of course, the molded body must not be easily damaged during handling, and must have sufficient strength (robustness) to serve as a consumable electrode in the ESR method, for example, or as a melting frame in the PAM method. If necessary for that purpose, add it to the raw material powder mixture in advance as a forming aid.
Additives that do not interfere with solubility (e.g. methylcellulose)
One method is to mix the following, or after pressure molding,
Alternatively, it is also effective to perform mild firing at the same time as pressure molding.

第1図は、上記のように製作された成形体を消耗電極と
したESR法による複合鋳物の製造例を示す。(1)は
冷却水飴排日(2,2)を有する水冷ムービング鋳型で
あり、消耗電極である成形体(A)は電極クランプ(3
)に取付けられ、その下端部は鋳型(1)内の溶融スラ
グ浴(S)に浸漬されている。(4)は電源である。周
知のように、ESR法は溶融スラグ浴(S)の電気抵抗
熱により消耗電極を下端部から順次溶解し、スラグ中を
滴下沈降した溶解物のプール(B)を水冷鋳型(1)内
で連続的に凝固させるものである。その鋳型内の溶融物
の凝固は、底部から上方に向って進行する干積層凝固」
を呈し、凝固の進行に従って、@、威される鋳塊(C)
は連続的に鋳型の下方に引出される。
FIG. 1 shows an example of manufacturing a composite casting by the ESR method using the molded body manufactured as described above as a consumable electrode. (1) is a water-cooled moving mold with a cooling water droplet (2, 2), and a molded body (A) which is a consumable electrode is an electrode clamp (3).
), and its lower end is immersed in a molten slag bath (S) in the mold (1). (4) is a power source. As is well known, in the ESR method, consumable electrodes are sequentially melted from the bottom end by electrical resistance heat in a molten slag bath (S), and a pool of melted material (B) that has dripped and settled in the slag is placed in a water-cooled mold (1). It solidifies continuously. The solidification of the molten material in the mold progresses from the bottom upwards.
As the solidification progresses, the ingot (C)
is continuously drawn down the mold.

この装置において、消耗?E極(A)の溶解により、第
7図に示すように、金属溶湯(M)と、溶湯に均一に分
散したセラミック粒子(PG)とが混在する混合物とし
て溶融プール(B)が鋳型(1)内に与えられ、その混
在状態のま\底部から上方へ向って順次積層凝固が進行
し、複合組織を有する凝固層(C)が形成されていく。
Does this device wear out? By melting the E electrode (A), as shown in FIG. ), and in this mixed state, layered solidification progresses sequentially from the bottom upwards, forming a solidified layer (C) having a composite structure.

第2図はVAR法による例を示す。(5)は排気系(6
)を有する炉体、(7)は水冷ジャケット(8)に囲ま
れた鋳型、(9)は電源である。溶解原料である成形体
(A)は消耗電極として電極支持体(1o)に取付けら
れ、その下部が鋳型(7)内にのぞむように配設されて
いる。この溶解装置において成形体消耗電極(A)はそ
の下端部に発生ずるアークの高熱により下端部から順次
溶解し、鋳型(7)内に金属溶湯とセラミック粒子との
混合溶融物(B)を与える。鋳型内の溶融物は前記第7
図のように積層凝固し、金属(M)とセラミック粒子(
PC)とからなる複合組織を有する凝固層(C)が形成
される。
FIG. 2 shows an example using the VAR method. (5) is the exhaust system (6
), (7) is a mold surrounded by a water cooling jacket (8), and (9) is a power source. The molded body (A), which is a melted raw material, is attached as a consumable electrode to an electrode support (1o), and its lower part is placed in the mold (7). In this melting device, the compact consumable electrode (A) is sequentially melted from the lower end by the high heat of the arc generated at the lower end, giving a mixed melt (B) of molten metal and ceramic particles in the mold (7). . The molten material in the mold is
As shown in the figure, the metal (M) and ceramic particles (
A coagulated layer (C) having a composite structure consisting of PC) is formed.

第3図はPAM法による例であり、炉体(11)はプラ
ズマトーチ(1’2)、ソレノイドコイル(13)等を
有するとともに、下部には水冷鋳型(14)が設置され
、粉末成形体(A)は被溶解枠として支持体(15)に
取付けられて、その先端部が鋳型(14)の上部に位置
し、かつプラズマゾーン(pz)内にのぞむように配設
されている。
Figure 3 shows an example of the PAM method, in which the furnace body (11) has a plasma torch (1'2), a solenoid coil (13), etc., and a water-cooled mold (14) is installed at the bottom, and the powder compact is (A) is attached to a support (15) as a frame to be melted, and its tip is located above the mold (14) and is arranged so as to look into the plasma zone (pz).

(16)は電源である。成形体(A)はプラズマの高熱
により端部から溶解し、生成した溶融物(B)は前記と
同じように鋳型(14)内で積層凝固し、形成された凝
固層(C)は連続的に鋳型の下方に引出される。
(16) is a power source. The molded body (A) is melted from the end by the high heat of the plasma, and the generated melt (B) is layered and solidified in the mold (14) in the same manner as described above, and the formed solidified layer (C) is continuous. It is pulled out below the mold.

本発明方法によれば、上記のように、成形体の溶解によ
り、高温の金属溶湯にセラミック粒子の分散混在する溶
融物が鋳型内に与えられる。その溶融物におけるセラミ
ック粒子の占める割合は、成形体におけるセラミック粒
子の配合割合と実質的に相等しい。また、溶融物中の粒
子の分散状態もきわめて均一であり、しかも積層凝固に
よりその分散状態が保持されたま5凝固層が形成される
According to the method of the present invention, as described above, by melting the compact, a molten material in which ceramic particles are dispersed and mixed in a high-temperature molten metal is provided in the mold. The proportion of ceramic particles in the melt is substantially equal to the proportion of ceramic particles in the molded body. Further, the dispersion state of the particles in the melt is extremely uniform, and five solidified layers are formed in which the dispersion state is maintained due to the layered solidification.

従って、成形体における金属粉末とセラミックわ〕末の
配合割合を調節しておけば、高低任意の粒子充填率を有
する均一な複合鋳物を製造することができる。その成形
体におけるセラミック粒子配合割合に本質的な制限はな
いから、鋳造沈澱法で得られる約80%前後の高い粒子
充填率はもとより、鋳造沈澱法では不可能な低粒子充填
率(例えは、60%以下)の均一な複合組織をもつ鋳物
の製造も極めて容易である。
Therefore, by adjusting the blending ratio of metal powder and ceramic powder in the molded body, it is possible to produce a uniform composite casting having a particle filling rate of any height or height. Since there is no essential limit to the blending ratio of ceramic particles in the molded body, not only can the casting precipitation method achieve a high particle filling rate of around 80%, but also a low particle filling rate that is impossible with the casting precipitation method (for example, It is also extremely easy to manufacture castings with a uniform composite structure of less than 60%.

また、前記溶解・鋳造法によれば、それぞれの精錬効果
、例えばESR法におけるスラグによる脱硫・脱酸、介
在物の吸着除去等、VAR法などにおける真空下の脱ガ
ス効果等の清浄化、あるいは鋳型内における比較的冷却
速度の速い凝固プロセスによる組織の微細化等の品質向
上効果が得られる。もつとも、前記ESR法、VAR法
、P・AM法は例示であって、これらの方法の基本原理
に準じ、あるいはその他要するに、原料溶解材である粉
末成形体を端部から順次溶解するときもに、その溶融物
を鋳型内で積層凝固させ得る種々の溶解鋳造法を適宜採
用することができる。
In addition, according to the melting and casting method, the respective refining effects, such as desulfurization and deoxidation using slag in the ESR method, adsorption removal of inclusions, etc., cleaning effects such as the degassing effect under vacuum in the VAR method, etc. Quality improvement effects such as microstructural refinement can be obtained through the solidification process with a relatively fast cooling rate within the mold. However, the above-mentioned ESR method, VAR method, and P・AM method are just examples, and the basic principles of these methods may be followed, or in other words, when a powder compact, which is a raw material melting material, is sequentially melted from the end. Various melting and casting methods capable of layering and solidifying the molten material in a mold can be appropriately employed.

前記の例において、鋳型として急冷構造を有するものを
使用したのは、金属溶湯とセラミック粒子の混合物とし
て与えられた鋳型内の溶融物における粒子の均一な分散
状態をそのま\保持して凝固させることを狙ったもので
あるが、金属溶湯とセラミック粒子の比重差が小さい場
合や、鋳物形状が比較的薄肉で、凝固速度が速い場合等
のように、溶湯中における粒子の比重分離と、それによ
る粒子の分布密度のムラが生じることなく積層凝固が達
成される条件下では、水冷等による急速冷却手段を省略
することもできる。
In the above example, a mold with a quenching structure was used to solidify the molten metal and ceramic particles while maintaining a uniformly dispersed state of the particles in the molten mixture in the mold. However, when the difference in specific gravity between the molten metal and ceramic particles is small, or when the casting shape is relatively thin and the solidification rate is fast, the separation of specific gravity of particles in the molten metal and its Under conditions in which layered solidification is achieved without causing unevenness in particle distribution density, rapid cooling means such as water cooling can be omitted.

本発明により得られる鋳物の形状は、単に中実柱状体の
みならず、その他種々の形状、例えば中空筒状体(鋳造
管)なども可能である。中空筒状体を目的とするときは
、例えば第4図に示すように、鋳型(17)の開口部に
そって複数本の成形体(A)を消耗電極または被溶解枠
として配設し、各成形体を溶解しながら、鋳型内にその
溶融物を供給すればよい。この場合、鋳型内への溶融物
の供給を均等ならしめるために必要ならば、鋳型(17
)を回転駆動機構(18)にて適当な回転速度で回転さ
せるようにするとよい。また、鋳型形状に応じて、第5
図に示すような中空筒形状に成形された粉末成形体を適
用することも有効である。
The shape of the casting obtained by the present invention is not only a solid columnar body, but also various other shapes, such as a hollow cylindrical body (cast pipe). When the purpose is a hollow cylindrical body, for example, as shown in FIG. 4, a plurality of molded bodies (A) are arranged as consumable electrodes or frames to be melted along the opening of the mold (17), The melt may be supplied into the mold while melting each molded body. In this case, the mold (17
) is preferably rotated at an appropriate rotational speed by the rotational drive mechanism (18). Also, depending on the mold shape, the fifth
It is also effective to apply a powder compact formed into a hollow cylindrical shape as shown in the figure.

更に、本発明によれば、目的とする鋳物の用途使用条件
に応じて、耐摩耗性の必要な部分のみ複合組織を有し、
残部は金属相を有する鋳物を製造することも可能である
。例えば、成形体として第6図に示すように、金属粉末
(P M、 )にセラミック粉末(Pc)の混在する部
分(a)と金属粉末(PM)のみの部分(b)を有する
ように製作された成形体を使用してその端部から順次溶
解していけば、金属相部分と、金属中にセラミック粒子
の混在する複合組織部分とが交互する鋳物が得られるの
で、高価なセラミック粉末を節減し、安価に所望の材料
特性を満たすことができる。
Furthermore, according to the present invention, depending on the usage conditions of the intended casting, only the parts that require wear resistance have a composite structure,
It is also possible to produce castings with the remainder having a metallic phase. For example, as shown in Fig. 6, the molded body is manufactured so that it has a part (a) in which ceramic powder (Pc) is mixed with metal powder (PM) and a part (b) in which only metal powder (PM) is mixed. If you use the molded body and melt it sequentially starting from the end, you can obtain a casting in which the metal phase part and the composite structure part where ceramic particles are mixed in the metal are alternated, so you can use expensive ceramic powder. Desired material properties can be met with savings and low cost.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例 金属粉末として、粒径44〜75μmに粉砕したニハー
ド鋳鉄粉末(C3,32%、Sjo、75%、Mn0.
68%、Ni4.41%、Cr1.52%、MOo、4
1%)および少量のフェロアロイ(Fe−5i。
As the example metal powder, nihard cast iron powder (C3, 32%, Sjo, 75%, Mn0.
68%, Ni4.41%, Cr1.52%, MOo, 4
1%) and a small amount of ferroalloy (Fe-5i.

Fe−Mn)粉末にセラミック粉末として粒径44〜7
5μmのタングステン粉末(w 2 C)を配合し、こ
れに成形助剤としてメチルセルロースヲ適量添加して均
一に混和したのち、プレス成形法により中実円柱状成形
体(直径]、00+nmX長さ200mm)を製作した
Particle size 44-7 as ceramic powder in Fe-Mn) powder
After blending 5 μm tungsten powder (w 2 C) and adding an appropriate amount of methylcellulose as a molding aid and mixing uniformly, a solid cylindrical molded body (diameter: 00+nm x length: 200mm) was formed using a press molding method. was produced.

上記成形体を消耗電極として真空アーク溶解法により、
約1時間を要して成形体を端部から順次溶解するととも
に、その溶融物を鋳型(水冷銅るつぼ)内で積層凝固さ
せることにより、中実円柱状複合鋳物(直径160mm
X長さ70mm)を製造した。
Using the vacuum arc melting method using the above molded body as a consumable electrode,
It takes about 1 hour to melt the molded product sequentially starting from the end, and the melt is layered and solidified in a mold (water-cooled copper crucible) to create a solid cylindrical composite casting (diameter 160 mm).
x length 70 mm) was manufactured.

[A]成形体の原料粉末配合割合: 金属粉末:セラミック粉末−1:5.6(重量比)[B
]溶解電流:8.5KA。
[A] Raw material powder blending ratio of molded body: Metal powder: Ceramic powder - 1:5.6 (weight ratio) [B
]Dissolution current: 8.5KA.

〔C]炉内真空度:10  ”Torro[D]鋳型内
溶融物の凝固速度: 1.2 mm1分(関さ方向)。
[C] Degree of vacuum in the furnace: 10” Torro [D] Solidification rate of the molten material in the mold: 1.2 mm 1 minute (in the direction of the wall).

得られた複合鋳物における金属:タングステン炭化物粒
子の容積比は0.6.9(粒子充填率69%)と、成形
体における配合割合にほとんど等しい。
The volume ratio of metal to tungsten carbide particles in the obtained composite casting was 0.6.9 (particle filling rate 69%), which was almost equal to the blending ratio in the molded body.

そのタングステン炭化物粒子の鋳物中の分布は、径方伺
および長さ方向とも極めて均一である。また、炭化物粒
子と金属基地との結合も強固であり、ミクロ的な鋳造欠
陥も皆無である。なお、金属基地の化学成分組成は、C
8,80%、Si0.76%、Mn0.69%、Cr1
.51%、Ni4.38%、MO040%であった。
The distribution of the tungsten carbide particles in the casting is extremely uniform both in the radial and longitudinal directions. Furthermore, the bond between the carbide particles and the metal matrix is strong, and there are no microscopic casting defects. The chemical composition of the metal base is C
8.80%, Si0.76%, Mn0.69%, Cr1
.. 51%, Ni 4.38%, MO 040%.

以」二のように、本発明によれば、 (1)成形体における金属粉末とセラミック粉末の配合
割合の調節により、鋳造沈澱法では不可能な高低任意の
粒子充填率を有する複合鋳物を得ることができる。
As described in 2 below, according to the present invention, (1) By adjusting the blending ratio of metal powder and ceramic powder in the molded body, a composite casting having a particle filling ratio of arbitrary height or low, which is impossible with the casting precipitation method, can be obtained. be able to.

(11)鋳型内に与えられる金属溶湯中のセラミック粒
子の分散混在状態は均一であり、その混在状態のま5積
層凝固さぜればよいから、形成される複合ffJl &
におけるセラミック粒子の分布も極めて均一性に富む。
(11) The dispersed and mixed state of ceramic particles in the molten metal provided in the mold is uniform, and since the mixed state can be solidified in layers, the composite ffJl &
The distribution of ceramic particles is also extremely uniform.

(+i)鋳造沈澱法におけるような、セラミック粒子の
沈降集積とそのための沈降速度は本質的に問題とならな
いから、セラミック粒子選択上の制限、例えばセラミッ
ク粒子の比重や粒径等の条件が大幅に緩和される。例え
ば、鋳造沈澱法では使用できない50μm以下の微細粒
子を使用して何らさしつかえない。
(+i) Unlike in the casting precipitation method, sedimentation and accumulation of ceramic particles and the resulting sedimentation speed are essentially not a problem, so restrictions on ceramic particle selection, such as conditions such as specific gravity and particle size of ceramic particles, are greatly reduced. eased. For example, fine particles of 50 μm or less, which cannot be used in the casting precipitation method, may be used.

(1■)成形体の溶解により、金属とセラミック粒子と
の混合物が高温状態で鋳型に与えられるので、比較的小
物、薄肉物、あるいは複雑形状の場合でも、均一な調合
組織をもつ鋳物を形成することができる。
(1) By melting the compact, a mixture of metal and ceramic particles is applied to the mold at a high temperature, so even if the object is relatively small, thin, or has a complex shape, a casting with a uniform composition structure can be formed. can do.

本発明により得られる鋳物は耐摩耗材として好適であり
、また母材金属の選択により耐熱、耐食等各種用途に供
せられる。
The casting obtained by the present invention is suitable as a wear-resistant material, and depending on the selection of the base metal, it can be used for various purposes such as heat resistance and corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はそれぞれ本発明の溶解・鋳造要領の具
体例を示す断面説明図、第4図N1J[は他の具体例を
示す要部断面説明図、同図[11]は平面説明図、第5
図および第6図はそれぞれ粉末成形体の例を示す斜視図
、第7図は鋳型内における金属とセラミック粒子の分布
状態を模式的に示す断面説明図である。 A:粉末成形体、B:溶融物プール、C:凝固層、PM
:金属粉末、PC:セラミック粉末、1ツ7.14:鋳
型、5.11:炉体。 代理人 弁理士 宮崎新八部
Figures 1 to 3 are cross-sectional explanatory diagrams showing specific examples of the melting/casting procedure of the present invention, Figure 4 N1J is a cross-sectional explanatory diagram of main parts showing another specific example, and Figure [11] is a plan view. Explanatory diagram, 5th
6 and 6 are respectively perspective views showing examples of powder compacts, and FIG. 7 is an explanatory cross-sectional view schematically showing the distribution of metal and ceramic particles in the mold. A: Powder compact, B: Melt pool, C: Solidified layer, PM
: Metal powder, PC: Ceramic powder, 1 piece 7.14: Mold, 5.11: Furnace body. Agent Patent Attorney Miyazaki Shinhachibe

Claims (4)

【特許請求の範囲】[Claims] (1)金属粉末とセラミック粉末が配合された混合物の
成形体を、その端部から順次溶解して鋳型内に、金属溶
湯とセラミック粒子が均一に混在する溶融物を与え、該
溶融物を底部から上方に向って積層凝固させることを特
徴とする複合鋳物の製造法。
(1) A molded body of a mixture of metal powder and ceramic powder is sequentially melted from its ends to provide a molten material in which molten metal and ceramic particles are evenly mixed in a mold, and the molten material is poured into the bottom of the mold. A method for manufacturing composite castings characterized by layering and solidifying from above.
(2)成形体を消耗電極とするエレクトロスラグ溶解法
もしくは真空アーク溶解法、または成形体を被溶解枠と
する真空プラズマ溶解法により溶解することを特徴とす
る上記第(1)項に記載の複合鋳物の製造法。
(2) The method according to item (1) above, characterized in that the melting is carried out by an electroslag melting method or a vacuum arc melting method using the compact as a consumable electrode, or a vacuum plasma melting method using the compact as a frame to be melted. Manufacturing method for composite castings.
(3)成形体におけるセラミック粉末の配合割合が80
容積%以下であることを特徴とする上記第(1)項また
は第(2)項に記載の複合鋳物の製造法。
(3) The blending ratio of ceramic powder in the compact is 80
The method for producing a composite casting according to item (1) or item (2) above, characterized in that the amount is less than or equal to % by volume.
(4)セラミック粉末の粒径が50μm以下であること
を特徴とする上記第(1)項ないしは第(3)項のいず
れか1つに記載の複合鋳物の製造法。
(4) The method for producing a composite casting according to any one of items (1) to (3) above, wherein the particle size of the ceramic powder is 50 μm or less.
JP19099182A 1982-10-30 1982-10-30 Production of composite casting Pending JPS5982154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19099182A JPS5982154A (en) 1982-10-30 1982-10-30 Production of composite casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19099182A JPS5982154A (en) 1982-10-30 1982-10-30 Production of composite casting

Publications (1)

Publication Number Publication Date
JPS5982154A true JPS5982154A (en) 1984-05-12

Family

ID=16267041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19099182A Pending JPS5982154A (en) 1982-10-30 1982-10-30 Production of composite casting

Country Status (1)

Country Link
JP (1) JPS5982154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102233422A (en) * 2011-05-11 2011-11-09 昆明理工大学 Composite guide plate and preparation process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102233422A (en) * 2011-05-11 2011-11-09 昆明理工大学 Composite guide plate and preparation process thereof

Similar Documents

Publication Publication Date Title
WO2021018203A1 (en) Copper-iron alloy slab non-vacuum down-drawing continuous casting production process
Yueling et al. Single track and single layer formation in selective laser melting of niobium solid solution alloy
US8668760B2 (en) Method for the production of a β-γ-TiAl base alloy
JPH0149781B2 (en)
JPH0469501B2 (en)
US3650311A (en) Method for homogeneous refining and continuously casting metals and alloys
Bomberger et al. The melting of titanium
TW201700198A (en) Ultrasonic grain refining
CN101020230A (en) Steel bond hard alloy multistream continuous casting process and apparatus
JP4243192B2 (en) Method for producing an alloy ingot
JPH06142870A (en) Method of die casting high mechanical performance part by injecting semi-fluid metal alloy
US10421161B2 (en) High quality, void and inclusion free alloy wire
JPS5982154A (en) Production of composite casting
JPS6114065A (en) Manufacture of metallic block, casting or section into whichhard metallic particle is buried and device thereof
JP2015535918A (en) System and method for melting raw materials
JPH0639635B2 (en) Electroslag remelting method for copper and copper alloys
JP3261554B2 (en) Continuous casting powder of Cu and Sn steel containing
JPS6333167A (en) Dropping type casting method
JPS60177945A (en) Centrifugal casting method of wear resistance casting
JP2599729B2 (en) Ingot making method for alloy articles
JPS60124458A (en) Production of wear resistant composite casting
JPS6141732A (en) Manufacture of alloy containing metallic particle dispersed as second phase
JPS6124105B2 (en)
JPS6127165A (en) Production of wear-resistant composite casting
JP3140025B2 (en) Method for producing particle-dispersed aluminum alloy using high energy density heat source