JPS5981138A - Manufacture of polyether ester film - Google Patents

Manufacture of polyether ester film

Info

Publication number
JPS5981138A
JPS5981138A JP57184744A JP18474482A JPS5981138A JP S5981138 A JPS5981138 A JP S5981138A JP 57184744 A JP57184744 A JP 57184744A JP 18474482 A JP18474482 A JP 18474482A JP S5981138 A JPS5981138 A JP S5981138A
Authority
JP
Japan
Prior art keywords
film
density
stretching
stretched
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57184744A
Other languages
Japanese (ja)
Other versions
JPH0156658B2 (en
Inventor
Koichi Abe
晃一 阿部
Kenichi Kawakami
河上 憲市
Toshiya Yoshii
吉井 俊哉
Shunei Inoue
井上 俊英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP57184744A priority Critical patent/JPS5981138A/en
Priority to EP19830108292 priority patent/EP0102581B1/en
Priority to DE8383108292T priority patent/DE3378727D1/en
Priority to US06/526,773 priority patent/US4539260A/en
Publication of JPS5981138A publication Critical patent/JPS5981138A/en
Publication of JPH0156658B2 publication Critical patent/JPH0156658B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/682Polyesters containing atoms other than carbon, hydrogen and oxygen containing halogens
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain a film with a high strength and a better running property for magnetic tapes or the like by heat treatment of a film comprising polyethylene alpha,beta-bis(2-chlorophenoxy)ethane 4,4'-dicarboxylate or the like on a specified condition after biaxial stretching thereof. CONSTITUTION:An unstretched film comprising polyether ester containing more than 85mol% of polyethylene alpha,beta-bis(2-chlorophenoxy)ethane 4,4'-dicarboxylate with the density of 1.42-1.46 is uniaxially stretched so as to range 0.06-0.23 in the double refraction within the surface of the film and 1.44-1.46 in the density and then, stretched at the right angle to this direction to make a biaxially stretched film. Then, the film thus obtained undergoes a heat treatment so as to range 1.45-1.49 in the density and 1.51-1.56 in the refractive index thicknesswise to obtain the intended film.

Description

【発明の詳細な説明】 本発明はポリエーテルエステルフィルム、さらに詳しく
ハ、磁気テープのベースフィルムに好適な二軸配向ポリ
エーテルエステルフィルムの製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyetherester film, and more particularly, to a method for producing a biaxially oriented polyetherester film suitable for a base film of a magnetic tape.

従来、ポリエーテルエステルフィルムの製造方法として
は、ポリエチレン1.2−ジフェノキシエタン4,41
−ジカルボキシレートの未延伸フィルムを逐次二軸延伸
する方法として、たとえば特公昭46−11600号公
報や特開昭50−97668号公報などが知られている
Conventionally, as a method for producing polyetherester film, polyethylene 1,2-diphenoxyethane 4,41
- As a method of sequentially biaxially stretching an unstretched film of dicarboxylate, for example, Japanese Patent Publication No. 11600/1982 and Japanese Patent Application Laid-open No. 97668/1989 are known.

しかし、かかる従来の方法は次のような欠点金有してい
た。すなわち、前者の場合は逐次二軸延時性が悪く、ま
た厚みムラが大きくなるという欠点があり、後者の場合
は「空隙音生じせしめるように延伸する」という無理な
延伸全行なうため。
However, such conventional methods have the following drawbacks. That is, in the former case, there are disadvantages in that sequential biaxial stretching properties are poor and thickness unevenness becomes large, while in the latter case, the stretching is carried out in an unreasonable manner, ie, ``stretching is carried out in such a way as to produce a gap sound.''

実用的な見地からは、その延伸性は不満足であるという
欠点があった。さらにこれらの従来の方法は、得られた
フィルムの機械的強度が小さく、磁気テープのベースフ
ィルムに用いた場合、ある一定の厚さより薄くすると磁
気テープとしての走行特性が不良となる欠点があった。
From a practical standpoint, it has the disadvantage that its stretchability is unsatisfactory. Furthermore, these conventional methods have the drawback that the mechanical strength of the obtained film is low, and when used as a base film for a magnetic tape, the running characteristics of the magnetic tape will be poor if the thickness is made thinner than a certain level. .

本発明の目的は、かかる従来の方法の欠点を解消せしめ
1機械的強度が大きく、薄くても磁気テープとしての走
行特性にすぐれたポリエーテルエステルフィルムを、逐
次二軸延伸法を用いて安定して製造する方法を提供せん
とするものである。
The purpose of the present invention is to overcome the drawbacks of the conventional methods and to (1) stabilize a polyetherester film, which has high mechanical strength and excellent running characteristics as a magnetic tape even if it is thin, using a sequential biaxial stretching method. The purpose of this paper is to provide a method for manufacturing the same.

本発明は、上記目的全達成するため2次の構成すなわち
、ポリエチレンα、β−ビス(2−り。
In order to achieve all of the above objects, the present invention has a secondary structure, that is, polyethylene α,β-bis(2-bis).

ルフエノキシ)エタン4.4′−ジカルボキシレート全
85モル係以上含むポリエーテルエステルからなり、か
つ、密度が1.42〜1.46の範囲の未延θ、θ2 沖フィルムを、フィルム面内の複屈折がす中槽〜0、2
5 、密度が1.44〜1.46の範囲となるように一
軸延呻したのち、該方向と直角方向に延伸して二軸延伸
フィルムとし9次いで密度が1.45〜1.49.フィ
ルム厚さ方向の屈折率が151〜1゜56の範囲となる
ように熱処理するポリエーテルエステルフィルムの製造
方法を特徴とするものである。
An unrolled θ, θ2 Oki film made of polyether ester containing 85 or more moles of ethane 4,4'-dicarboxylate and having a density in the range of 1.42 to 1.46 is Birefringence medium tank~0,2
5. After uniaxial stretching so that the density is in the range of 1.44 to 1.46, the film is stretched in a direction perpendicular to the above direction to form a biaxially stretched film. The present invention is characterized by a method for producing a polyetherester film, which is heat-treated so that the refractive index in the thickness direction of the film is in the range of 151 to 1°56.

本発明に用いるポリエーテルエステルはポリエチレンα
、β−ビス(2−クロルフェノキシ)エタン4.4′−
ジカルボキシレート単位が85モルチ以上含まれている
ことが必要である。該単[相]585モル係未満では、
逐次二軸延伸性が悪化し、また得られたフィルムの磁気
テープとしての走行特注が不良となるので好捷しくない
。また9本発明に用いるポリエーテルエステルは、固有
粘度が0.3〜1.4.特に0.4〜1.3の範囲のも
のが好ましい。
The polyether ester used in the present invention is polyethylene α
, β-bis(2-chlorophenoxy)ethane 4.4'-
It is necessary that the dicarboxylate unit is contained in an amount of 85 mol or more. If the single [phase] is less than 585 molar ratio,
This is undesirable because the biaxial stretchability deteriorates sequentially and the resulting film becomes unsuitable for running as a magnetic tape. Further, the polyether ester used in the present invention has an intrinsic viscosity of 0.3 to 1.4. Particularly preferred is a range of 0.4 to 1.3.

粘度が上記の範囲より小さい場合には延伸性が悪化しや
すく、逆に粘度がこの範囲より大きい場合には、得られ
たフィルムの機械的強度が低下し。
If the viscosity is lower than the above range, the stretchability tends to deteriorate, while if the viscosity is higher than this range, the mechanical strength of the obtained film will decrease.

磁気テープとしての走行特性が不良となりやすいので好
ましくない。
This is not preferred because it tends to cause poor running characteristics as a magnetic tape.

なお、かかるポリエーテルエステルの重合方法としては
1例えばα、β−ビス(2−クロルフェノキシ)エタン
−4,4′−ジカルボン酸全主体とするジカルボン酸の
ジメチルエステルとエチレングリコールと全エステル交
換反応せしめた後に重縮合せしめるエステル交換法と、
α、β−ビス(2−クロルフェノキシ)エタン−4,4
/−ジカルボン酸全主体とするジカルボン酸とエチレン
グリコールと全エステル化反換せしめた後に重縮合せし
める直接重合法などがある。最も好筐しい方法は。
The polymerization method for such a polyether ester includes 1, for example, a total transesterification reaction between a dimethyl ester of a dicarboxylic acid mainly consisting of α,β-bis(2-chlorophenoxy)ethane-4,4'-dicarboxylic acid and ethylene glycol. A transesterification method in which polycondensation is carried out after
α,β-bis(2-chlorophenoxy)ethane-4,4
There is a direct polymerization method in which a dicarboxylic acid mainly consisting of /-dicarboxylic acid and ethylene glycol is completely esterified and then polycondensed. What is the most convenient way?

カルシウム化合物他のエステル交換反応触媒と三酸化ア
ンチモンとでα、β−ビス(2−クロルフェノキシ)エ
タン−4,4′−ジカルボン酸全主体とするジカルボン
酸のジメチルエステルと仝チレングリコールと全エステ
ル交換反応せしめた後に。
Dimethyl ester of dicarboxylic acid mainly composed of α,β-bis(2-chlorophenoxy)ethane-4,4'-dicarboxylic acid, ethylene glycol and all esters with calcium compound and other transesterification catalyst and antimony trioxide After the exchange reaction.

耐熱剤としてリン化合物音訓え、その後重縮合せしめる
エステル交換法であり、この方法によってジエチレング
リコールが少なく耐熱性が良好でフィルムの製膜性、延
伸性の良好なエチレンα、β−ビス(2−クロルフェノ
キシ)エタン−4,4/−ジカルボキシレート単位を主
構成単位とするポリエーテルエステルを得ることができ
る。
This is a transesterification method in which a phosphorus compound is used as a heat-resistant agent and then polycondensed.This method produces ethylene α,β-bis(2-chloro), which contains less diethylene glycol and has good heat resistance and good film formability and stretchability. A polyether ester having phenoxy)ethane-4,4/-dicarboxylate units as the main constituent unit can be obtained.

上記のポリエーテルエステルのペレットから未延伸フィ
ルムを作るが、この未延伸フィルムの密度は、1.42
〜1.46 、好ましくは1.42〜1.45の範囲で
なければならない。未延伸フィルムの密度が上記の範囲
より大きいと後の二軸延伸、とくに二軸目の延伸性が悪
くなり、しばしばフィルム破れがおこったり、厚みムラ
が大きくなったりするので好ましくない。
An unstretched film is made from the above polyetherester pellets, and the density of this unstretched film is 1.42.
~1.46, preferably 1.42-1.45. If the density of the unstretched film is higher than the above range, the subsequent biaxial stretching, especially the second axis, will be poor, and the film will often break or the thickness will become uneven, which is not preferable.

次に、この未延伸フィルムから一軸延時フイル〜0.2
0 、密度が1.44〜1.46好ましくは1.445
〜1.455の範囲内でなければならない。
Next, from this unstretched film, when uniaxially stretched, the film was ~0.2
0, density 1.44-1.46 preferably 1.445
Must be within the range of ~1.455.

−軸延伸フィルムの複屈折が上記の範囲より小さい場合
には、後の二軸目の延伸が均一に行なえなくなり、フィ
ルムの厚みムラが大きくなり、また熱処理時にフィルム
の白化や′しわ″が発生するので好ましくない。逆に複
屈折が上記の範囲より大きい場合には、後の二軸目の延
伸時にしばしばフィルム破れがおこったり、厚みムラが
大きくなったりするので好ましくない。また−軸延伸フ
イルムの密度が上記の範囲より小さい場合には、後の二
軸目の延伸が均一に行なえなくなり、厚みムラが大きく
なるので好ましくない。逆に密度が上記の範囲より大き
い場合には、後の二軸目の延伸時にしばしばフィルム破
れがおこったり、厚みムラが大きくなったりするので好
ましくない。
- If the birefringence of the axially stretched film is smaller than the above range, the subsequent second-axis stretching will not be uniform, the film will become uneven in thickness, and the film will whiten or wrinkle during heat treatment. On the other hand, if the birefringence is larger than the above range, it is not preferable because the film often breaks during the subsequent second-axis stretching or the thickness becomes uneven. If the density is lower than the above range, it is not preferable because the subsequent second-axis stretching will not be uniform and the thickness will become uneven.On the other hand, if the density is higher than the above-mentioned range, the second-axis stretching This is not preferable because the film often breaks during axis stretching and the thickness becomes uneven.

次にこの2軸延時フイルムを先の延伸方向と直角方向へ
延伸し二軸延伸フィルムとする。この二軸延伸はフィル
ム面内の複屈折が0〜o、 i ’o 、好捷しくばO
〜005の範囲内であることが望ましい。複屈折が」二
記の範囲より大きい場合には、ひき続く熱処理時に′し
わ″が発生しやすく、−また得られたフィルムの磁気テ
ープとしての走行特性が不良となりやすいので好ましく
ない。
Next, this biaxially stretched film is stretched in a direction perpendicular to the previous stretching direction to form a biaxially stretched film. In this biaxial stretching, the in-plane birefringence of the film is 0~o, i'o, and if the film is well-defined, it is O.
It is desirable that it be within the range of ~005. If the birefringence is larger than the above range, wrinkles are likely to occur during subsequent heat treatment, and the resulting film tends to have poor running characteristics as a magnetic tape, which is not preferred.

次にこの二軸延伸フイルムゲ熱処理するが、熱処理後の
フィルムは密度が1.45〜1.49 、好ましくは1
46〜1.48.フィルム厚さ方向の屈折率が1.51
〜1.56.好ましくは1.52〜1.55の範囲内で
なければならない。フィルムの密度が上記の範囲より小
さい場合には、得られたフィルムの寸法安定性が悪くな
り、磁気テープ用ベースフィルムとして好捷しくない。
Next, this biaxially stretched film is heat treated, and the film after heat treatment has a density of 1.45 to 1.49, preferably 1.
46-1.48. The refractive index in the film thickness direction is 1.51
~1.56. It should preferably be within the range of 1.52 to 1.55. If the density of the film is lower than the above range, the resulting film will have poor dimensional stability and will not be suitable as a base film for magnetic tape.

逆に密度が上記の範囲より大きい場合には磁気テープと
しての走行特性が不良となるので好ましくない。またフ
ィルム0厚さ方向の屈折率が上記の範囲よシ小さいフィ
ルムは事実上製造することが困難であり、しかも得られ
たフィルムの磁気テープとしての走行特性が不良となる
ので好ましくなく、逆に屈折率が上記の範囲より大きい
場合には、得られたフィルムの厚みムラが大きくなり、
また磁気テープとしての走行特性が不良となるので好ま
しくない。
On the other hand, if the density is greater than the above range, the running characteristics of the magnetic tape will be poor, which is not preferable. In addition, it is difficult to produce a film whose refractive index in the film thickness direction is smaller than the above range, and furthermore, the resulting film has poor running characteristics as a magnetic tape, which is undesirable. If the refractive index is larger than the above range, the thickness unevenness of the obtained film will increase,
Moreover, it is not preferable because the running characteristics as a magnetic tape become poor.

なお1本発明の熱処理されたフィルムのフィルム面内の
複屈折はO〜o、io、好ましくはO〜0゜05の範囲
内であるのが望ましい。複屈折が上記の範囲より大きい
場合には、得られたフィルムは磁気テープとした場合の
走行特性が不良となりやすいので好ましくない。
Note that the in-plane birefringence of the heat-treated film of the present invention is desirably within the range of 0 to 0, io, preferably 0 to 0.05. If the birefringence is larger than the above range, the resulting film tends to have poor running characteristics when used as a magnetic tape, which is not preferred.

次に本発明の密匿、複屈折、厚さ方向の屈折率を得るた
めの具体的製造方法について説明する。
Next, a specific manufacturing method for obtaining the occlusion, birefringence, and refractive index in the thickness direction of the present invention will be explained.

まず固有粘度が0.3〜1,4.好ましくは0.4〜1
.3の範囲にあるポリエチレンα、β−ビス(2−クロ
ルフェノキシ)エタン4.4′−ジカルボキシレートの
ベレットヲ、十分真空乾燥したのち、公知の溶融押出様
に供給し、275〜310°C1好ましくにj285〜
610℃でスリット状のダイからシート状に溶融押出し
0表面温度20〜80°Cにコントロールされたキャス
ティング・ドラムに巻きつけて冷却固化し未延伸フィル
ム全作る。この場合、均一に急冷を行なうために、静電
印加キャスト法が有効である。次に、この未延伸フィル
ムを70〜125°C1好ましくは80〜120℃に予
熱しつつ、延伸温度80〜160℃、好ましくは90〜
125°Cで、延伸速度10〜10多/分にて、長手方
向に25〜3.8倍、好ましくは3〜65倍延伸する。
First, the intrinsic viscosity is 0.3 to 1.4. Preferably 0.4-1
.. A pellet of polyethylene α,β-bis(2-chlorophenoxy)ethane 4,4'-dicarboxylate having a range of 3 is sufficiently vacuum-dried and then fed to a known melt extrusion method, preferably at 275 to 310°C. nij285~
It is melt-extruded into a sheet through a slit-shaped die at 610°C, wound around a casting drum whose surface temperature is controlled at 20-80°C, and cooled and solidified to form an unstretched film. In this case, an electrostatic casting method is effective for uniformly rapidly cooling. Next, while preheating this unstretched film to 70-125°C, preferably 80-120°C, the stretching temperature is 80-160°C, preferably 90-120°C.
It is stretched 25 to 3.8 times, preferably 3 to 65 times, in the longitudinal direction at 125° C. and at a stretching speed of 10 to 10 times per minute.

次いでこの一軸延伸フイルムを105°0〜1gs’a
、好ましくは115〜150°Cの温度で、延伸速度1
0〜10多/分で1幅方向に28〜4.3倍、好捷しく
に30〜670〜67倍延 伸お9本発明の二軸延伸はその延時倍゛率が式(A)を
満足することが好ましい。ただし、Xはフィルムの長手
方向の延伸倍率、yはフィルムの幅方向の延伸倍率であ
る。延伸倍率が式(A)の範囲より小12≦x” 十y
”≦28  ・・・・・・・・・・・・・・・・・・・
−(A)さい場合には、フィルムの厚みムラが大きくな
ったり、熱処理時の°′しわ″の発生がおこりやすくな
ったりするばかりでなく、得られたフィルムの磁気テー
プとしての走行特性も不良となりやすいので好ましくな
い。逆に延伸倍率が式(A)の範囲より大きい場合には
、延伸中のフィルム破れが多くなり延伸性が悪化したり
厚みムラが大きくなりやすいばかりでなく、得られたフ
ィルムの透明性が損6れたり1機械的強度のうちの破断
強度が小さくなったりしやすいので好ましくない。
Next, this uniaxially stretched film was stretched at 105°0 to 1 gs'a
, preferably at a temperature of 115-150°C and a stretching speed of 1
Stretching 28 to 4.3 times in the width direction, preferably 30 to 670 to 67 times, at a rate of 0 to 10 times per minute.9 In the biaxial stretching of the present invention, the stretching time ratio satisfies formula (A). It is preferable to do so. However, X is the stretching ratio in the longitudinal direction of the film, and y is the stretching ratio in the width direction of the film. Stretching ratio is smaller than the range of formula (A) 12≦x” 10y
”≦28 ・・・・・・・・・・・・・・・・・・
- (A) If the film is too small, not only will the thickness of the film become more uneven and wrinkles more likely to occur during heat treatment, but the running properties of the obtained film as a magnetic tape will also be poor. On the other hand, if the stretching ratio is larger than the range of formula (A), not only will the film be more likely to break during stretching, resulting in poor stretchability and increased thickness unevenness, but also This is not preferable because the transparency of the film is likely to be impaired and the breaking strength of one mechanical strength is likely to be reduced.

次にこの二軸延伸フィルムを9幅方向に原長に( 対し0〜10%、好ましくは0〜5係の割合で弛緩させ
つつ、温度200〜260 ’c 、好ましくは220
〜245℃で1時間0.5〜120秒間、・好ましくは
1.0〜60秒間熱処理して1本発明方法は完成する。
Next, this biaxially stretched film is relaxed in the 9 width direction to the original length (0 to 10%, preferably 0 to 5%) at a temperature of 200 to 260'C, preferably 220'C.
The method of the present invention is completed by heat treatment at ~245° C. for 1 hour for 0.5 to 120 seconds, preferably 1.0 to 60 seconds.

以上の説明は、未延伸フィルムを長手方向9幅方向の順
に延伸する場合について述べたが、この順を逆にして幅
方向、長手方向の順に延伸してもよい。
Although the above description has been made regarding the case where the unstretched film is stretched in the order of the longitudinal direction and the width direction, this order may be reversed and stretched in the order of the width direction and the longitudinal direction.

なお1本発明は上記のような方法を特徴とするものであ
るが1本発明によって得られたフィルムに、公知9コロ
ナ放電処理(空気中、窒素中、炭酸ガス中など)を施す
ことにより、磁性Jiなどとの接着性にさらにすぐれた
フィルムとすることができる。また接着性、滑性9表面
平滑性などを付与する目的で他種のポリマを積層したり
、他種組成物全コーティングすることもできる。
Although the present invention is characterized by the method described above, by subjecting the film obtained by the present invention to a known corona discharge treatment (in air, nitrogen, carbon dioxide, etc.), A film with even better adhesion to magnetic Ji and the like can be obtained. Further, for the purpose of imparting adhesion, lubricity, surface smoothness, etc., other types of polymers can be laminated or other types of compositions can be entirely coated.

また1本発明に用いるポリエーテルエステルの構成単位
のうち15モル係未満であれば他の共重合成分を含んで
いてもよい。この場合の共重合成分としては、テレフタ
ル酸、イソフタル酸、ナフタレンジカルボン酸* ’ 
4+ ”−ビフェニルジカルボン酸、α、β−ビス(フ
ェノキシ)エタ:y4.4’−ジカルボン酸などのジカ
ルボン酸類、あるいは。
In addition, if the polyether ester used in the present invention has less than 15 molar units, it may contain other copolymer components. In this case, the copolymerization components include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid*'
Dicarboxylic acids such as 4+''-biphenyldicarboxylic acid, α,β-bis(phenoxy)etha:y4.4'-dicarboxylic acid, or.

プロピレングリコール、1.4−シクロヘキサンジメタ
ツールなどのジオキシ化合物が一般的である。
Dioxy compounds such as propylene glycol and 1,4-cyclohexane dimetatool are common.

また1本発明で用いるポリエーテルエステルに。Another example is the polyether ester used in the present invention.

本発明の目的を阻害しない範囲内で、他種ポリマをブじ
ンドし、でもよいし、また酸化防止剤、熱安定剤9表面
突起形成剤、核生成剤、紫外線吸収剤などの無機または
有機添加剤を通常添加される量程度添加してもよい。
Other types of polymers may be incorporated within the range that does not impede the purpose of the present invention, and inorganic or organic agents such as antioxidants, heat stabilizers, surface protrusion forming agents, nucleating agents, and ultraviolet absorbers may be incorporated. Additives may be added in amounts that are normally added.

本発明の特性値は次の測定法および判定基準番てよるも
のである。
The characteristic values of the present invention are based on the following measurement method and criteria number.

+l)  機械的強度 (a)測定方法 J工5−Z−1702に規定された方法にしたがって、
インストロンタイプの引張試験機を用いて、ヤング率、
F5’(5%坤長時の引張強度)および破断強度を、2
5°C165チRHにて測定した。
+l) Mechanical strength (a) Measuring method According to the method specified in J Engineering 5-Z-1702,
Using an Instron type tensile tester, Young's modulus,
F5' (tensile strength at 5% bending length) and breaking strength are 2
Measured at 5°C, 165°RH.

(b)  評価基準 フィルムの長手方向1幅方向の各物性値(ヤング率、F
5.破断強度)がともに下記物性を全て満足する場合を
機械的強度:懺入、それ以外の場合は機械的強度:小と
判定した。
(b) Each physical property value (Young's modulus, F
5. When both of the following physical properties (breaking strength) were satisfied, the mechanical strength was determined to be pierced, and in other cases, the mechanical strength was determined to be low.

■ヤング率≧550 y / mm’ ■F 5215 kg/ mm’ ■破断強度≧25 kg / nu2 (2)磁気テープとしての走行特性 厚さ6μmのフィルムに磁性層として、 C0−Ni 
 合金を厚さ1,0OOXになるように電子ビーム蒸着
法にて形成せしめ、磁気テープとした。このテープ全市
販家庭用ビデオテープレコーダで走行状態を調べた。エ
ッヂ折れやテープ裂け、襞間などをおこさずスムーズに
走性不良と判定した〇 (3)寸法安定性 試料フィルムを幅10m、長さ250mmに切り出し、
約200mmの間隔で2本の標線金入れ、その間隔を正
確に測定する(これヲAmとする)。この試料の先端に
3.0 gの荷重全かけた状態で150℃の熱風オープ
ン中に50分間放置したのちの標線間の間隔を測定しく
これをBf[I[11とする)、100X(A−B)/
A’zもって熱収縮率とする。フィルムの長手方向9幅
方向の熱収縮率がともに4チ未満の場合を寸法安定性良
好1片方あるいは両方向の熱収縮率が4チ以上の場合を
寸法安定性不良と判定した。
■Young's modulus≧550 y/mm' ■F 5215 kg/mm' ■Breaking strength≧25 kg/nu2 (2) Running characteristics as a magnetic tape C0-Ni is used as a magnetic layer on a 6 μm thick film.
The alloy was formed to a thickness of 1,000× by electron beam evaporation to form a magnetic tape. The running conditions of this tape were examined in all commercially available home video tape recorders. 〇(3) Dimensional stability The sample film was cut out to a width of 10 m and a length of 250 mm.
Place two gauge lines at a distance of about 200 mm, and measure the distance accurately (this is defined as Am). After applying a full load of 3.0 g to the tip of this sample and leaving it for 50 minutes in a hot air oven at 150°C, measure the distance between the marked lines. A-B)/
A'z is the heat shrinkage rate. A film with a heat shrinkage rate of less than 4 inches in both the longitudinal and width directions was judged to have good dimensional stability, and a film with a heat shrinkage rate of 4 inches or more in one or both directions was judged to have poor dimensional stability.

(4)  フィルムの厚みムラ フィルム(エッチ部分はカットしたもの)の幅方向に連
続して厚さを測る(フィルム全幅は1m)。この厚さの
最大値と最小値の差を、平均厚さで除し、これに100
を乗じて、チ表示した値を厚みムラとする。この値が1
0係未満であれば厚みムラ良好、10係以上の場合は厚
みムラ不良と判定した。
(4) Uneven thickness of the film Measure the thickness continuously in the width direction of the film (the etched part was cut) (the total width of the film is 1 m). Divide the difference between the maximum and minimum thickness by the average thickness, and add 100 to this difference.
Multiply by and use the displayed value as the thickness unevenness. This value is 1
If the coefficient was less than 0, the thickness unevenness was determined to be good, and if it was 10 or more, the thickness unevenness was determined to be poor.

(5)  延伸性 二軸延伸製膜操作を10時間連続して行ない、その間に
生じたフィルムの破れが0〜1回の範囲である場合は延
伸性良好、破れが2回以上生じた場合は延伸性不良と判
定した。
(5) Stretchability If the biaxial stretching film forming operation is performed continuously for 10 hours, and the film breaks 0 to 1 times during that time, the stretchability is good, and if the film breaks 2 or more times, the film is broken 2 times or more. It was determined that the stretchability was poor.

(6)複屈折 ナトリウムD線(波長589nm)i光源として、直交
ニコル金偏えた偏光顕微鏡に試料フィルム面が光軸と垂
直になるように置き。
(6) Birefringent sodium D-line (wavelength 589 nm) i Place the sample film surface perpendicular to the optical axis in a polarizing microscope with crossed nicol gold polarization as the light source.

試料の複屈折によって生じた光路差 F、全コンペンセ
ータ(ライン類)の補償値から求め。
The optical path difference F caused by the birefringence of the sample is determined from the compensation values of all compensators (lines).

ro/d(絶対値>をもって複屈折とする。ここで、又
は試料フィルムの厚さである。なお。
ro/d (absolute value>) is defined as birefringence. Here, or the thickness of the sample film.

測定は25°C165%RHにて行なった。Measurements were performed at 25°C and 165% RH.

(7)厚さ方向屈折率 ナトリウムD線(波長589nm)i光源として、アツ
ベ屈折率計を用いて測定した。
(7) Refractive index in the thickness direction Sodium D line (wavelength 589 nm) Measured using an Atsube refractometer as an i light source.

なお、マウント液にはヨウ化メチレンを用い測定は25
°Cで行なった。
In addition, methylene iodide was used as the mounting solution, and the measurement was carried out at 25
Performed at °C.

(8)密度 四塩化炭素とn−へブタンからなる密度勾配背金用いて
、25℃にて測定した。
(8) Density Measured at 25°C using a density gradient backing made of carbon tetrachloride and n-hebutane.

(9)  固有粘度 0−クロルフェノール中、25°Cで測定した相対粘度
の値から求めた。
(9) Intrinsic viscosity It was determined from the value of relative viscosity measured at 25°C in 0-chlorophenol.

本発明は上述したように、特定のポリエーテルエステル
を素材として、特定範囲の製造条件を満足するような製
造方法としたので、得られたフィルムは次のごときすぐ
れた特性を有していた。
As described above, the present invention uses a specific polyetherester as a material and uses a manufacturing method that satisfies a specific range of manufacturing conditions, so the obtained film had the following excellent properties.

(1)  機械的強度が大きく、薄くても磁気テープと
した場合の走行特性にすぐれたフィルムとなる。
(1) The film has high mechanical strength and has excellent running characteristics when used as a magnetic tape even if it is thin.

(2)寸法安定性にすぐれ、磁気テープのベースフィル
ムとして好適なフィルムとなる。
(2) The film has excellent dimensional stability and is suitable as a base film for magnetic tape.

(3)  接着性(たとえば磁性層との接着性)にすぐ
れたフィルムとなる。
(3) The resulting film has excellent adhesive properties (for example, adhesive properties with the magnetic layer).

また、フィルムは次のごとく安定して製造することがで
きた。
Furthermore, the film could be stably produced as follows.

(1)厚みムラが小さいフィルム全製造できる。(1) All films can be manufactured with small thickness unevenness.

(2)  延伸性(逐次二軸延伸性)が極めて良好であ
る0 また1本発明によって製造されたフィルムは。
(2) The film produced according to the present invention has extremely good stretchability (successive biaxial stretchability).

従来、二軸配向ポリエチレンテレフタレートフィルムが
用いられていた全ての用途に適用できるが。
It can be applied to all applications where biaxially oriented polyethylene terephthalate films have traditionally been used.

特に適七た用途は、ビデオ、オーディオ用の磁気テープ
用ベースフィルム、あるいは、磁気ディスク用フィルム
である。特に9本発明によって製造されたフィルムのう
ち、少なくとも1方向のヤング率が600 kg / 
mm”以上のフィルムは、将来の磁気テープの小型化に
伴なう薄膜化に極めて好適なに好適であり、磁気ディス
ク用には、40〜80μmのフィルムがディスクのハン
ドリングの点から特に好適である。
Particularly suitable applications are base films for video and audio magnetic tapes, or films for magnetic disks. In particular, among the nine films produced according to the present invention, the Young's modulus in at least one direction is 600 kg/
Films with a diameter of 40 to 80 μm are particularly suitable for magnetic disks from the viewpoint of disk handling. be.

次に実施例に基づいて本発明の実施態様全説明するO 実施例1 固有粘度0.7のポリエチレンα、β−ビス(2−クロ
ルフェノキシ)エタン4.4′−ジカルボキシレートの
ペレット全、180℃で3時間、真空乾燥させたのち、
平均粒径6μmの1サイロイドを0.05重量%混合し
た。これを押出機に供給し。
Next, the embodiments of the present invention will be fully explained based on examples. After vacuum drying at 180℃ for 3 hours,
0.05% by weight of 1 siloid with an average particle size of 6 μm was mixed. Feed this to the extruder.

300 ’aでシート状に溶融押出し、静電印加キヤ、
  スト法にて1表面温度20℃のキャスティング・ド
ラムに巻きつけて冷却固化し、厚さ約55μm。
Melt extruded into a sheet at 300'a, electrostatically applied,
It was wound around a casting drum with a surface temperature of 20°C using the casting method and cooled and solidified to a thickness of approximately 55 μm.

密度が1.43の、実質的に無配向の未延伸フィルムを
作った。この未延伸フィルム全80℃に予熱しつつ、延
伸温度110℃で長手方向に30倍延延伸た。この延1
11!]、は2組のロールの周速差によって行なわれ、
延伸速度は50,000%/分であった。
A substantially unoriented, unstretched film with a density of 1.43 was prepared. The entire unstretched film was preheated to 80°C and stretched 30 times in the longitudinal direction at a stretching temperature of 110°C. This extension 1
11! ], is performed by the difference in circumferential speed between the two sets of rolls,
The stretching speed was 50,000%/min.

かくして得られた2軸延伸フイルムの複屈折は0.15
.密度は1.452であった。該−軸延時フイルムを、
ステンタを用いて120℃に加熱しつつ9幅方向に33
倍延呻した。この場合の延伸速度は5.O’00チ/分
であった。この二軸延伸フィルムを250℃にて定長下
に60秒間熱処理して。
The birefringence of the biaxially stretched film thus obtained was 0.15.
.. The density was 1.452. - the rolled film;
33 in the width direction while heating to 120℃ using a stenter
I groaned twice. The stretching speed in this case is 5. It was O'00 chi/min. This biaxially stretched film was heat-treated at 250° C. for 60 seconds under constant length.

6μmのフィルムを得た。このフィルムの密度ハi、 
465 、フィルム厚さ方向の屈折率は1.54゜フィ
ルム面内の複屈折は0.04であった。この製膜操作を
10時間連続して行なった時のフィルム破れは1回もお
こらず、また厚みムラは2チであり、安定して製造する
ことができた。また、このフィルムの特性は第1表に示
したとおり9機械的強度が大きく9寸法安定性も良好で
、しかも、6μmという薄さにかかわらず磁気テープと
しての走行特性は極めて良好であった。
A 6 μm film was obtained. The density of this film is high,
465, the refractive index in the film thickness direction was 1.54°, and the in-plane birefringence of the film was 0.04. When this film forming operation was carried out continuously for 10 hours, the film did not break even once, and the thickness unevenness was 2 cm, indicating that stable production was possible. Further, as shown in Table 1, this film had high mechanical strength and good dimensional stability, and even though it was as thin as 6 μm, it had extremely good running characteristics as a magnetic tape.

以上のことから1機械的強度が大きく、薄くても磁気テ
ープとしての走行特性にすぐれたポリエーテルエステル
フィルムe安定して製造できることがわかった。
From the above, it was found that the polyetherester film 1 has high mechanical strength and excellent running characteristics as a magnetic tape even if it is thin, and can be stably produced.

第  1  表 実施例2.比較例1〜9 実施例1のポリマ組成物から、実施例1と同様にして厚
さ約65μm、密度が1.432の未延伸フィルムを作
った。この未延伸フィルムを80°Cに予熱しつつ、延
伸温度1i o ’aにて長手方向に32倍延延時た。
Table 1 Example 2. Comparative Examples 1 to 9 From the polymer composition of Example 1, unstretched films having a thickness of about 65 μm and a density of 1.432 were made in the same manner as in Example 1. This unstretched film was preheated to 80° C. and stretched 32 times in the longitudinal direction at a stretching temperature of 1io'a.

この延伸は2組ロールの周速差によって行なわれ、延伸
速度は50,000%/分であった。かくして得られた
2軸延時フイルムの複屈折は0.16.密度は1.45
5であった。該−軸延伸フィルムを、ステンタを用いて
120 ’cに加熱しつつ9幅方向に64倍延延時た。
This stretching was carried out using a difference in peripheral speed between two sets of rolls, and the stretching speed was 50,000%/min. The birefringence of the thus obtained biaxially stretched film was 0.16. Density is 1.45
It was 5. The -axis stretched film was stretched 64 times in 9 width directions while heating to 120'C using a stenter.

この場合の延伸速度は5,000%/分であった。との
二軸延伸フィルムを260 ’cにて定長下に60秒間
熱処理して6μmのフィルムを得た。このフィルムの密
度は1.465.フィルム厚さ方向の屈折率は1、53
8 、フィルム面内の複屈折は0.03であった。この
製膜操作全10時間連続して行なった時のフィルム破れ
は1回しかおこらず、また厚みムラは1.5 Libで
あり、安定して製造することができた。このフィルムの
特性は第2表に示したとおり。
The stretching speed in this case was 5,000%/min. The biaxially stretched film was heat-treated at 260'c for 60 seconds under constant length to obtain a 6 μm film. The density of this film is 1.465. The refractive index in the film thickness direction is 1.53
8. The in-plane birefringence of the film was 0.03. When this film forming operation was carried out continuously for a total of 10 hours, the film broke only once, and the thickness unevenness was 1.5 Lib, indicating that stable production was possible. The properties of this film are shown in Table 2.

機械的強度が大きく2寸法安定性も良好で、しかも、6
μmという薄さにもかかわらず磁気テープとしての走行
特性は極めて良好であった。しかし。
It has high mechanical strength, good two-dimensional stability, and
Despite being as thin as μm, the running characteristics as a magnetic tape were extremely good. but.

本発明の方法では、同表に示したように、フィルム破れ
が多発したり、厚みムラが大きくなったシして安定した
製造が困難であり、また安定して製造できたとしても9
機械的強度が大きい、磁気テープとしての走行特性が良
好なフィルムは得られなかった。
In the method of the present invention, as shown in the same table, stable production is difficult due to frequent film tearing and large thickness unevenness, and even if stable production is possible, 9.
A film with high mechanical strength and good running characteristics as a magnetic tape could not be obtained.

手  続  補  正  書 昭和 を、12月−98 特許庁長官  若 杉 和 夫 殿 1、事件の表示 昭和57年特許願第184744号 2、発明の名称 ポリニーデルエステルフィルムの製造方法3、補正をJ
る者 事件との関係  特許出願人 自発 5、補正により増加する発明の数 なし 6、補正の対象 明細書の「発明の詳細な説明」の欄 7、補正の内容 (1) 明細書 第12頁4行目 rl 702に」をr’1702またはA S 1− 
M −D−882に」と補正する。
Procedural amendment, Showa, December 1998, Director General of the Patent Office, Kazuo Wakasugi1, Indication of the case, 1984 Patent Application No. 1847442, Name of the invention: Process for manufacturing polyneedle ester film3, Amendment. J
Relationship with the patent applicant's case Voluntary action5, No increase in the number of inventions due to the amendment6, Column 7 of "Detailed description of the invention" of the specification subject to the amendment, Contents of the amendment (1) Specification page 12 4th line rl 702" to r'1702 or A S 1-
M-D-882”.

(2) 同 第20頁18行目 1本発明の方法」を「本発明外の方法」と補正する。(2) Same, page 20, line 18 1. ``Method of the present invention'' shall be amended to ``Method other than the present invention.''

Claims (1)

【特許請求の範囲】 (11ホ!Jエチレンα、β−ビス(2−クロルフェノ
キシ)エタン4.4′−ジカル係上上レート全85モル
係以上含むポリエーテルエステルからなり。 密度が1.44〜1.46の範囲となるように2軸延時
したのち、該方向と直角方向に延伸して二軸延時フィル
ムとし1次いで密度が1,45〜1.49 。 フィルム厚さ方向の屈折率が1.51〜1.56の範囲
となるように熱処理することを特徴とするポリエーテル
エステルフィルムの製造方法。
[Scope of Claims] (11) Consisting of a polyether ester containing 85 or more moles of ethylene α,β-bis(2-chlorophenoxy)ethane 4,4'-dical suspension rate.The density is 1. 44 to 1.46, and then stretched in a direction perpendicular to the above direction to obtain a biaxially stretched film with a first density of 1.45 to 1.49.Refractive index in the film thickness direction A method for producing a polyetherester film, the method comprising heat-treating the polyetherester film so that the polyetherester film is in the range of 1.51 to 1.56.
JP57184744A 1982-08-26 1982-10-22 Manufacture of polyether ester film Granted JPS5981138A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57184744A JPS5981138A (en) 1982-10-22 1982-10-22 Manufacture of polyether ester film
EP19830108292 EP0102581B1 (en) 1982-08-26 1983-08-23 Magnetic recording material
DE8383108292T DE3378727D1 (en) 1982-08-26 1983-08-23 Magnetic recording material
US06/526,773 US4539260A (en) 1982-08-26 1983-08-26 Magnetic recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57184744A JPS5981138A (en) 1982-10-22 1982-10-22 Manufacture of polyether ester film

Publications (2)

Publication Number Publication Date
JPS5981138A true JPS5981138A (en) 1984-05-10
JPH0156658B2 JPH0156658B2 (en) 1989-11-30

Family

ID=16158582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57184744A Granted JPS5981138A (en) 1982-08-26 1982-10-22 Manufacture of polyether ester film

Country Status (1)

Country Link
JP (1) JPS5981138A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491795A (en) * 1972-04-25 1974-01-09
JPS4959176A (en) * 1972-10-09 1974-06-08
JPS508869A (en) * 1973-05-28 1975-01-29

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS491795A (en) * 1972-04-25 1974-01-09
JPS4959176A (en) * 1972-10-09 1974-06-08
JPS508869A (en) * 1973-05-28 1975-01-29

Also Published As

Publication number Publication date
JPH0156658B2 (en) 1989-11-30

Similar Documents

Publication Publication Date Title
JPH0639538B2 (en) Biaxially oriented polyester film
JPS60171626A (en) Video tape
KR970010466B1 (en) Biaxially stretched polyester film and process for producing the same
JP2000071405A (en) Biaxially oriented polyester film
JPS5981138A (en) Manufacture of polyether ester film
JPH01195045A (en) Biaxially oriented polyester film
JPH054218B2 (en)
JPH0433854A (en) Polyester film
JPS59148637A (en) Bi-axial orientation polyether ester film
KR970008257B1 (en) Preparation process for polyethylene telephthalate film
JPH0420369B2 (en)
JPH03215B2 (en)
JPH0425855B2 (en)
JPS6360732A (en) Polyethylene-2,6-naphthalate film
JPS5938031A (en) Biaxially oriented polyester film
JPS60178022A (en) Manufacture of polyether ester film
JPH01230641A (en) Biaxially oriented polyester film
JP2004331755A (en) Biaxially oriented polyester film
KR100244031B1 (en) Biaxially oriented polyester film for magnetic recording media
JPH0427522A (en) Polyester film
JPH03195742A (en) Biaxially oriented polyester film
JPH0586603B2 (en)
JPH0238428A (en) Polyester film
JPH04226328A (en) Film of high rigidity
JPH0574462B2 (en)