JPS5980982A - Thermal power generating element - Google Patents

Thermal power generating element

Info

Publication number
JPS5980982A
JPS5980982A JP58176478A JP17647883A JPS5980982A JP S5980982 A JPS5980982 A JP S5980982A JP 58176478 A JP58176478 A JP 58176478A JP 17647883 A JP17647883 A JP 17647883A JP S5980982 A JPS5980982 A JP S5980982A
Authority
JP
Japan
Prior art keywords
amorphous semiconductor
temperature
generating element
electrode
power generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58176478A
Other languages
Japanese (ja)
Inventor
Takashi Nakajima
隆 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP58176478A priority Critical patent/JPS5980982A/en
Publication of JPS5980982A publication Critical patent/JPS5980982A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To produce an amorphous semiconductor for detecting any environmental and atmospheric changes of temperature, humidity and the like by a method wherein thermoelectromotive force is generated by means of providing an amorphous semiconductor between electrodes with temperature gradient. CONSTITUTION:A thermal power generating element is composed by means of e.g. forming tin oxide or indium electrode 3 on a glass substrate 2 and providing an amorphous semiconductor 4 on the electrode 3 and further forming a gold electrode 5 on the amorphous semiconductor 4. The amorphous semiconductor 4 may be composed of the constituents suitable for composing the amorphous semiconductor such as sulfur, tellurium, germanium and the others.

Description

【発明の詳細な説明】 (技術分野) 本発明は、温度や、湿度等の環境雰囲気変化を検出する
、非晶質半導体を用いた熱発電素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a thermoelectric generating element using an amorphous semiconductor that detects changes in environmental atmosphere such as temperature and humidity.

(発明の背景) 従来、非晶質半導体は、熱を加えることにより、原子配
列が変化し、結晶化する性質や、その他各種の特徴的物
性を有することが知られているが、本発明者の研究によ
り、非晶質半導体は大きな抵抗温度特性を有すると共に
非晶質半導体を異種導電材料と組み合わせることにより
、前記異種導電材料部に、温度や湿度等の環境雰囲気変
化に対応する変化分起電圧特性を有することが確認され
た。
(Background of the Invention) Conventionally, it has been known that amorphous semiconductors change their atomic arrangement and crystallize when heated, and have various other characteristic physical properties. Research has shown that amorphous semiconductors have large resistance-temperature characteristics, and that by combining an amorphous semiconductor with a different type of conductive material, changes can occur in the different type of conductive material in response to changes in the environmental atmosphere such as temperature and humidity. It was confirmed that it has voltage characteristics.

本発明は上述の特性を利用して、非晶質半導体を温度や
湿度等の環境雰囲気変化の検出に用いようとするもので
ある。
The present invention utilizes the above-mentioned characteristics to use an amorphous semiconductor for detecting changes in environmental atmosphere such as temperature and humidity.

まず、環境雰囲気変化を検出する一例として、電気的な
温度測定手段について説明する。従来の電気的な温度測
定手段としては、サーミスターの如く抵抗温度係数の大
きな材料を用いて、温度による抵抗値の差を利用する方
法や、熱電対の如く、温度差による起電圧を利用する方
法が確立されている。
First, an electrical temperature measuring means will be described as an example of detecting a change in the environmental atmosphere. Conventional electrical temperature measurement means use a material with a large temperature coefficient of resistance, such as a thermistor, to utilize the difference in resistance value due to temperature, or use a thermocouple, which utilizes the electromotive force caused by the temperature difference. The method is established.

これらの方法は、いずれも素子内部の熱平衡状態での抵
抗値、あるいは熱起電圧を検出する方法であり、温度の
過渡的変化を変化有無として検出するには不適であl)
、かかる目的には、平衡時に得られた検出信号を何らか
の外部信号処理装置によって微分繰作もしくは差分操作
等を加えなければならないという欠点を有していた。
These methods all detect the resistance value or thermoelectromotive voltage in a state of thermal equilibrium inside the element, and are not suitable for detecting transient changes in temperature as the presence or absence of changes.
However, for this purpose, the detection signal obtained at the time of equilibrium has to be subjected to differential operation or difference operation using some external signal processing device.

(発明の目的) 本発明は、上述の欠点に鑑みなされたもので、非晶質半
導体が素子内部に温度勾配(熱非平衡状態)り生じたと
き素子のゼーベック効果により熱起電圧を発生する点に
着目し、温度や湿度等の環境雰囲気の過渡的変化を検出
する熱発電素子を提供することを目的とする。
(Objective of the Invention) The present invention was made in view of the above-mentioned drawbacks, and when an amorphous semiconductor generates a temperature gradient (thermal non-equilibrium state) inside the device, a thermoelectromotive voltage is generated due to the Seebeck effect of the device. The object of the present invention is to provide a thermoelectric generating element that detects transient changes in the environmental atmosphere such as temperature and humidity.

(発明の実施例) 以下、本発明に係る熱発電素子の実施例を図面に従って
説明する。
(Embodiments of the Invention) Examples of the thermoelectric power generating element according to the present invention will be described below with reference to the drawings.

第1図は本発明による熱発電素子の1例を示す断面図で
ある。図において1は熱発電素子、2はガラス基体、3
は酸化すず又はインジウムからなる電極、4は非晶質半
導体であって、・イオウ、テルル、ゲルマニウム、その
他の非晶質半導体を構成するに適した組成物により構成
される。5は金電極である。
FIG. 1 is a sectional view showing an example of a thermoelectric generating element according to the present invention. In the figure, 1 is a thermoelectric generator, 2 is a glass substrate, and 3
is an electrode made of tin oxide or indium, and 4 is an amorphous semiconductor, which is made of sulfur, tellurium, germanium, or other composition suitable for forming an amorphous semiconductor. 5 is a gold electrode.

本発明による熱発電素子1は基体2上に酸化すず又はイ
ンジウム電極3を形成し、該電極3上に非晶質半導体4
を設け、更に該非晶半導体4上に金電極5を形成した構
造である。
The thermoelectric power generating element 1 according to the present invention has a tin oxide or indium electrode 3 formed on a base 2, and an amorphous semiconductor 4 on the electrode 3.
In this structure, a gold electrode 5 is further formed on the amorphous semiconductor 4.

第2図、第3図は第1図に示した熱発電素子1に温度変
化を与えた時に酸化すず、インジウム電極3、と金電極
5との開に発生する起電圧を、酸化すず、インジウム電
極3側を基準電圧0(V)として示した特性図である。
FIGS. 2 and 3 show the electromotive force generated between the tin oxide, indium electrode 3 and the gold electrode 5 when a temperature change is applied to the thermoelectric generating element 1 shown in FIG. FIG. 3 is a characteristic diagram showing the electrode 3 side with a reference voltage of 0 (V).

初めに第2図の特性図を参照して本発明の熱発電素子1
の特性を説明する。第2図において、(a)は、第1図
の素子上面(電極5側)を冷却したとき、すなわち温度
のマイナス変化(冷却)を与えた場合の特性を示してお
り、時刻t、がらし、の直前迄は素子全体は十X(’C
)の第1の温度平衡状態に置かれており、起電圧は0(
V)である。時刻t2に至って、+y(’C)の第2の
温度状態に置かれると、電極5と電極3(基体2)闇の
温度勾配に起因するゼーベック効果により起電圧を発生
する。起電圧は急激に高くなり、時刻t、でピーク値p
(v)を示した後、第2の温度平衡状態に近ずくか呟徐
々に低くなって起電圧を失い0(V)となる。第2図(
b)は温度のプラス変化(加熱)を与えた場合の特性を
示しており、第1の温度平衡状態か呟第2の温度平衡状
態に変化する時刻t2で、(a)とは逆の起電圧が発生
し、同様の経過をたどる。
First, with reference to the characteristic diagram in FIG.
Explain the characteristics of In Fig. 2, (a) shows the characteristics when the top surface of the element (electrode 5 side) in Fig. 1 is cooled, that is, when a negative temperature change (cooling) is applied. , the entire element is 10X ('C
), and the electromotive force is 0 (
V). At time t2, when the electrode 5 and the electrode 3 (substrate 2) are placed in a second temperature state of +y ('C), an electromotive force is generated due to the Seebeck effect caused by the dark temperature gradient. The electromotive force increases rapidly and reaches a peak value p at time t.
(v), the temperature gradually decreases as it approaches the second temperature equilibrium state, loses its electromotive force, and reaches 0 (V). Figure 2 (
b) shows the characteristics when a positive change in temperature (heating) is applied, and at time t2 when the first temperature equilibrium state changes to the second temperature equilibrium state, an event opposite to (a) occurs. A voltage is generated and follows a similar course.

第3図は第2図に示す時刻t2の直前迄の第1の温度平
衡状態と時刻t2以降の第2の温度平衡状態との温度変
化分に対応した起電圧のピック値P(V)を示す特性図
であって、縦軸は起電圧、横軸は温度変化分を示してお
り、温度変化分が大きくなる程起電圧のピーク値P(■
)が大きくなることが判る。従って、第2図、第3図の
特性図から明らかな如く、熱発電素子1は温度変化分に
対応した起電圧を過渡出力として発生することがわかる
Figure 3 shows the pick value P (V) of the electromotive force corresponding to the temperature change between the first temperature equilibrium state immediately before time t2 and the second temperature equilibrium state after time t2 shown in Figure 2. In this characteristic diagram, the vertical axis shows the electromotive force, and the horizontal axis shows the temperature change.
) becomes larger. Therefore, as is clear from the characteristic diagrams of FIGS. 2 and 3, it can be seen that the thermoelectric generating element 1 generates an electromotive voltage corresponding to the temperature change as a transient output.

従って、本素子の池の応用例と員て本発明による熱発電
素子1を用いて湿度の過渡的変化を検知する事も可能で
ある。−例として高湿度状態に置かれていた熱発電素子
1を同一温度の低湿度状態に移行した場合について説明
すると熱発電素子1に付着していた水分が低湿度状態で
蒸発し、熱電素子の温度が下げられ第2図(、)と同様
の過渡的起電圧を発生することとなる。
Therefore, it is also possible to detect transient changes in humidity using the thermoelectric generating element 1 according to the present invention as an example of the application of the present element to a pond. - As an example, let us explain the case where the thermoelectric generating element 1 which has been placed in a high humidity state is transferred to a low humidity state at the same temperature.The moisture attached to the thermoelectric generating element 1 evaporates in the low humidity state, and the thermoelectric element The temperature is lowered and a transient electromotive force similar to that shown in FIG. 2 (,) is generated.

(発明の効果) 上述の如く、本発明による熱発電素子は、温度や湿度等
の環境雰囲気の第1の平衡状態から別の第2の平衡状態
に変化した時の該変化量に対応した起電圧を過渡出力と
して発生するものであって、環境雰囲気の過渡的変化を
検出するのに用(・て好適であり、従来の温度や湿度の
環境雰囲気を検知又は測定する装置にはみられない効果
を有してb・る。
(Effects of the Invention) As described above, the thermoelectric generating element according to the present invention has an activation effect corresponding to the amount of change when the environmental atmosphere such as temperature or humidity changes from a first equilibrium state to a different second equilibrium state. It generates voltage as a transient output and is suitable for detecting transient changes in the environmental atmosphere, and is not found in conventional devices that detect or measure the environmental atmosphere such as temperature or humidity. It has an effect.

なお、本発明による熱発電素子の1例として材料をあげ
て説明したが、その材料に限定されるものではない。ま
た、検出信号の処理に増幅装置等を内蔵せしめることも
可能である。
Although the material has been described as an example of the thermoelectric generating element according to the present invention, the present invention is not limited to this material. It is also possible to incorporate an amplifier or the like for processing the detection signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による熱発電素子の1実施例を示す断面
図、第2図、第3図は前記熱発電素子の電極間に発生す
る起電圧の特性図である。 1・・・熱発電素子、2・・・ガラス基体、3・・・酸
化すず又はインジウム電極、4・・・非晶質半導体、5
・・・金電極。
FIG. 1 is a sectional view showing one embodiment of a thermoelectric generating element according to the present invention, and FIGS. 2 and 3 are characteristic diagrams of an electromotive force generated between electrodes of the thermoelectric generating element. DESCRIPTION OF SYMBOLS 1... Thermoelectric power generating element, 2... Glass substrate, 3... Tin oxide or indium electrode, 4... Amorphous semiconductor, 5
...Gold electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)非晶質半導体の両側に電極を有しかつ一方の面を
基体に装着した構成を備え、前記電極間の非晶質半導体
に温度勾配を生じさせることにより熱起電圧を発生する
ことを特徴とする熱発電素子。
(1) A structure in which an amorphous semiconductor has electrodes on both sides and one side is attached to a base, and a thermoelectromotive voltage is generated by creating a temperature gradient in the amorphous semiconductor between the electrodes. A thermoelectric power generating element featuring:
JP58176478A 1983-09-26 1983-09-26 Thermal power generating element Pending JPS5980982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58176478A JPS5980982A (en) 1983-09-26 1983-09-26 Thermal power generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58176478A JPS5980982A (en) 1983-09-26 1983-09-26 Thermal power generating element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11914876A Division JPS5344072A (en) 1976-10-04 1976-10-04 Detector element

Publications (1)

Publication Number Publication Date
JPS5980982A true JPS5980982A (en) 1984-05-10

Family

ID=16014366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58176478A Pending JPS5980982A (en) 1983-09-26 1983-09-26 Thermal power generating element

Country Status (1)

Country Link
JP (1) JPS5980982A (en)

Similar Documents

Publication Publication Date Title
US4158807A (en) Gapped gate charge-flow transistor with a thin film sensor having two modes of conduction within the gapped gate used to sense a property of the ambient environment
Iborra et al. IR uncooled bolometers based on amorphous Ge/sub x/Si/sub 1-x/O/sub y/on silicon micromachined structures
EP0301652A3 (en) Radiation detector arrangements and methods
US2871330A (en) Silicon current controlling devices
JPH0590011A (en) Thermosensitive resistor and its manufacture
JPS58103654A (en) Multifunctional gas sensor
Gregory et al. An apparent n to p transition in reactively sputtered indium–tin–oxide high temperature strain gages
US4223550A (en) Carbon monoxide detecting apparatus
US4772866A (en) Device including a temperature sensor
JPS5980982A (en) Thermal power generating element
JP3303786B2 (en) Bolometer type infrared sensor
JPH0345778B2 (en)
Lynton et al. Boundary scattering effects on the superconducting transition temperature of Indium
US5451786A (en) Uncooled mis capacitor for infrared detection
JPH075050A (en) Temperature sensor
JP3030337B2 (en) Cryogenic thermometer
Lee et al. Fabrication of thermoelectric sensor using silicon-on-insulator structure
JPH0227826B2 (en)
Brophy Seebeck effect fluctuations in germanium
JPS58100472A (en) Temperature sensor and manufacture thereof
JP2771450B2 (en) Temperature measuring element and temperature measuring method
JPH0584867B2 (en)
JPH02206733A (en) Infrared ray sensor
US3331124A (en) Semiconductor strain sensitive devices and method of making the same
JPS63164260A (en) Semiconductor device