JPS598142A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS598142A
JPS598142A JP11555182A JP11555182A JPS598142A JP S598142 A JPS598142 A JP S598142A JP 11555182 A JP11555182 A JP 11555182A JP 11555182 A JP11555182 A JP 11555182A JP S598142 A JPS598142 A JP S598142A
Authority
JP
Japan
Prior art keywords
support
evaporation
magnetic recording
source
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11555182A
Other languages
Japanese (ja)
Inventor
Makoto Nagao
信 長尾
Akira Nahara
明 名原
Goro Akashi
明石 五郎
Hideaki Takeuchi
英明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP11555182A priority Critical patent/JPS598142A/en
Publication of JPS598142A publication Critical patent/JPS598142A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve the orientation of a vertical magnetized film, by converging thermoelectrons in the direction vertical to the surface of a supporting material after colliding thermoelectrons in a place, where the density of a Co-Cr steam current is high, to ionize them. CONSTITUTION:While holding the inside of a casing 1 in a high degree of vacuum through a vacuum exhaust system 2, an evaporating source 4 is heated to generate the steam of Co and Cr metallic particles. Said steam current collides concentratively against thermoelectrons discharged by heating of a thermoelectron discharging source 11 provided near the evaporating source 4, and said metallic particles are ionized efficiently. These ionized metallic particles has the distribution converged by an ion beam converging means 7, and a desired vertical incidence angle is given to them, and they are vapor-deposited to the surface of a supporting material 10 efficiently after passing through a netlike space. Thus, the Co-Cr vertical magnetized film is formed at a low temperature in a proper vapor deposition speed with a high orientability.

Description

【発明の詳細な説明】 本発明は、真空雰囲気内で非磁性支持体上に磁性膜等の
薄膜を蒸着して成る、所謂、非塗布型の磁気記録媒体製
造方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for manufacturing a so-called non-coating type magnetic recording medium, in which a thin film such as a magnetic film is deposited on a non-magnetic support in a vacuum atmosphere.

従来の磁気記録媒体の多くは、一般に塗布型と称されて
いるものに属し、通常、非磁性支持体上に、7− Fe
20B、  Co  をドープした1 −Fe2O3゜
Fe3O4,Co  をドープしたFe3O4、7−F
e2O3とFe304のベルトライド化合物、Coをド
ープしたベルトライド化合物、0r02等の酸化物磁性
粉末あるいはFθ、 Ni、  Co等を主成分とする
合金磁性粉末等から成る磁性体粉末;を塩化ビニル酢酸
ビニル共重合体、スチレンブタジェン共重合体、エポキ
シ樹脂、ポリウレタン樹脂等の有機バインダー中に分散
して成る塗液を塗着、乾燥して磁性膜を形成する製造方
法及び装置によって製造していた。
Most conventional magnetic recording media belong to what is generally called a coating type, and are usually coated with 7-Fe on a non-magnetic support.
20B, Co-doped 1-Fe2O3°Fe3O4, Co-doped Fe3O4, 7-F
Magnetic powder consisting of bertolide compounds of e2O3 and Fe304, Co-doped bertolide compounds, oxide magnetic powders such as 0r02, or alloy magnetic powders whose main components are Fθ, Ni, Co, etc.; It has been manufactured using a manufacturing method and apparatus in which a coating liquid made by dispersing in an organic binder such as a copolymer, styrene-butadiene copolymer, epoxy resin, or polyurethane resin is applied and dried to form a magnetic film.

近年、記録すべき情報量の増加に伴い、高密度記録に適
する磁気記録媒体の実用化が一層強く望1れるに至り、
前述したバインダーを使用せずに、真空蒸着、スパッタ
リング、イオンブレーティング、等の方法によシ強磁性
金属肋膜を前記支持体上に形成した、所謂、非塗布型磁
気記録媒体が着目され、その開発、研究の推進に伴って
、実用化のための諸捉案がなされつつある。
In recent years, as the amount of information to be recorded has increased, there has been a strong desire to put magnetic recording media suitable for high-density recording into practical use.
Attention has been paid to so-called non-coated magnetic recording media in which a ferromagnetic metal film is formed on the support by methods such as vacuum evaporation, sputtering, and ion blating without using the binder described above. As development and research progresses, various proposals are being made for practical application.

最近、更に記録密度を高める方式として垂直磁化方式が
注目されつつあシ、この種記録媒体の1つとしてCo−
Or蒸着膜又はスパッタ膜が開発されつつあり、種々の
報告がなされている。
Recently, the perpendicular magnetization method has been attracting attention as a method for further increasing the recording density, and one of these types of recording media is Co-
Or vapor-deposited films or sputtered films are being developed, and various reports have been made.

このようなCo−0r系垂直磁化膜の作成法として、前
記の如き、真空蒸着法、スパッタリング法、イオンブレ
ーティング法等が用いられるが、真空蒸着法では製膜速
度は早いが、膜の配向性が悪く、10°以1イモ る欠点がある。スパッタリング法によるときは膜の配向
性及び抗磁力(Hc )は良いが、製膜速度が低いとい
う欠点がある。これらの欠点を除く方式としてイオンブ
レーティングが考えられる。しかし々がら、従来の方式
では金属蒸気のイオン化率が悪く、良好な膜形成効率が
得られなかった。
As a method for producing such a Co-0r perpendicularly magnetized film, the vacuum evaporation method, sputtering method, ion blating method, etc. as described above are used. Although the film formation speed is fast in the vacuum evaporation method, the orientation of the film is It has the disadvantage that it has poor elasticity, and that it curls more than 10 degrees. When using the sputtering method, the orientation and coercive force (Hc) of the film are good, but the film formation rate is low. Ion brating can be considered as a method to eliminate these drawbacks. However, in the conventional method, the ionization rate of metal vapor was poor, and good film formation efficiency could not be obtained.

この点を改良したイオンブレーティング方式として、例
えば特開昭50−119779号、同53−57494
号、同54−141111号公報等に種々の方式が提案
されている。これらの方式によるときはイオン化の促進
は改良されるが、支持体に対する付着力、抗磁力等の磁
気特性の良化を図るには限度があυ、又Co −Or系
垂直磁化膜の形成に際しては、支持体を300℃程度の
高温に維持しておかなければならない等の欠点があった
As an ion brating method that improves this point, for example, Japanese Patent Application Laid-open Nos. 50-119779 and 53-57494
Various methods have been proposed in Japanese Patent No. 54-141111 and the like. When using these methods, promotion of ionization is improved, but there are limits to improving magnetic properties such as adhesion to the support and coercive force, and there are also limitations when forming a Co-Or perpendicularly magnetized film. However, there were drawbacks such as the need to maintain the support at a high temperature of about 300°C.

本発明者らはCo −Or垂直磁化膜を得る方式を種々
検討の結果、本発明等が先に提案した高真空イオングレ
ーティング方式(M願昭55−185669号)によっ
てCo−0rの垂直磁化膜を形成したところ、驚くべき
ことに、上記の如き欠点がなく、膜の配向性が改良され
たOO−Or系垂直磁化膜を得ることができ、本発明を
達成した。
The present inventors investigated various methods for obtaining a Co-Or perpendicular magnetization film, and found that a Co-Or perpendicular magnetization film was obtained using the high-vacuum ion grating method (M application No. 185669/1983) proposed earlier by the present invention. Surprisingly, it was possible to obtain an OO-Or perpendicularly magnetized film with improved film orientation without the above-mentioned drawbacks, thus achieving the present invention.

すなわち、本発明は真空雰囲気内でCo−0r系の蒸発
源を加熱、蒸発して得られた蒸気流に対し、前記か発性
近傍の蒸気流密度が比較的高いところで、別佃に設けた
熱電子放出源から放出した熱電子をrfiii突さゼて
前記蒸気流のイオン化を促進せしめた後、該イオン化さ
れた蒸気流の蒸発分布を被蒸着体である非磁性支持体に
対し垂直方向に収束、せしめることにより、前記支持体
上に、OOOr系の垂直磁化膜を形成することを動機と
する磁気記録媒体である。
That is, in the present invention, a vapor flow obtained by heating and evaporating a Co-0r based evaporation source in a vacuum atmosphere is provided at a separate location where the vapor flow density near the oxidation source is relatively high. After thermionic electrons emitted from the thermionic emission source are impinged on the rfiii to promote ionization of the vapor flow, the evaporation distribution of the ionized vapor flow is directed perpendicularly to the non-magnetic support that is the object to be evaporated. This is a magnetic recording medium whose motive is to form an OOOr-based perpendicular magnetization film on the support by convergence.

本発明においては、蒸着時に被蒸着体である支持体の近
くに磁極を訛り、支持体に垂直方向に磁場を印加するこ
とによシ更に配向性を向上させることができ、又蒸着系
にRFコイルを導入し、例えば13.56 MI!z程
度の周波数のRF波を印加することによシイオン化率の
時間変動を±15%又は以下におさえることができる。
In the present invention, the orientation can be further improved by placing a magnetic pole near the support which is the object to be deposited during vapor deposition and applying a magnetic field perpendicularly to the support. Introduce a coil, for example 13.56 MI! By applying an RF wave with a frequency of approximately z, the time fluctuation in the ionization rate can be suppressed to ±15% or less.

以下、添付図面を参照しつつ本発明の実施煎様について
詳述する。
Hereinafter, the implementation mode of the present invention will be described in detail with reference to the accompanying drawings.

冴1,1図は本発明を実施するためのイオンブレーティ
ング装置の1例を示す説明図であって、IVi真空排気
系2に連通してその内部真空度が、一般に10’−’ 
Torr以上、好ましく)、110−4〜1 o−aT
orr程度の範囲のレベルに保たれるケーシング、3は
例えばW、 Ta、  O,Ou、 Mo、 Al−2
0B、 BN等から成る開放型ハース、4は該ハース内
に収納されたCo−0r系蒸発源である。蒸発源として
はCo −Or金合金用いノ・−スt1つ用いてもよい
が、COとOr の蒸発速度の差があることを考慮する
と、図示するようにハース3を2つ設け、夫々にCO源
と(3r 源を別々に収納することが好ましい。
Figures 1 and 1 are explanatory diagrams showing one example of an ion blating apparatus for carrying out the present invention, which is connected to an IVi vacuum evacuation system 2 and whose internal vacuum degree is generally 10'-'
Torr or more, preferably), 110-4 to 1 o-aT
The casing, 3, is maintained at a level in the range of orr, for example, W, Ta, O, Ou, Mo, Al-2
There is an open hearth made of 0B, BN, etc., and 4 is a Co-Or type evaporation source housed within the hearth. As the evaporation source, one hearth 3 made of Co-Or gold alloy may be used, but considering the difference in evaporation rate between CO and Or, two hearths 3 are provided as shown in the figure, and each Preferably, the CO source and (3r source) are housed separately.

これらを蒸着膜として0o(75〜80%)−Or(1
5〜20チ)合金膜が得られるように選ぶことが好まし
い。
0o(75-80%)-Or(1
It is preferable to select so that an alloy film of 5 to 20 cm) can be obtained.

なお、蒸発源には必要に応じて、Rh、 W、 M。Note that the evaporation source may include Rh, W, and M as necessary.

等の如き第3成分を少量加えてもよい。A small amount of a third component such as the like may also be added.

5は前記ハース3の近傍に配設した電子ビーム加熱方式
の蒸発源加熱手段である。
Reference numeral 5 denotes an evaporation source heating means of an electron beam heating type arranged near the hearth 3.

なお、前述したハース3は、前記蒸発源4が比較的広範
に蒸発可能な上方開口部を有した、所謂、開放型のもの
に限ることなく、比較的小さな開口部によってその蒸発
個所が限定されている密閉型ハースであっても良い。
Note that the hearth 3 described above is not limited to the so-called open type in which the evaporation source 4 has an upper opening that allows evaporation over a relatively wide area; It may be a closed hearth.

又、前記蒸発源加熱手段5も、電子ビーム加熱方式にの
みに限定されず、他の既知の方式例えば抵抗加熱、高周
波誘導加熱、等を採用することが可能である。
Further, the evaporation source heating means 5 is not limited to only the electron beam heating method, and other known methods such as resistance heating, high frequency induction heating, etc. can be adopted.

但し、前述した何れの加熱方式から成る加熱手段5にお
いても、前記蒸気流中に含まれているイオン生成量は極
めて少ない(例えば、全蒸気流の10チ以下、)ので、
本発明は前記蒸発源4の上方にイオン化促進手段6を配
設しである。
However, in the heating means 5 made of any of the heating methods described above, the amount of ions produced in the steam flow is extremely small (for example, 10 or less of the total steam flow).
In the present invention, an ionization promoting means 6 is provided above the evaporation source 4.

前記イオン促進手段6は、熱電子放出源11とイオン化
電極12から成り、前記熱電子放出源11けW、 Ta
、 Mo  あるいはそれらを含む合金等の高融点材料
をらせん状に巻回して成るあるいけ直線棒状のフィラメ
ントに、直流又は交流電圧を印加して熱電子を放出せし
めるものである。
The ion promoting means 6 consists of a thermionic emission source 11 and an ionization electrode 12, and the thermionic emission source 11 includes W, Ta.
A DC or AC voltage is applied to a straight rod-shaped filament made by spirally winding a high melting point material such as Mo, Mo, or an alloy containing them, to emit thermionic electrons.

更に、前記熱電子放出源11は、前記蒸発源加熱手段5
が電子ビーム加熱方式である場合、その電子ビーム(破
線で示したもの)の通過を妨けない範囲で極力前記蒸発
源4の蒸発面上に近づけて設ドシかつ前記蒸気流の蒸発
分布境界又は若干分布域内に臨むように1個設ける。
Furthermore, the thermionic emission source 11 is connected to the evaporation source heating means 5.
If the heating method is an electron beam heating method, the evaporation source 4 should be placed as close to the evaporation surface of the evaporation source 4 as possible within a range that does not obstruct the passage of the electron beam (indicated by the broken line), and the evaporation distribution boundary of the vapor flow. Or install one so that it faces slightly within the distribution area.

前記電子ビーム加熱方式以外の場合、前記フィラメント
は前記蒸発源4に対し更に近接せしめても良い。
In cases other than the electron beam heating method, the filament may be placed closer to the evaporation source 4.

又、前記イオン化電極12は、Ag、Cu、W、Ta、
Mo、 ステンレス、等の導電性を有する棒状、平板状
あるいはリング状電極を前記放出源11の上方に近接し
かつ前記蒸気流の蒸発分布を著しく妨げない位置に配設
され、更に直流又は交流電圧が印加される。
Further, the ionization electrode 12 is made of Ag, Cu, W, Ta,
A rod-shaped, flat-shaped, or ring-shaped electrode having conductivity such as Mo, stainless steel, etc. is disposed above and close to the emission source 11 at a position that does not significantly impede the evaporation distribution of the vapor flow, and is further provided with a direct current or alternating current voltage. is applied.

7は、前記イオン化促進手段6よりも上方に回転自在に
軸支された円筒状クーリングキャン9における下方面と
、前記イオン化促進手段6との間に配設されたイオンビ
ーム収束手段である。
Reference numeral 7 denotes an ion beam focusing means disposed between the ionization promoting means 6 and the lower surface of the cylindrical cooling can 9 rotatably supported above the ionization promoting means 6.

前記イオンビーム収束手段7は、直流もしくは交流が通
電される収束補助用コイル13と収束電析14から成っ
ている。
The ion beam focusing means 7 comprises a focusing assisting coil 13 and a focused electrodeposition 14 to which direct current or alternating current is supplied.

前記収束補助用コイル13は、前記イオン化電極12の
上方で、前記蒸気流を所定の蒸着城以上に拡がらないよ
うに、かつ前記蒸気流の中心を所定の蒸着域中心に偏向
もしくは指向せしめるように、夫々補助的な作用をする
ものである。
The convergence assisting coil 13 is arranged above the ionization electrode 12 to prevent the vapor flow from spreading beyond a predetermined evaporation area and to deflect or direct the center of the vapor flow toward the center of a predetermined evaporation area. They each have an auxiliary effect.

又、前記収束電極14は、前記収束補助用コイル13よ
りも上方でかつ前記クーリングキャン9によシ彎曲状に
支持、案内される非磁性支持体10の下方面における所
定蒸着面近傍に配設された高融点拐例えばW、Ta、λ
4o、  ステンレス等から成る網目状の電極で、負の
電位が付与されている。
The focusing electrode 14 is disposed above the focusing assisting coil 13 and near a predetermined vapor deposition surface on the lower surface of the non-magnetic support 10 supported and guided in a curved manner by the cooling can 9. For example, W, Ta, λ
4o, A mesh electrode made of stainless steel or the like, to which a negative potential is applied.

なお、前記収束電極14の有効作用域は、前記支持体1
0の下方面における所定蒸着域よシも逸脱して展在しな
いように位置されている。
Note that the effective action area of the focusing electrode 14 is the same as that of the support 1.
It is positioned so as not to deviate from the predetermined deposition area on the lower surface of the 0.

8は、前記クーリングキャン9の下方において、前記□
支持体10の下方面に前記蒸気流が垂直以外の角度で蒸
着しないように配設したマスクである。
8 is below the cooling can 9, and the □
A mask is provided on the lower surface of the support 10 to prevent the vapor flow from depositing at angles other than vertical.

本発明で用いらiする非磁性支持体としては、ポリエチ
レンテレフタレート(pmT)、ポリイミド、ポリアミ
ド、ポリ塩化ビニル、三酢酸セルロース、ポリカーボネ
ート、ポリエチレンナフタレートのようなプラスチック
ベースが好ましいが、At。
The nonmagnetic support used in the present invention is preferably a plastic base such as polyethylene terephthalate (pmT), polyimide, polyamide, polyvinyl chloride, cellulose triacetate, polycarbonate, or polyethylene naphthalate, but At.

Cu、  ETIB等の非磁性金属や、ガラス、セラミ
ックス等の無機質の基体も使用することができる。
Non-magnetic metals such as Cu and ETIB, and inorganic substrates such as glass and ceramics can also be used.

以上、言1述したようにその要部が構成される本発明装
置において、先ず、前記真空排気系22介して前記ケー
シング1内を10−’ 〜10−6Torrの範囲内の
所望する真空度に保ちながら、前記蒸発源加熱手段5に
通電して前記ハース3内の蒸発源4を連続的に加熱する
と、前記蒸発源4けその蒸発面からCo及びOr  の
金属粒子の蒸気流となって次第に蒸発し7て行く。なお
、その蒸発の際、前記金属粒子の極く一部はイオン化し
て他の金属粒子と\もに発散、上昇する。
In the apparatus of the present invention, the main parts of which are constructed as described above, first, the inside of the casing 1 is brought to a desired degree of vacuum within the range of 10-' to 10-6 Torr via the evacuation system 22. When the evaporation source 4 in the hearth 3 is continuously heated by supplying electricity to the evaporation source heating means 5 while maintaining the evaporation source 4, a vapor flow of Co and Or metal particles is gradually formed from the evaporation surface of the evaporation source 4. It evaporates and goes to 7. Incidentally, during the evaporation, a very small portion of the metal particles are ionized and emit and rise together with other metal particles.

次に、前記蒸気流は、その蒸発分布が比較的拡大化され
ていない前記蒸発源4の近傍で、前記熱電子放出源11
の加熱にょシ放出されかつ前記イオン化電極12により
その運動行程が適正にコントロールされた熱電子と集中
的に衝突し、前記金属粒子れ効率良くイオン化(正)さ
れる。なお、前記熱電子放出源11とイオン化電極12
の上下位置関係を前述したものと逆に、即ち前記イオン
比重、斗ゲ12を前記熱電子放出諒11の下方に配設し
ても、イオン化率の低下を招くことはなく、前述した加
熱方式やレイアウト上の条件に応じて最も有利な上下位
置関係とすれば良い。
Next, the vapor flow is directed to the thermionic emission source 11 in the vicinity of the evaporation source 4, where the evaporation distribution is not relatively expanded.
When the metal particles are heated, they collide intensively with thermionic electrons whose motion path is appropriately controlled by the ionizing electrode 12, and the metal particles are efficiently ionized (positive). Note that the thermionic emission source 11 and the ionization electrode 12
Even if the vertical positional relationship is reversed to that described above, that is, the ion specific gravity and the dowel 12 are placed below the thermionic emission point 11, the ionization rate will not be lowered, and the heating method described above will not be caused. The most advantageous vertical positional relationship may be determined depending on layout conditions.

前記イオン化電極12に印加する電圧に過不足があると
、イオン化率は低下するので、通常、30〜500Vの
範囲に設定することが好ましい。
If there is an excess or deficiency in the voltage applied to the ionization electrode 12, the ionization rate will decrease, so it is usually preferable to set the voltage in the range of 30 to 500V.

前記イオン化促進手薩6によって効率良くイオン化され
た前記全蒸気流をそのま\前記支持体10に垂直に蒸着
させても、前述した蒸発分布が必要以上に拡がりかつ蒸
着入射角度が不揃いになり、蒸着効率や磁気特性の良化
が望めないので、本発明は次のステップとしてイオン化
された蒸気流即ちイオンと一部を前記イオンと一部・収
束手段7によって処理するものである。
Even if the entire vapor flow that has been efficiently ionized by the ionization accelerator 6 is deposited perpendicularly to the support 10, the evaporation distribution described above will spread more than necessary and the deposition incident angle will become uneven. Since no improvement in vapor deposition efficiency or magnetic properties can be expected, the next step of the present invention is to process the ionized vapor flow, that is, the ions and some of them using the ion and some of the ions and convergence means 7.

前記イオンビームは、先ず、100〜2KVの範囲で正
の直流電圧が印加された前記収束補助用コイル13の開
口域を通過すると、それまでの蒸発分布が著しく収束さ
れると\もに、前記コイル13の開口域中心に従って前
記イオンビームの中なお、前記支持体100所定蒸着域
と前記蒸発源4との間隙あるいは変位量が比較的小さい
場合、前記収束補助用コイル13を除去しても良く、逆
に前記間隙あるいは変位量が可成り大きい場合、前記収
束補助用コイル13を複数個積み重ねるように連設しか
つ印加電圧を漸減あるいは負電圧を一部印加して、前記
イオンビームの減速あるいは収束を図ることも可能であ
る。
When the ion beam first passes through the aperture area of the convergence assisting coil 13 to which a positive DC voltage in the range of 100 to 2 KV is applied, the evaporation distribution up to that point is significantly converged, and the In the ion beam according to the center of the aperture area of the coil 13, if the gap or displacement between the predetermined evaporation area of the support 100 and the evaporation source 4 is relatively small, the focusing assisting coil 13 may be removed. On the other hand, if the gap or the amount of displacement is quite large, the ion beam is decelerated or It is also possible to achieve convergence.

次に、前記収束補助用コイル16を通過した前記イオン
ビームは、前記支持体10の所定訳着域に近接しかつ該
蒸着域から逸脱しないように配設した前記収束電極14
により最終的にその蒸発分布が収束されると\もに、所
望する垂直の入射角度が力見られて網状の空隙を通過し
た後、効率良く前記支持体10の表面に蒸着する。、な
お、前記収束補助用コイル13に代わ幻、リング状、棒
状の収束補助用N1極を適用することも可能である。
Next, the ion beam that has passed through the focusing auxiliary coil 16 is directed to the focusing electrode 14, which is disposed close to a predetermined deposition area of the support 10 and does not deviate from the deposition area.
When the evaporation distribution finally converges, the desired perpendicular incident angle is determined, and after passing through the net-like voids, the vapor is efficiently deposited on the surface of the support 10. Incidentally, instead of the convergence assisting coil 13, it is also possible to apply a phantom, ring-shaped, or rod-shaped convergence assisting N1 pole.

又、前記収束電極14の印加電圧に過不足があると、前
記イオンビームの速度に過不足が生じ、その結果、収束
効果が著しく低下したり、蒸着膜をスパッタリングする
ようになるので、通常、−100v〜−3000Vの範
、曲内に設定することが望ましい。
Furthermore, if there is too much or too little voltage applied to the focusing electrode 14, there will be too much or too little speed of the ion beam, and as a result, the focusing effect will be significantly reduced or the deposited film will be sputtered. It is desirable to set it within the range of -100V to -3000V within the song.

第2図は本発明に用いられるイオンブレーティング装置
の他の実施態様を示すもので、第1図に示す装置におい
て支持体1oに近接して磁極21を設け、蒸着時にイオ
ンビームに対して支持体に垂直方向の磁場を与えるよう
にすることによって蒸着膜の配向性を更に向上させるこ
とができる。
FIG. 2 shows another embodiment of the ion blating apparatus used in the present invention. In the apparatus shown in FIG. 1, a magnetic pole 21 is provided close to the support 1o to support the ion beam during deposition. By applying a magnetic field perpendicular to the body, the orientation of the deposited film can be further improved.

第3図は本発明に用いられるイオンブレーティング装置
の更に他の実施態様を示すもので、第1図に示す装置に
おいて、RFコイル22を設け、これにイタツえは13
.56MHz、  500wattの高周波を印加する
ことによシ、イオン化率の時間変動を少くすることがで
きる。
FIG. 3 shows still another embodiment of the ion blating device used in the present invention, in which the RF coil 22 is provided in the device shown in FIG.
.. By applying a high frequency of 56 MHz and 500 watts, time fluctuations in the ionization rate can be reduced.

以上、のべたように、本発明によるときは、支持体の温
度の一般のイオンブレーティングと同様な低い温IgL
でCo−C!r糸垂直磁化膜を、適度な蒸着速度と良好
な配向性をもって形成させることができる。
As mentioned above, according to the present invention, IgL at a low temperature of the support similar to general ion blating is used.
And Co-C! An r-thread perpendicularly magnetized film can be formed with an appropriate deposition rate and good orientation.

実施例1゜ 即、1図に示されるタイプのイオンブレーティング装置
を用い、金属Co及び金属Cr を夫々蒸発源とし、2
5μ厚のPET  ベースを支持体とし真空度5 X 
10’−’ Torr 、  蒸着速度1ooooX/
seaで支持体に垂直方向に蒸着を行い、膜厚5000
Aの(3o−Or (ss : 15)の垂直磁化膜を
有する磁気記録材料を得た。蒸着効率は60チ、配向性
は6°であった。
Example 1: Using an ion blating device of the type shown in Figure 1, metal Co and metal Cr were used as evaporation sources, respectively, and 2
A 5μ thick PET base is used as a support and the vacuum level is 5X.
10'-' Torr, deposition rate 1ooooX/
Vapor deposition was carried out perpendicularly to the support using sea, and the film thickness was 5000.
A magnetic recording material having a (3o-Or (ss: 15)) perpendicular magnetization film of A was obtained.The deposition efficiency was 60 degrees and the orientation was 6 degrees.

実施例2゜ 第2図に示すイオンブレーティング装置を用い、金属C
Oと金属Orを蒸発源とし、25μ厚のポリアミド(カ
プトン、商2品名)ベースを支持体とし、磁場を印加し
つつ、真空度5 X 10 ’ TOrr 。
Example 2゜Using the ion blating device shown in Fig. 2, metal C was
O and metal Or were used as evaporation sources, a 25 μ thick polyamide (Kapton, 2 product name) base was used as a support, and a magnetic field was applied at a vacuum level of 5 x 10' TOrr.

蒸着速度5000A/seeで蒸着を行い、厚さ400
0AのCo−(3r(75: 15)の垂直磁化膜を有
する磁気記録媒体を得た。配向性は4°であった。
Vapor deposition was performed at a deposition rate of 5000 A/see, and the thickness was 400 A/see.
A magnetic recording medium having a perpendicular magnetization film of 0A Co-(3r (75:15)) was obtained.The orientation was 4°.

実施例6 2p 3図に示すイオンブレーティング装置を用い、0
O−Or金合金蒸発源としくこの場合はOrの方が早く
蒸発するので、Or  源を供給しつつ行った)、At
シートを支持体とし1、アルゴンガス圧1×1 [1’
 Torr 、蒸着速度300 nA/eec、 RF
コイルに13.56MHz、500wattの高周波電
力を印加しつつ蒸着を行い、厚さ3000 AのCo−
0r(75: 15)先乗1物磁化ハψを有する磁気記
録砂体を得た。At シートを流れた電流の変動は±1
5%と少なかった。
Example 6 2p Using the ion brating device shown in Figure 3, 0
O-Or gold alloy evaporation source (In this case, Or evaporates faster, so we carried out the process while supplying Or source), At
Using the sheet as a support 1, argon gas pressure 1×1 [1'
Torr, deposition rate 300 nA/eec, RF
Vapor deposition was performed while applying high frequency power of 13.56 MHz and 500 watts to the coil, and a Co-
A magnetic recording sand body having a first product magnetization value ψ of 0r (75: 15) was obtained. At The fluctuation of the current flowing through the sheet is ±1
It was as low as 5%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明を実施するイオンブレーティン
グ装置の各実施態様を示す説明図である。 4・・・蒸発源、5・・・蒸発諒加熱手段、6・・・イ
オン化促進手段、7・・・イオンビーム収束手段、Q 
assマスク、9@・9クーリングキヤン、10@@I
I支持体、21−−−磁極、2’2@*++RF:ff
イル@1図 第  2  図 第  3  図 手続補正書 昭m 571 1 月−1−乙11 昭和57年持許願第115551  号2、発明の名称 磁気記録媒体の製造方法 3、補正をする者 事1′1との関係”l”J’tt’l出願人名称(52
0)  富士写真フィルム株式会社霞が関ビル内郵便局
 私iQ’、’l’f)第49)」8、補正の内容 1)別紙の通り 2)「発明の訂+q1+な説明」の(1々)を下記の如
(袖1[」ろ。 ・・ 明細’i’1’2r’y 5 f榎1(1行「1
、「研極」を1磁石」と袖IF−4イ)。 ・・ 同 即、6L“]、6行目、 団N」の後に19
Mg(月を加入する。 ・)同 第6頁10〜11行目、1−Co(75〜80
%)−Cr(15〜20%)J !i: rco(75
〜90 at% ) −Cr(10−25at% )と
補正する。 Q 同 第8百2行目、「1個」を削1余する。 () 同 第14.@下から6行目、「(75:15)
−1を1−(80:20)」と補正する。 ・)同 第15頁9行目、「(75:15)」を[(a
o:2o)j と補止する。 6)図面の第1図の符号を添付の未配の如く加入する。 以上 1)真空雰囲気内で、Co−Cr系の蒸発源を加熱、蒸
発して得られた蒸気3fjに対し、前記φ発源近イカの
蒸気iノlc ’M度が比較的高いところで、別個に設
けた熱電子放出源から放出した熱1.jJ、子を両次さ
)そ−〔前記蒸気流のイオン化を匪進辻しめた後、該イ
オン化された蒸気流の蒸発分布を被に6治体である非磁
性支持体に対し垂直方向に収束せしめることにより、前
記支持体上にCo−Cr糸のKC伯磁化膜?形成するこ
とを特6りとする磁気記録媒体の製造方法。 2)支持体に近接して磁石を設け、イオン化された蒸気
流に対し、支持体と垂直力向に磁場を印加しつつ蒸漸を
行う特許請求の範囲第(1)項に記載の磁気記録媒体の
製造方法。 3)支持体と蒸発源との間にRFコイルを設け、高周阪
′f+5.圧を印加しつつ蒸着を行5 ’[4+¥1請
求の範囲第(1)項又は第(2)、0−jに記載の砒気
記録を口1の製造方法。
FIGS. 1 to 5 are explanatory diagrams showing each embodiment of an ion blating apparatus that implements the present invention. 4... Evaporation source, 5... Evaporation heating means, 6... Ionization promoting means, 7... Ion beam focusing means, Q
ass mask, 9@・9 Cooling Can, 10@@I
I support, 21---magnetic pole, 2'2@*++RF:ff
Ile @ Figure 1 Figure 2 Figure 3 Drawing Procedure Amendment Showa M 571 January - 1 - Otsu 11 1982 Permanent Application No. 115551 2, Title of invention Method for manufacturing magnetic recording media 3, Person making the amendment 1 '1 Relationship with "l"J'tt'l Applicant name (52
0) Fuji Photo Film Co., Ltd. Kasumigaseki Building Post Office iQ','l'f) No. 49) 8. Contents of amendment 1) As per the attached sheet 2) (1) of ``Revision of invention + q1 + explanation'' as shown below (sode 1 [''ro. ... Details 'i'1' 2 r'y 5 f Enoki 1 (1 line '1
, ``Kengyoku'' is 1 magnet'' and sleeve IF-4).・・・ Same immediately, 6L"], 6th line, 19 after "Dan N"
Mg (adds the moon. ・) Same page 6, lines 10-11, 1-Co (75-80
%)-Cr(15-20%)J! i: rco(75
~90 at%) -Cr(10-25 at%). Q In line 802 of the same, delete "1 piece" by 1. () Same 14th. @6th line from the bottom, “(75:15)
-1 is corrected to 1-(80:20).・) Same page 15, line 9, "(75:15)" is changed to [(a
o:2o)j. 6) Add the reference numerals in Figure 1 of the drawings as if they were attached. Above 1) For the vapor 3fj obtained by heating and evaporating a Co-Cr based evaporation source in a vacuum atmosphere, separate Heat emitted from the thermionic emission source provided in 1. After the ionization of the vapor flow is progressed, the evaporation distribution of the ionized vapor flow is covered in a direction perpendicular to the non-magnetic support, which is a 6-magnetic body. By convergence, a KC magnetized film of Co--Cr yarn is formed on the support. A method of manufacturing a magnetic recording medium, which particularly comprises forming a magnetic recording medium. 2) Magnetic recording according to claim (1), in which a magnet is provided close to the support and evaporation is performed while applying a magnetic field to the ionized vapor flow in a force direction perpendicular to the support. Method of manufacturing media. 3) An RF coil is provided between the support and the evaporation source, and the RF coil is placed between the support and the evaporation source. A method for manufacturing an arsenic gas recorder according to claim 1 or claim 2, 0-j, in which vapor deposition is performed while applying pressure.

Claims (1)

【特許請求の範囲】 1)真空雰囲気内で、Co−0r系の蒸発源を加熱、蒸
発して得られた蒸気流に対し、前記蒸発源近傍の蒸気流
密度が比較的高いところで、別個に設けた熱電子放出源
から放出した熱電子を衝突させて前記蒸気流のイオン化
を促進せしめた後、該イオン化された蒸気流の蒸発分布
を被蒸着体である非磁性支持体に対し垂直方向に収束せ
しめることによシ、前記支持体上に(!o −Or系の
垂直磁化膜を形成することを特徴とする磁気記録媒体の
製造方法。 2)支持体に近接して磁気を設け、イオン化された蒸気
流に対し、支持体と垂直方向に磁場を印加しつつ蒸着を
行う特許請求の範囲第(11項に記載の磁気記録媒体の
製造方法。 5)支持体と蒸発源との間にRFコイルを投砂、高周波
電圧を印加しつつ蒸着を行う特許請求の範囲第(1)項
に記載の磁気記録材料の製造方法。
[Scope of Claims] 1) For a vapor flow obtained by heating and evaporating a Co-0r-based evaporation source in a vacuum atmosphere, separate After promoting the ionization of the vapor flow by colliding thermionic electrons emitted from the provided thermionic emission source, the evaporation distribution of the ionized vapor flow is adjusted in a direction perpendicular to the non-magnetic support that is the deposition target. A method for manufacturing a magnetic recording medium, characterized in that a perpendicularly magnetized film of (!o-Or system) is formed on the support by convergence. 2) Magnetism is provided in the vicinity of the support and ionization A method for manufacturing a magnetic recording medium according to claim 11, in which vapor deposition is performed while applying a magnetic field perpendicular to the support. 5) Between the support and the evaporation source. The method for producing a magnetic recording material according to claim 1, wherein the evaporation is carried out while depositing sand through an RF coil and applying a high-frequency voltage.
JP11555182A 1982-07-05 1982-07-05 Production of magnetic recording medium Pending JPS598142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11555182A JPS598142A (en) 1982-07-05 1982-07-05 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11555182A JPS598142A (en) 1982-07-05 1982-07-05 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS598142A true JPS598142A (en) 1984-01-17

Family

ID=14665337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11555182A Pending JPS598142A (en) 1982-07-05 1982-07-05 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS598142A (en)

Similar Documents

Publication Publication Date Title
JPS58130443A (en) Production of magnetic recording medium
JPH0435810B2 (en)
CA1164283A (en) Magnetic recording medium and process for production thereof
JPH061551B2 (en) Method of manufacturing magnetic recording medium
EP0035894B1 (en) Process for producing a magnetic recording medium
JPH0152472B2 (en)
JPS598142A (en) Production of magnetic recording medium
JPH0770058B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPH0916960A (en) Manufacturing device for information recording medium
JPH0318253B2 (en)
JPS5948450B2 (en) Method for manufacturing magnetic recording media
JPH0120490B2 (en)
JP2686139B2 (en) Magnetic recording medium and method of manufacturing the same
JPS63184927A (en) Production of magnetic recording medium
JPS5925975A (en) Production of thin alloy film
JPH0442731B2 (en)
JPS58161138A (en) Manufacture of magnetic recording medium
JPH0341896B2 (en)
JPS61120348A (en) Apparatus for producing magnetic recording medium
JPH08194944A (en) Method and system for producing magnetic recording medium
JPS60217531A (en) Production of magnetic recording medium
JPH0927125A (en) Production of magnetic recording medium
JPH08316083A (en) Production of magnetic recording medium
JPH06306602A (en) Production of thin film
JPH0963055A (en) Production of magnetic recording medium