JPH0420369B2 - - Google Patents

Info

Publication number
JPH0420369B2
JPH0420369B2 JP60007414A JP741485A JPH0420369B2 JP H0420369 B2 JPH0420369 B2 JP H0420369B2 JP 60007414 A JP60007414 A JP 60007414A JP 741485 A JP741485 A JP 741485A JP H0420369 B2 JPH0420369 B2 JP H0420369B2
Authority
JP
Japan
Prior art keywords
film
polyester
particles
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60007414A
Other languages
Japanese (ja)
Other versions
JPS61167530A (en
Inventor
Shigeo Uchiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafoil Co Ltd
Original Assignee
Diafoil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafoil Co Ltd filed Critical Diafoil Co Ltd
Priority to JP741485A priority Critical patent/JPS61167530A/en
Publication of JPS61167530A publication Critical patent/JPS61167530A/en
Publication of JPH0420369B2 publication Critical patent/JPH0420369B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は平担易滑性、磁性層との接着性、多数
回走行性等に優れ、かつガイド部と接触しても白
粉の発生が少ない、磁気記録体用ベースフイルム
として特に有用な二軸配向ポリエステルフイルム
に関するものである。 従来の技術及び解決すべき問題点 二軸延伸ポリエステルフイルムは耐熱性、機械
的性質、耐薬品性等に優れているため、磁気記録
媒体、とりわけオーデイオ用、ビデオ用等の磁気
テープ、フロツピー用等磁気シートとして需要が
急増している。 これらの磁気記録媒体は、近年ますます高品質
化、高密度化の方向にあり、ベースフイルムの平
担易滑性、磁性層との接着性、多数回走行性のよ
り良いものが要望されている。又、磁気記録媒体
の製造はベースフイルム上に磁性粉を含むバイン
ダーを例えばコーテイングロールとドクターナイ
フの組合せで塗布する方法で行なわれるが、該コ
ーテイングロールが駆動、遊びロールあるいは固
定静止ロールであつても、ポリエステルフイルム
とロール表面との摩擦、摩耗が激しく、該フイル
ム自身の表面が削られて白粉状の物質を析出さ
せ、ひいてはドロツプアウトの原因となる。さら
に該磁性体を塗布したテープ又はシートを録音、
録画等に用いる場合ガイド部での摩擦、摩耗でフ
イルムに傷が生じ白粉が生じたり多数回走行後す
べり性が悪化したりする。これらすべての特性を
満足するベースフイルムは未だ完成されておら
ず、フイルムメーカーの要望は強いものであつ
た。 問題点を解決するための手段 本発明者はフイルムの平担易滑性、磁性層との
接着性を維持した上で、耐摩耗性、多数回走行性
を改良したフイルムを開発すべく鋭意検討の結
果、ポリエステルフイルムの物性をある特定の範
囲にし、それに適当な有機滑剤及び粒子を混在せ
しめることにより解決出来ることを見出し本発明
に到達したものである。 すなわち本発明はフイルムの厚み方向の屈折率
nが1.492以上で、かつ突起と該突起を核とした
長径が少くとも0.5μmの窪みとからなる凹凸単位
のフイルム表面積1mm2当りの個数A(個/mm2)が
式 0≦A≦5000 …… を満たし、かつ有機滑剤を0.005重量%以上、0.5
重量%以下含有する事を特徴とする磁気記録体用
ポリエステルフイルムに関するものである。 本発明にいうポリエステルとは、テレフタル
酸、イソフタル酸、ナフタレン−2,6−ジカル
ボン酸のごとき芳香族ジカルボン酸又はそのエス
テルと、エチレングリコール、ジエチレングリコ
ール、テトラメチレングリコール、ネオペンチル
グリコール等のジオールとを重縮合させて得るこ
とのできる結晶性芳香族ポリエステルである。該
ポリエステルは芳香族ジカルボン酸とグリコール
を直接重縮合させて得られる他、芳香族ジカルボ
ン酸ジアルキルエステルとグリコールとをエステ
ル交換反応させた後、重縮合せしめるか、あるい
は芳香族ジカルボン酸のジグリコールエステルを
重縮合せしめる等の方法によつても得られる。 かかるポリマーの代表的なものとしては、ポリ
エチレンテレフタレート、ポリエチレン−2,6
ナフタレート、ポリテトラメチレンテレフタレー
ト、ポリテトラメチレン−2,6−ナフタレート
等であり、例えばポリエチレンテレフタレート、
或いはポリエチレン−2,6−ナフタレートは、
テレフタル酸或いはナフタレン−2,6−ジカル
ボン酸とエチレングリコールとが結合したポリエ
ステルのみならず、繰り返し単位の80モル%以上
がエチレンテレフタレート、或いはエチレン−
2,6−ナフタレート単位よりなり、繰り返し単
位の20モル%以下が他の成分である共重合ポリエ
ステル、またはこれらのポリエステルに他のポリ
マーを添加、混合した混合ポリエステルであつて
も良い。特に磁性層との接着剤を向上させるべく
ジオール成分としてポリエチレングリコール、ポ
リテトラメチレングリコール等ポリアルキレング
リコールを共重合する事は好ましい。ポリエステ
ルに他のポリマーを添加、混合する場合はポリエ
ステルの性質を本質的に変化させない範囲内で添
加、混合する必要があり、ポリオレフイン、ポリ
アミド、ポリカーボネート、その他のポリエステ
ル等を15重量%未満の割合で添加することが出来
る。 また前記ポリエステルには、必要に応じて滑剤
等として作用する不活性微粒子を添加してもよ
い。不活性微粒子の添加量は特に限定されない
が、通常0.005〜2wt%含有する事が好ましい。又
粒子の平均粒径としては、0.005〜5.0μmの範囲
である。 この目的に合致した不活性微粒子としては、ポ
リエステル樹脂の溶融製膜時に不溶な高融点有機
化合物、架橋化ポリマー及びポリエステル合成時
に使用する金属化合物触媒、例えばアルカリ金属
化合物、アルカリ土類金属化合物などによつてポ
リエステル製造時にポリマー内部に形成される内
部析出粒子、及び例えばMgO,ZnO,MgCO3
CaCO3,CaSO4,BaSO4,Al2O3,SiO2,TiO2
SiC,LiF、タルク、カオリン等の粘土鉱物、セ
ライト、雲母等や、Ca,Ba,Zn,Mnなどのテ
レフタル酸塩等の不活性外部添加粒子を挙げるこ
とが出来る。又金属せつけん、デンプン、カルボ
キシメチルセルロース等の不活性有機化合物等も
不活性微粒子化合物の例として挙げることが出来
る。 もちろんこれらの粒子に加え、必要に応じて染
料、顔料、着色剤、安定剤、帯電防止剤、導電性
物質、酸化防止剤、消泡剤等の化合物を配合して
も良い。 粒子の添加は、ポリエステル重合前でもよく、
重合反応中でもよく、又重合終了後ペレタイズす
るときに押出機中で混練させてもよい。さらにシ
ート状に溶融押出しする際に添加し、押出機中で
分散して押出してもよい。 本発明においてフイルムに平担易滑性を与える
ためにはフイルムの厚み方向の屈折率n〓が1.492
以上、好ましくは1.493以上であることが必要で
あると共に突起と該突起を核とした長径が少くと
も0.5μmの窪みとからなる凹凸単位のフイルム表
面積1mm2当りの数A(個/mm2)が式を満足する
ことが必要である。 0≦A≦5000 …… Aは零でもよいが少くとも該凹凸単位が存在す
る事の方が好ましい。一方5000を超えると平担性
には優れるが、易滑性とりわけ多数回走行時の走
行性に劣るため不適である。 このようなフイルムを得るには、前述の不活性
微粒子の量、種類および後述する製膜条件のう
ち、縦延伸後の△nを変えることにより調節でき
る。 ここで厚み方向の屈折率n〓が1.492以上かつ
式を満たすフイルムを製造するためには縦延伸後
の複屈折率(△n)を0.080以下に低下せしめる
ことにより達成される。縦延伸後の△nを0.080
以下とするためには、縦延伸を1段階で行なう場
合には、90℃以上3.5倍以下の延伸を行なうこと
により得られるが、縦方向の厚み斑を良くするた
めには2段階以上で延伸することが好ましい。2
段階以上の多段縦延伸を行なう際には、まず最終
段延伸前の△nが0.015〜0.055となるように75℃
〜150℃で1.2〜4.0倍1段又は多段で縦延伸し、
更に最終段で△nが0.080以下となるよう85℃〜
150℃で1.1〜2.0倍縦方向に延伸する。 かくしてn〓が1.492以上かつ粒子を核とした窪
みとからなる凹凸単位を有するフイルムが得られ
る。 ここで縦延伸後の△nを低く押えることにより
何故n〓が高くなりかつ粒子径を核とした凹凸単位
が出来るかについては定かではないが次の事が考
えられる。 該縦延伸後の複屈折率(△n)を低く押さえる
ことによりポリエチレンテレフタレートの骨格に
あるベンゼン環のフイルム面への面配向が低下
し、それに伴い厚み方向の屈折率n〓が高くなる。
又、縦延伸後の複屈折率がある程度低いと粒子の
周辺に配向差が生じ、これを横延伸すると粒子を
核とした窪みが形成されるものと考えられる。 かくして得られたフイルムでは、フイルムの粒
子が均一かつ高密度であり、かつ粒子のまわりに
ボイドを伴わずかつ急峻であるため極めて平担易
滑性にすぐれたフイルムとなるのである。 ところで、前記の特性を満たすフイルムにあつ
ても、なお多数回走行時、特に高温多湿下での多
数回走行時のマサツ係数は未まだ充分なものとは
言えない。 それを改良する手段として本発明では有機滑剤
を0.005〜0.5重量%フイルム中に含有させるもの
である。それによりフイルムの多数回走行後のマ
サツ係数を格段に低下せしめ得る事ができるので
ある。前記有機滑剤量が0.005重量%より少ない
と目的とするマサツ係数を低下させる効果を発揮
出来ないし、逆に0.5重量%を越えると、有機滑
剤がフイルム表面にブリードアウトするため磁性
層との接着性を低下させたり、フイルムの強度、
熱安定性を低下させるため好ましくない。 本発明でいう有機滑剤とは、特に限定するもの
ではないが、強いて挙げれば脂肪酸、脂肪酸エス
テル、アルキレンビスアルキルアミド及びN,
N′−ジアルキル芳香族アミドが好ましい。脂肪
酸、脂肪酸エステルは炭素数16以上が好ましく、
アミドのアルキル基としては炭素数16以上のもの
が好ましい。脂肪酸としてはモンタン酸等炭素数
の多いものが好ましく例示される。又脂肪酸エス
テルとしてはモンタン酸EGエステル等が挙げら
れる。アルキレンビス脂肪族及び芳香族アミドの
例としてはヘキサメチレンビスベヘンアミド、ヘ
キサメチレンビスステアリルアミド、N,N′−
ジステアリルテレフタルアミド等が挙げられる。 かくして平担易滑性、磁性層との接着性、多数
回走行性に優れたフイルムが得られる。さらに耐
摩耗性つまり磁性層との塗布工程でのガイドロー
ルとの摩耗及び磁気テープとして使用する際のガ
イドピンとの摩擦、摩耗により白粉が発生するこ
とを防止するためには、無機外部粒子のうちで特
に平均粒径0.9μm〜10.0μmの不活性外部粒子を
0.001重量%〜0.7重量%含有せしめる事により解
決できる。 該不活性外部添加粒子の平均粒径は0.9〜10.0μ
mである必要があり、1.0〜7.0μmがより好まし
い。しかも用いた他の粒子に比べて該不活性外部
粒子の平均粒径が大きい事が好ましい。また不活
性外部添加粒子の含有量は0.001〜0.7重量%とす
る必要があり、好ましくは0.003〜0.5重量%であ
る。不活性外部添加粒子の平均粒径が10.0μを越
える場合あるいは不活性外部添加粒子の含有量が
0.7重量%を越える場合、粗大粒子数が多くなり
ドロツプアウトの発生が多くなるため不適であ
る。一方、不活性外部添加粒子の平均粒径が0.9μ
m未満、含有量が0.001重量%未満の場合には、
本発明が目的としている白粉発生の軽減効果が発
揮できない。 かくして本発明により磁気テープとして必要と
される種々の特性を満足するポリエスエルフイル
ムを提供することが可能となつた。 次に本発明のポリエステルフイルムの製膜方法
を具体的に説明する。 不活性微粒子(内部粒子及び/又は不活性外部
粒子)、平均粒径が0.9μm〜10.0μmの不活性外部
粒子及び有機滑剤を適当量含有せしめた重合体レ
ジン又はそれらの混合レジン又は押出時添加レジ
ンを常法の手段で乾燥し、押出機を通して溶融押
出をして回転冷却体ドラム上で冷却固化し未延伸
ポリエステルシートを形成する。この際静電印加
冷却法等既知の密着法を採用することは好まし
い。 このようにして得た未延伸フイルムは、まず第
一軸方向、通常は縦方向にその屈折率△nが
0.080以下となるよう延伸し、次に第一軸方向と
直角方向に90℃〜150℃の温度で2.5〜5.0倍延伸
し、200℃〜250℃で1秒〜10分間熱固定する。か
くして、n〓≧1.492、0≦A≦5000の二軸延伸ポ
リエステルフイルムが得られる。但しn〓≧1.492、
0≦A≦5000を満足する限りにおいて熱固定前に
再縦及び/又は再横延伸することも好ましい方法
である。 本発明において第一軸延伸、通常は縦延伸後の
△nを0.080以下とすることが必要である。△n
が0.080を越えるとn〓が1.492以下となり、又突起
を核とした凹凸単位が形成されないため好ましく
ない。 又、特に厚み斑を改良するために第1軸方向の
延伸を多段にすることも好ましいし、多段階延伸
する際は最終段前の複屈折率を0.015〜0.055とし
て最終段の縦延伸で0.080以下となるよう延伸す
ることが好ましい。又縦の延伸倍率をあげるため
にスーパードローもしくはスーパードロー近傍領
域の延伸を適用することも好ましい。 実施例 以下に実施例において本発明を更に詳しく説明
するが、本発明がこれらに限定されるものではな
いことは言うまでもない。 なおフイルムの各物性の測定法について以下に
述べる。 (1) 摩擦係数(μ) 固定した硬質クロムメツキ金属ロール(直径
6mm)にフイルムを巻き付き角135°(θ)で接
触させ、53g(T2)の荷重を一端にかけて1
m/minの速度でこれを走行させて他端の抵抗
力〔T1(g)〕を測定し、次式により走行中の
摩擦係数を求めた。 μ=1/θln(T1/T2) =0.424ln(T1/53) (2) 多数回走行性、耐マモウ性 フイルムを細巾にスリツトしたものを巻取機
にかけ、中間に設置した金属製ガイドロールに
こすりつけて高速で往復走行させた。この時の
50回目のマサツ係数をμ50として測定した。
又、この時発生した白粉量を測定し、耐マモウ
性を次のようにランク付けした。 ランク1級 良好 2級 普通 3級 悪い 4級 極めて悪い (3) 中心線平均表面粗さ(Ra) 小坂研究所社製表面粗さ測定器(SE−3FK)
によつて次のように求めた。触針の先端半径は
2μm、荷重は30mgである。フイルム断面曲線
からその中心線の方向に基準長さL(2.5mm)の
部分を抜き取り、この抜き取り部分の中心線を
X軸、縦倍率の方向をY軸として、粗さ曲線y
=f(x)で表わした時、次の式で与えられた
値をμmで表わす。但し、カツトオフ値は80μ
mである。Raは縦方向に5点、横方向に5点
の計10点の平均値を求めた。 1/L∫L 0|f(x)|dx (4) 複屈折率 カールツアイス社製偏光顕微鏡により、リタ
ーデーシヨンを測定し、次式により複屈折率
(△n)を求めた。 △n=R/d 但しR:リターデーシヨン d:フイルム厚さ (5) 突起周辺に窪を有する凹凸単位(プロペラ)
の個数(A) カールツアイス社製微分干渉顕微鏡でアルミ
ニウム蒸着したフイルムの表面を750倍で写真
撮影し、合計1mm2のフイルム表面積当り突起を
核とした長径が少なくとも0.5μmの窪からなる
凹凸単位の数A(個/mm2)を数えた。 実施例 1 (ポリエステルの製造法) ジメチルテレフタート100部、エチレングリコ
ール70部、酢酸カルシウム一水塩0.10部及び酢酸
リチウム二水塩0.17部を反応器に仕込み、加熱昇
温すると共にメタノールを留出させてエステル交
換反応を行ない、反応開始後約4時間を要して
230℃に達せしめ、実質的にエステル交換反応を
終了した。 次にこの反応生成物にトリエチルホスフエート
0.35部を添加し、更に重縮合触媒として三酸化ア
ンチモン0.05部を添加した後、常法に従つて重合
し、ポリエステルを得た。該ポリエステル中には
粒径およそ0.5〜1μ程度の均一で微細なカルシウ
ム、リチウム及びリン元素を含む析出粒子が多数
認められた。該ポリエステルAは〔η〕=0.65で
あつた。 別途、内部析出粒子及び不活性外部添加粒子共
に含まないポリエステルB(〔η〕=0.65)を製造
した。又、ポリエステルB中に外部粒子としてコ
ールターカウンター法で測定して平均粒径1.4μの
炭酸カルシウム0.4重量%含むポリエステルC
(〔η〕=0.65)及び同様の平均粒径のフツ化リチ
ウム0.4重量%含むポリエステルD(〔η〕=0.65)
を製造した。一方、ポリエステルB中に0.2重量
%ヘキサメチレンビスベヘンアミドを含有するポ
リエステルE(〔η〕=0.65)を製造した。 (製膜法) 実施例 1 ポリエステルAとポリエステルB、ポリエステ
ルC及びポリエステルEをA:B:C:E=50:
35:5:10の割合でブレンドし、常法により乾燥
し、285℃で押出し急冷して無定形シートとした。 該無定形シートを105℃で3.4倍延伸し△nを
0.040としたのち100℃で1.25倍延伸し△n=0.059
とした。かくして得られた縦延伸フイルムを次に
テンターで140℃で3.8倍横方向に延伸し207℃で
熱固定を行ない15μのフイルムを得た。 実施例 2 A:B:D:E=50:35:5:10以外は実施例
1と同様に重合、製膜して15μのフイルムを得
た。 実施例 3 実施例1において縦延伸時の2段目の延伸倍率
を1.32倍とし縦延伸後の△nを0.070とした以外
は実施例1と同様に重合、製膜を行ない15μのフ
イルムを得た。 実施例 4 実施例1において熱固定前の縦、横延伸フイル
ムを150℃で1.07倍延伸して207℃で熱固し15μの
フイルムを得た。 比較例 1 実施例1と同様に作成した無定形フイルムを用
いて該無定形フイルムを85℃縦方向に3.7倍延伸
し次いで100℃で横方向に3.9倍延伸し210℃で熱
固定を行なつて15μのフイルムを得た。 該フイルムでは有機滑剤を含むが縦延伸後の△
nが高くn〓は1.4887と低く、又窪を有する凹凸単
位が存在しないフイルムである。 比較例 2 実施例3において2段目の延伸倍率を1.37倍と
し、縦延伸後の△nを0.085とした以外は実施例
3と同様に重合、製膜を行ない15μのフイルムを
得た。 該フイルムでは窪を有する凹凸単位は極く少量
存在し有機滑剤も含むが、縦延伸後の△nが高く
n〓が1.492より小さいフイルムである。 比較例 3 実施例4において再縦延伸倍率を1.20倍として
延伸した以外は実施例4と同様に重合、製膜を行
ない15μのフイルムを得た。該フイルムは窪を有
する凹凸単位は充分存在し、縦延伸後横延伸前の
△nは低いが再縦延伸倍率が高いためn〓が1.492
より小さいフイルムである。 比較例 4 ポリエステルAとポリエステルB及びポリエス
テルCをA:B:C=50:45:5でブレンドした
以外は実施例1と同様に製膜して15μのフイルム
を得た。該フイルムは窪を有する凹凸単位も充分
存在し、縦延伸後の△nも低くn〓も1.492以上で
あるが、有機滑剤を含有しないフイルムである。 実施例 5 ポリエステルAとポリエステルB及びポリエス
テルEをA:B:E=50:45:5でブレンドして
実施例1と同様に製膜して15μのフイルムを得
た。 比較例 5 ポリエステルAとポリエステルBをA:B=
1:1として比較例1と同様に製膜して15μのフ
イルムを得た。 該フイルムは有機滑剤を含まず、かつ縦延伸後
の△nが高くn〓も1.492より小さい上、窪を有す
る凹凸単位も存在しないフイルムである。 第1表に記載のとおり、有機滑剤を含有しn〓が
1.492以上でかつ0≦A≦5000であり、更に平均
粒径0.9μm以上10.0μm以下の不活性粒子を含む
フイルムは、それら範囲外のフイルムに比して平
担易滑性、多数回走行性、耐マモウ性において格
段に優れていることが分る。
Industrial Application Fields The present invention is suitable for use as a base film for magnetic recording media, which has excellent smoothness, adhesion with the magnetic layer, multi-time running properties, etc., and generates little white powder even when it comes into contact with the guide part. The present invention relates to particularly useful biaxially oriented polyester films. Conventional technology and problems to be solved Biaxially stretched polyester film has excellent heat resistance, mechanical properties, chemical resistance, etc., and is used for magnetic recording media, especially magnetic tapes for audio and video, and floppies. Demand for magnetic sheets is rapidly increasing. In recent years, these magnetic recording media have been trending toward higher quality and higher density, and there is a demand for better flat base film lubricity, better adhesion with the magnetic layer, and better multi-run performance. There is. Further, magnetic recording media are manufactured by applying a binder containing magnetic powder onto a base film using, for example, a combination of a coating roll and a doctor knife. Also, the friction and abrasion between the polyester film and the roll surface are severe, and the surface of the film itself is scraped and a white powder-like substance is precipitated, resulting in dropouts. Furthermore, recording a tape or sheet coated with the magnetic material,
When used for recording, etc., friction and abrasion at the guide portion may cause scratches on the film, producing white powder, and worsening the slipperiness after running many times. A base film that satisfies all of these characteristics has not yet been perfected, and there has been a strong demand from film manufacturers. Means for Solving the Problems The present inventor has conducted intensive studies to develop a film that maintains the smoothness of the film and its adhesion to the magnetic layer, while also improving its abrasion resistance and multi-running performance. As a result, the inventors have discovered that the problem can be solved by adjusting the physical properties of the polyester film to a certain range and mixing it with a suitable organic lubricant and particles, and have arrived at the present invention. That is, the present invention has a refractive index n in the thickness direction of the film of 1.492 or more, and the number A (number of protrusions and recesses per 1 mm 2 of the film surface area) consisting of a protrusion and a depression with a major axis of at least 0.5 μm with the protrusion as the core. /mm 2 ) satisfies the formula 0≦A≦5000... and the organic lubricant is 0.005% by weight or more, 0.5
The present invention relates to a polyester film for magnetic recording media, characterized in that the content is less than % by weight. The polyester referred to in the present invention refers to aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and naphthalene-2,6-dicarboxylic acid or esters thereof, and diols such as ethylene glycol, diethylene glycol, tetramethylene glycol, and neopentyl glycol. It is a crystalline aromatic polyester that can be obtained by polycondensation. The polyester can be obtained by direct polycondensation of aromatic dicarboxylic acid and glycol, or can be obtained by transesterification of aromatic dicarboxylic acid dialkyl ester and glycol, followed by polycondensation, or by polycondensation of aromatic dicarboxylic acid dialkyl ester and glycol. It can also be obtained by a method such as polycondensation. Typical examples of such polymers include polyethylene terephthalate, polyethylene-2,6
naphthalate, polytetramethylene terephthalate, polytetramethylene-2,6-naphthalate, etc., such as polyethylene terephthalate,
Or polyethylene-2,6-naphthalate is
Not only polyesters in which terephthalic acid or naphthalene-2,6-dicarboxylic acid and ethylene glycol are bonded, but also polyesters in which 80 mol% or more of the repeating units are ethylene terephthalate or ethylene glycol.
It may be a copolyester consisting of 2,6-naphthalate units, in which 20 mol% or less of the repeating units are other components, or a mixed polyester obtained by adding and mixing other polymers to these polyesters. In particular, it is preferable to copolymerize a polyalkylene glycol such as polyethylene glycol or polytetramethylene glycol as a diol component in order to improve the adhesiveness with the magnetic layer. When adding or mixing other polymers to polyester, it is necessary to add or mix within a range that does not essentially change the properties of the polyester, and polyolefins, polyamides, polycarbonates, other polyesters, etc. must be added in a proportion of less than 15% by weight. Can be added. Furthermore, inert fine particles that act as a lubricant or the like may be added to the polyester, if necessary. The amount of inert fine particles added is not particularly limited, but it is usually preferable to add 0.005 to 2 wt%. Further, the average particle size of the particles is in the range of 0.005 to 5.0 μm. Inert fine particles suitable for this purpose include high melting point organic compounds that are insoluble during melt film formation of polyester resin, crosslinked polymers, and metal compound catalysts used during polyester synthesis, such as alkali metal compounds and alkaline earth metal compounds. Therefore, internal precipitated particles formed inside the polymer during polyester production and, for example, MgO, ZnO, MgCO 3 ,
CaCO 3 , CaSO 4 , BaSO 4 , Al 2 O 3 , SiO 2 , TiO 2 ,
Examples include clay minerals such as SiC, LiF, talc, and kaolin, celite, mica, and inert externally added particles such as terephthalates such as Ca, Ba, Zn, and Mn. In addition, inert organic compounds such as metal soap, starch, and carboxymethyl cellulose can also be cited as examples of inert particulate compounds. Of course, in addition to these particles, compounds such as dyes, pigments, colorants, stabilizers, antistatic agents, conductive substances, antioxidants, antifoaming agents, etc. may be blended as necessary. The particles may be added before polyester polymerization,
The mixture may be kneaded during the polymerization reaction, or may be kneaded in an extruder when pelletizing after the polymerization is completed. Furthermore, it may be added during melt extrusion into a sheet, dispersed in an extruder, and extruded. In the present invention, in order to give the film flat smoothness, the refractive index n〓 in the film thickness direction is 1.492.
As mentioned above, it is necessary that the value is preferably 1.493 or more, and the number A (pieces/mm 2 ) per 1 mm 2 of the film surface area of a unit of unevenness consisting of a protrusion and a depression with a major axis of at least 0.5 μm with the protrusion as a core. It is necessary that the equation is satisfied. 0≦A≦5000...Although A may be zero, it is preferable that at least the uneven unit exists. On the other hand, if it exceeds 5,000, it is unsuitable because it has excellent flatness, but is poor in slipperiness, particularly in runnability during multiple runs. In order to obtain such a film, the amount and type of the inert fine particles described above and the film forming conditions described below can be adjusted by changing Δn after longitudinal stretching. In order to produce a film having a refractive index n〓 in the thickness direction of 1.492 or more and satisfying the formula, this can be achieved by lowering the birefringence (△n) after longitudinal stretching to 0.080 or less. △n after longitudinal stretching is 0.080
In order to achieve the following, when longitudinal stretching is performed in one step, it is obtained by stretching at a temperature of 90°C or higher and 3.5 times or less, but in order to improve the thickness unevenness in the longitudinal direction, stretching is performed in two or more stages. It is preferable to do so. 2
When carrying out multi-stage longitudinal stretching, first the temperature is adjusted to 75°C so that △n is 0.015 to 0.055 before the final stage stretching.
Longitudinal stretching 1.2 to 4.0 times at ~150°C in one or multiple stages,
Furthermore, at the final stage, the temperature is increased to 85℃ so that △n is 0.080 or less.
Stretch 1.1 to 2.0 times in the machine direction at 150°C. In this way, a film is obtained in which n〓 is 1.492 or more and has concavo-convex units consisting of concavities and concavities with particles as nuclei. Here, it is not clear why n〓 becomes high by keeping Δn low after longitudinal stretching and uneven units are formed with the particle diameter as the core, but the following is thought to be the reason. By keeping the birefringence (Δn) low after the longitudinal stretching, the plane orientation of the benzene rings in the skeleton of polyethylene terephthalate toward the film surface is reduced, and the refractive index n〓 in the thickness direction is accordingly increased.
It is also believed that if the birefringence after longitudinal stretching is low to some extent, a difference in orientation will occur around the particles, and if this is laterally stretched, a depression will be formed with the particles as a nucleus. In the film thus obtained, the particles of the film are uniform and dense, and the particles are steep with voids surrounding them, resulting in a film that is extremely flat and has excellent slipperiness. By the way, even with a film that satisfies the above-mentioned characteristics, the mass coefficient when the film is run many times, especially when it is run many times under high temperature and humidity, is still not sufficient. As a means to improve this, in the present invention, 0.005 to 0.5% by weight of an organic lubricant is contained in the film. This makes it possible to significantly reduce the mass coefficient after the film has been run many times. If the amount of the organic lubricant is less than 0.005% by weight, it will not be able to exhibit the desired effect of lowering the mass coefficient, and if it exceeds 0.5% by weight, the organic lubricant will bleed out onto the film surface, resulting in poor adhesion with the magnetic layer. or reduce the strength of the film,
This is not preferred because it reduces thermal stability. The organic lubricants used in the present invention are not particularly limited, but examples include fatty acids, fatty acid esters, alkylene bisalkylamides, N,
N'-dialkyl aromatic amides are preferred. Fatty acids and fatty acid esters preferably have 16 or more carbon atoms,
The alkyl group of the amide preferably has 16 or more carbon atoms. Preferred examples of fatty acids include those with a large number of carbon atoms such as montanic acid. Examples of fatty acid esters include montanic acid EG ester and the like. Examples of alkylene bis aliphatic and aromatic amides include hexamethylene bis behenamide, hexamethylene bis stearyl amide, N,N'-
Examples include distearyl terephthalamide. In this way, a film can be obtained that is excellent in flat lubricity, adhesion to the magnetic layer, and multi-time running performance. Furthermore, in order to improve wear resistance, that is, to prevent white powder from being generated due to abrasion with the guide roll during the coating process with the magnetic layer, friction with the guide pin when used as a magnetic tape, and abrasion, it is necessary to In particular, inert external particles with an average particle size of 0.9 μm to 10.0 μm are used.
This can be solved by containing 0.001% to 0.7% by weight. The average particle size of the inert externally added particles is 0.9 to 10.0μ
m, more preferably 1.0 to 7.0 μm. Moreover, it is preferable that the average particle size of the inert external particles is larger than that of the other particles used. Further, the content of the inert externally added particles must be 0.001 to 0.7% by weight, preferably 0.003 to 0.5% by weight. If the average particle size of the inert externally added particles exceeds 10.0μ or the content of the inert externally added particles is
If it exceeds 0.7% by weight, it is unsuitable because the number of coarse particles increases and drop-outs occur frequently. On the other hand, the average particle size of the inert externally added particles is 0.9μ
If the content is less than 0.001% by weight,
The effect of reducing white powder generation, which is the objective of the present invention, cannot be achieved. Thus, the present invention has made it possible to provide a polyester film that satisfies various properties required for a magnetic tape. Next, the method for forming a polyester film of the present invention will be specifically explained. A polymer resin containing an appropriate amount of inert fine particles (inner particles and/or inert outer particles), inert outer particles with an average particle size of 0.9 μm to 10.0 μm, and an organic lubricant, or a mixed resin thereof or addition at the time of extrusion. The resin is dried by conventional means, melt extruded through an extruder, and cooled and solidified on a rotating cooling drum to form an unstretched polyester sheet. At this time, it is preferable to employ a known contact method such as an electrostatic application cooling method. The unstretched film thus obtained has a refractive index △n in the first axis direction, usually in the longitudinal direction.
0.080 or less, then stretched 2.5 to 5.0 times in the direction perpendicular to the first axis direction at a temperature of 90°C to 150°C, and heat set at 200°C to 250°C for 1 second to 10 minutes. In this way, a biaxially stretched polyester film with n≧1.492 and 0≦A≦5000 is obtained. However, n〓≧1.492,
As long as 0≦A≦5000 is satisfied, it is also a preferable method to re-stretch longitudinally and/or transversely again before heat setting. In the present invention, it is necessary that Δn after first axial stretching, usually longitudinal stretching, be 0.080 or less. △n
If it exceeds 0.080, n〓 will be less than 1.492, and uneven units with protrusions as cores will not be formed, which is not preferable. In addition, in order to especially improve thickness unevenness, it is preferable to carry out multi-stage stretching in the first axial direction, and when performing multi-stage stretching, the birefringence before the final stage is set to 0.015 to 0.055, and the longitudinal stretching at the final stage is set to 0.080. It is preferable to stretch it so that it becomes as follows. In order to increase the longitudinal stretching ratio, it is also preferable to apply super draw or stretching in the vicinity of super draw. EXAMPLES The present invention will be explained in more detail in Examples below, but it goes without saying that the present invention is not limited thereto. The method for measuring each physical property of the film will be described below. (1) Coefficient of friction (μ) A film is brought into contact with a fixed hard chrome-plated metal roll (diameter 6 mm) at a wrapping angle of 135° (θ), and a load of 53 g (T 2 ) is applied to one end.
This was run at a speed of m/min, the resistance force [T 1 (g)] at the other end was measured, and the coefficient of friction during running was determined using the following equation. μ = 1/θln (T 1 / T 2 ) = 0.424ln (T 1 / 53) (2) Multiple running performance, anti-slip property The film was slit into a thin strip, passed through a winder, and placed in the middle. It was rubbed against a metal guide roll and moved back and forth at high speed. at this time
The 50th Masatsu coefficient was measured as μ50.
In addition, the amount of white powder generated at this time was measured, and the powder resistance was ranked as follows. Rank 1st grade Good 2nd grade Fair 3rd grade Bad 4th grade Extremely poor (3) Center line average surface roughness (Ra) Kosaka Laboratory Co., Ltd. surface roughness measuring instrument (SE-3FK)
It was calculated as follows. The tip radius of the stylus is
2μm, load is 30mg. A part of the standard length L (2.5 mm) is extracted from the film cross-sectional curve in the direction of its center line, and with the center line of this extracted part as the X axis and the vertical magnification direction as the Y axis, the roughness curve y is
When expressed as =f(x), the value given by the following formula is expressed in μm. However, the cutoff value is 80μ
It is m. For Ra, the average value of a total of 10 points, 5 points in the vertical direction and 5 points in the horizontal direction, was calculated. 1/L∫ L 0 |f(x)|dx (4) Birefringence Retardation was measured using a polarizing microscope manufactured by Carl Zeiss, and birefringence (△n) was determined using the following formula. △n=R/d where R: Retardation d: Film thickness (5) An uneven unit (propeller) with depressions around the projections
Number of pieces (A) Photograph the surface of the aluminum-deposited film using a Carl Zeiss differential interference microscope at 750x magnification to determine the number of concavo-convex units consisting of depressions with protrusions as cores and depressions with a major diameter of at least 0.5 μm per 1 mm 2 of total film surface area. The number A (pieces/mm 2 ) was counted. Example 1 (Production method of polyester) 100 parts of dimethyl tereftate, 70 parts of ethylene glycol, 0.10 parts of calcium acetate monohydrate, and 0.17 parts of lithium acetate dihydrate were charged into a reactor, and as the temperature was raised, methanol was distilled off. The transesterification reaction was carried out by allowing the transesterification to occur, and it took about 4 hours after the start of the reaction.
The temperature was reached to 230°C, and the transesterification reaction was substantially completed. This reaction product is then treated with triethyl phosphate.
After adding 0.35 part of antimony trioxide and further adding 0.05 part of antimony trioxide as a polycondensation catalyst, polymerization was carried out according to a conventional method to obtain a polyester. In the polyester, many uniform and fine precipitated particles containing calcium, lithium, and phosphorus elements with a particle size of approximately 0.5 to 1 μm were observed. The polyester A had [η]=0.65. Separately, polyester B ([η]=0.65) containing neither internally precipitated particles nor inert externally added particles was produced. In addition, polyester C contains 0.4% by weight of calcium carbonate with an average particle size of 1.4μ as measured by the Coulter counter method as external particles in polyester B.
([η] = 0.65) and polyester D containing 0.4% by weight of lithium fluoride with a similar average particle size ([η] = 0.65)
was manufactured. On the other hand, polyester E ([η]=0.65) containing 0.2% by weight of hexamethylene bisbehenamide in polyester B was produced. (Film forming method) Example 1 Polyester A, polyester B, polyester C and polyester E were mixed into A:B:C:E=50:
The mixture was blended in a ratio of 35:5:10, dried by a conventional method, extruded at 285°C and rapidly cooled to form an amorphous sheet. The amorphous sheet was stretched 3.4 times at 105℃ to obtain △n.
0.040 and then stretched 1.25 times at 100℃ △n=0.059
And so. The thus obtained longitudinally stretched film was then stretched 3.8 times in the transverse direction at 140°C using a tenter and heat-set at 207°C to obtain a 15μ film. Example 2 A 15 μm film was obtained by polymerizing and forming a film in the same manner as in Example 1 except that A:B:D:E=50:35:5:10. Example 3 Polymerization and film formation were carried out in the same manner as in Example 1, except that the second stage stretching ratio during longitudinal stretching was 1.32 times, and Δn after longitudinal stretching was 0.070, to obtain a 15μ film. Ta. Example 4 The longitudinally and laterally stretched film before heat setting in Example 1 was stretched 1.07 times at 150°C and heat set at 207°C to obtain a 15μ film. Comparative Example 1 Using an amorphous film prepared in the same manner as in Example 1, the amorphous film was stretched 3.7 times in the longitudinal direction at 85°C, then stretched 3.9 times in the transverse direction at 100°C, and heat-set at 210°C. A 15μ film was obtained. The film contains an organic lubricant, but after longitudinal stretching
The film has a high n value, a low n〓 of 1.4887, and has no concavo-convex units having depressions. Comparative Example 2 Polymerization and film formation were carried out in the same manner as in Example 3, except that the second stage stretching ratio was 1.37 times and Δn after longitudinal stretching was 0.085, to obtain a 15 μm film. In this film, a very small amount of uneven units having depressions is present and it also contains an organic lubricant, but the Δn after longitudinal stretching is high.
It is a film with n〓 smaller than 1.492. Comparative Example 3 A 15 μm film was obtained by polymerization and film formation in the same manner as in Example 4, except that the longitudinal stretching ratio was set to 1.20 times. In this film, there are enough uneven units having depressions, and △n after longitudinal stretching and before transverse stretching is low, but because the re-longitudinal stretching ratio is high, n〓 is 1.492.
It is a smaller film. Comparative Example 4 A 15 μm film was obtained in the same manner as in Example 1 except that polyester A, polyester B, and polyester C were blended in a ratio of A:B:C=50:45:5. The film has a sufficient number of concavo-convex units having depressions, has a low Δn after longitudinal stretching, and has a n〓 of 1.492 or more, but does not contain an organic lubricant. Example 5 Polyester A, polyester B, and polyester E were blended in a ratio of A:B:E = 50:45:5 and formed into a film in the same manner as in Example 1 to obtain a 15μ film. Comparative Example 5 Polyester A and Polyester B A:B=
A film of 15μ was obtained by forming a film in the same manner as in Comparative Example 1 with a ratio of 1:1. The film does not contain an organic lubricant, has a high Δn after longitudinal stretching, has a n〓 of less than 1.492, and has no concavo-convex units having depressions. As shown in Table 1, it contains an organic lubricant and
A film that is 1.492 or more and 0≦A≦5000 and further contains inert particles with an average particle size of 0.9 μm or more and 10.0 μm or less has better flat lubricity and multiple running properties than films outside these ranges. , it can be seen that the material is significantly superior in terms of resistance to Japanese porpoise.

【表】 ※:炭酸カルシウム
☆:フツ化リチウム
発明の効果 以上記載のとおり、本発明は前記特許請求の範
囲の記載のとおりの、n〓が1.429以上、0≦A≦
5000でかつ有機滑剤を0.005重量%以上、0.5重量
%以下含有することにより、又更に平均粒径0.9μ
m以上、10.0μm以下の不活性粒子を0.001重量%
以上、0.7重量%以下含有することにより、耐摩
耗性、多数回走行性がよく、白粉の発生しない、
すぐれたポリエステルフイルムが得られ、磁気記
録媒体用基体フイルムとしてすぐれたポリエステ
ルフイルムである。
[Table] *: Calcium carbonate ☆: Effect of the lithium fluoride invention As described above, the present invention is as described in the claims, where n〓 is 1.429 or more, 0≦A≦
5000 and contains an organic lubricant of 0.005% by weight or more and 0.5% by weight or less, and furthermore, the average particle size is 0.9μ.
0.001% by weight of inert particles with a size of 10.0 μm or more
By containing 0.7% by weight or less, it has good wear resistance, multi-cycle running properties, and does not generate white powder.
An excellent polyester film is obtained and is an excellent polyester film as a base film for magnetic recording media.

Claims (1)

【特許請求の範囲】 1 フイルムの厚み方向の屈折率n〓が1.492以上
で、かつ突起と該突起を核とした長径が少くとも
0.5μmの窪みとからなる凹凸単位のフイルム表面
積1mm2当りの個数A(個/mm2)が式を満たし、
かつ有機滑剤を0.005重量%以上、0.5重量%以下
含有する事を特徴とする磁気記録体用ポリエステ
ルフイルム。 0≦A≦5000 …… 2 平均粒径0.9μm以上、10.0μm以下の不活性
外部粒子を0.001重量%以上、0.7重量%以下含有
する、特許請求の範囲第1項記載の磁気記録体用
ポリエステルフイルム。
[Claims] 1. The refractive index n〓 in the thickness direction of the film is 1.492 or more, and the length of the protrusion and the major axis of the protrusion are at least
The number A (pieces/mm 2 ) of uneven units consisting of 0.5 μm depressions per 1 mm 2 of film surface area satisfies the formula,
A polyester film for magnetic recording media, characterized in that it contains an organic lubricant in an amount of 0.005% by weight or more and 0.5% by weight or less. 0≦A≦5000...2 The polyester for magnetic recording media according to claim 1, which contains inert external particles with an average particle size of 0.9 μm or more and 10.0 μm or less in an amount of 0.001% by weight or more and 0.7% by weight or less. film.
JP741485A 1985-01-21 1985-01-21 Polyester film for magnetic recording material Granted JPS61167530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP741485A JPS61167530A (en) 1985-01-21 1985-01-21 Polyester film for magnetic recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP741485A JPS61167530A (en) 1985-01-21 1985-01-21 Polyester film for magnetic recording material

Publications (2)

Publication Number Publication Date
JPS61167530A JPS61167530A (en) 1986-07-29
JPH0420369B2 true JPH0420369B2 (en) 1992-04-02

Family

ID=11665204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP741485A Granted JPS61167530A (en) 1985-01-21 1985-01-21 Polyester film for magnetic recording material

Country Status (1)

Country Link
JP (1) JPS61167530A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752506B2 (en) * 1987-04-03 1995-06-05 ダイアホイルヘキスト株式会社 Polyester film for magnetic recording media
JP2792068B2 (en) * 1987-05-01 1998-08-27 東レ株式会社 Polyester film and magnetic recording medium
JPH0670853B2 (en) * 1990-06-07 1994-09-07 ダイアホイルヘキスト株式会社 Polyester film for magnetic recording media
JP4517450B2 (en) * 2000-05-16 2010-08-04 東レ株式会社 Polyester composition, film comprising the same, and magnetic recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167216A (en) * 1981-04-09 1982-10-15 Teijin Ltd Polyester film
JPS59221354A (en) * 1983-05-31 1984-12-12 Toray Ind Inc Oriented polyester film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167216A (en) * 1981-04-09 1982-10-15 Teijin Ltd Polyester film
JPS59221354A (en) * 1983-05-31 1984-12-12 Toray Ind Inc Oriented polyester film

Also Published As

Publication number Publication date
JPS61167530A (en) 1986-07-29

Similar Documents

Publication Publication Date Title
KR930000667B1 (en) Polyethylene naphthalate film
JPH0432730B2 (en)
EP0710180A4 (en)
US4781963A (en) Magnetic recording medium
KR100218698B1 (en) Thermoplastic polyester composition and film produced therefrom
JPH0420369B2 (en)
JPH0358580B2 (en)
JPH0481806B2 (en)
JPH0369295B2 (en)
JPH0437092B2 (en)
JPH01204959A (en) Polyester composition and biaxially oriented polyester film prepared therefrom
JP3672581B2 (en) Polyester film
JPH0425855B2 (en)
JPH0257573B2 (en)
KR0137838B1 (en) Polyester film for magnetic recording material
JPS6360732A (en) Polyethylene-2,6-naphthalate film
JPH06172555A (en) Biaxially oriented polyester film for magnetic recording medium
JPH03131633A (en) Biaxially orientated polyester film
JPS63265929A (en) Oriented polyester film
JPH0468144B2 (en)
JPS6147235A (en) Manufacturing method of polyester film
JPS63161518A (en) Biaxially stretched polyester film for magnetic recording medium
EP0674580A4 (en) Improved biaxially oriented copolyester film for magnetic recording media.
JPH0665483A (en) Polyester composition and film composed of the composition
JPH06171044A (en) Polyester film