JPS5980719A - Treatment of silicon steel slab - Google Patents

Treatment of silicon steel slab

Info

Publication number
JPS5980719A
JPS5980719A JP18886482A JP18886482A JPS5980719A JP S5980719 A JPS5980719 A JP S5980719A JP 18886482 A JP18886482 A JP 18886482A JP 18886482 A JP18886482 A JP 18886482A JP S5980719 A JPS5980719 A JP S5980719A
Authority
JP
Japan
Prior art keywords
slab
silicon steel
temperature
heating furnace
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18886482A
Other languages
Japanese (ja)
Other versions
JPH0338324B2 (en
Inventor
Yoshiaki Iida
飯田 嘉明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18886482A priority Critical patent/JPS5980719A/en
Publication of JPS5980719A publication Critical patent/JPS5980719A/en
Publication of JPH0338324B2 publication Critical patent/JPH0338324B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab

Abstract

PURPOSE:To manufacture a unidirectional silicon steel plate having superior surface properties by slowly cooling a silicon steel slab contg. Si, Mn and S and/or Se taken out of a heating furnace to a specified temp. or below and conveying the slab to a hot rolling mill by means of table rolls. CONSTITUTION:A silicon steel slab contg., by weight, 2.5-4.5% Si, 0.03-0.10% Mn and 0.005-0.10% in total of S and/or Se is heated in a walking beam type heating furnace until the underside of the slab is heated to >=1,270 deg.C. The heated slab is taken out of the furnace and slowly cooled at <=3 deg.C/sec cooling rate until the under-side of the slab is cooled to <=1,250 deg.C. The slowly cooled slab is conveyed to a hot rolling mill by means of table rolls. Thus, the occurrence of linear spills is prevented, and a silicon steel plate having superior surface properties can be manufactured.

Description

【発明の詳細な説明】 この発明は一方向性珪素鋼板の製造におけるスラブ処理
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a slab processing method for producing unidirectional silicon steel sheets.

周知のように一方向性珪素鋼板は所謂ゴス方位、すなわ
ち(110)<001>方位の二次再結晶粒が高度に集
積された集合組織で構成されており、圧延方向に優れた
磁気特性を示す。このような二次再結晶集合組織は珪素
鋼板の製造工程中の最終高温焼鈍工程においてゴス方位
の二次再結晶を選択的に急速酸−長させることによって
得られるものであるが、この際、ゴス方位以外の結晶粒
を二次再結晶が完了するまで成長を抑制する必要があシ
、そのためにMnS 、 MnSe 、 A13N等の
いわゆるインヒビターと称される析出分散相が利用され
ている。
As is well known, unidirectional silicon steel sheets are composed of a texture in which secondary recrystallized grains with the so-called Goss orientation, that is, the (110) <001> orientation, are highly integrated, and exhibit excellent magnetic properties in the rolling direction. show. Such a secondary recrystallization texture is obtained by selectively rapid acid-lengthening the secondary recrystallization of the Goss orientation in the final high-temperature annealing step during the manufacturing process of silicon steel sheets, but at this time, It is necessary to suppress the growth of crystal grains other than the Goss orientation until the secondary recrystallization is completed, and for this purpose, a precipitated dispersed phase called an inhibitor such as MnS, MnSe, A13N, etc. is used.

このような析出分散相によって不適当な方位の結晶粒成
長を抑制するためには、熱間圧延前のスラブ加熱時にこ
れらの析出分散相を充分にS離固溶させ、その後の工程
、すなわち熱間圧延、冷間圧延、焼鈍工程を通して数1
00Xの微細析出物として適量分散させることが必要で
ある。このように熱間圧延前に析出分散相を充分に解離
固溶させるため、スラブは通常1.300℃以上の高温
で長時間加熱される。
In order to suppress the growth of inappropriately oriented crystal grains due to such precipitated dispersed phases, these precipitated dispersed phases are sufficiently separated from S and dissolved in solid solution during heating of the slab before hot rolling, and the subsequent process, that is, thermal Through the rolling, cold rolling, and annealing processes, the number 1
It is necessary to disperse an appropriate amount of 00X fine precipitates. In order to sufficiently dissociate and solidify the precipitated dispersed phase before hot rolling, the slab is usually heated at a high temperature of 1.300° C. or higher for a long period of time.

上述のような一方向性珪素鋼板の製造における高温長時
間のスラブ加熱のためには、一般にプッシャ一式加熱炉
またはウオーキングビーム式加熱炉が使用されている。
For high-temperature, long-term slab heating in the production of unidirectional silicon steel sheets as described above, a pusher-type heating furnace or a walking beam-type heating furnace is generally used.

プッシャ一式加熱炉においては、スラブをプッシャーに
より一方向へ押送して、均熱炉床上を摺動搬送するため
、炉から抽出されたスラブの形状は平坦であるが、その
反面スラブ下面に擦り疵が生じる欠点がある。そこで最
近では擦り疵回避のため、ウオーキングビーム式加熱炉
を使用することが多くなっている。ウオーキングビーム
式加熱炉においては、第1図に示すようにスラブ1は間
隔を置いて配設されたウオーキングビーム2によって持
ち上げられて、そのウオーキングビーム2の動きにより
一定距離だけ前進した後、各ウオーキングビーム2の間
に定置されているスキッドビーム3上に載置される一連
の動作が繰返されて搬送される。したがってウオーキン
グビーム式加熱炉においてはスラブ1の下面に擦シ疵が
生じることは殆どない。しかるに珪素鋼は通常の鋼と比
較して熱間強度が著しく低いため、ウオーキングビーム
式加熱炉を使用した場合、間隔を置いて配置されている
スキッドビーム3上に載置される際、あるいは同じく間
隔を置いて設けられているウオーキングビーム2によシ
持ち上げられる際に、スラブ1の自重によって第2図に
示すように長手方向に波状に撓む問題がある。加熱後の
スラブは炉から抽出された後テーブルローラーによって
圧延機へ搬送されるが、上述のように波状に撓んだスラ
ブが加熱炉から抽出されれば、そのスラブの下面の波状
白部分がテーブルローラーから衝撃を受け、その際、結
晶粒界に微小な割れを生じる。このような割れは圧延に
よってその圧延方向に伸長し、製品段階で線状ヘゲと称
される表面欠陥となって商品価値を著しく減する。
In a pusher-equipped heating furnace, the slab is pushed in one direction by a pusher and is slid on the soaking hearth, so the shape of the slab extracted from the furnace is flat, but on the other hand, there are scratches on the bottom surface of the slab. There is a drawback that this occurs. Recently, walking beam heating furnaces have been increasingly used to avoid scratches. In a walking beam heating furnace, as shown in FIG. A series of operations for placing the object on the skid beam 3 placed between the beams 2 are repeated and the object is conveyed. Therefore, in the walking beam heating furnace, there are almost no scratches on the lower surface of the slab 1. However, silicon steel has significantly lower hot strength than ordinary steel, so when using a walking beam type heating furnace, when placed on the skid beams 3 placed at intervals, or the same There is a problem in that when the slab 1 is lifted up by the walking beams 2 provided at intervals, the slab 1 bends in a wave-like manner in the longitudinal direction due to its own weight as shown in FIG. After the heated slab is extracted from the furnace, it is conveyed to the rolling mill by table rollers, but if a slab that is bent in a wavy manner is extracted from the heating furnace as described above, the wavy white part on the bottom surface of the slab will be It receives impact from the table roller, which causes minute cracks in the grain boundaries. Such cracks elongate in the rolling direction during rolling, resulting in a surface defect called a linear heave at the product stage, which significantly reduces commercial value.

この発明は以上の事情に鑑みてなされたもので、一方向
性珪素鋼用のスラブをウオーキングビーム式加熱炉で加
熱して、加熱炉から抽出後テーブルローラーで搬送する
に際し、テーブルローラーからの衝撃によってスラブに
生ずる微小割れの発生頻度を可及的に減少させ、これに
より製品の線状ヘゲを防止して、表面性状の優れた一方
向性珪素鋼板を得るためのスラブ処理方向を提供するこ
とを目的とするものである。
This invention was made in view of the above circumstances, and when a slab for unidirectional silicon steel is heated in a walking beam heating furnace and transported by a table roller after being extracted from the heating furnace, the impact from the table roller is To provide a slab processing direction for obtaining a unidirectional silicon steel sheet with excellent surface quality by reducing the frequency of microcracks that occur in the slab as much as possible, thereby preventing linear flaking of the product. The purpose is to

すなわち本発明者等は、加熱炉から抽出された珪素鋼ス
ラブが圧延機へ至るまでの間にスラブ下面の微小割れ発
生に及ぼす要因について鋭意調査、研究を重ねた結果、
テーブルローラによりスラブに衝撃が与えられる際のス
ラブ下面温度が微小割れの発生に大きな影響を及ぼして
おり、スラブに衝撃が与えられる際のスラブ下面温度を
特定温度以下に制御すると同時にその温度に至るまでの
スラブ下面冷却速度を特定の冷却速度以下の徐冷とする
ことによって、スラブ下面における微小割れの発生を顕
著に抑制し得ることを新規に知見し、この発明をなすに
至ったのである。
In other words, the present inventors have conducted extensive research and investigation into the factors that affect the occurrence of microcracks on the bottom surface of a silicon steel slab extracted from a heating furnace before it reaches a rolling mill.
The temperature on the bottom surface of the slab when impact is applied to the slab by a table roller has a major influence on the occurrence of microcracks, and the temperature on the bottom surface of the slab when impact is applied to the slab is controlled to be below a certain temperature and at the same time reaches that temperature. This invention was based on the new finding that the occurrence of microcracks on the lower surface of the slab can be significantly suppressed by slow cooling the lower surface of the slab to a certain cooling rate or less.

具体的には、この発明のスラブ処理方法は、Si2.5
〜4.5%、Mn 0.03〜0.10 %、Sおよび
Seの1種または2種を合計量で0.005〜0、10
 %含有する珪素鋼スラブを、ウオーキングビーム式加
熱炉でスラブ下面温度が1270℃以上となるように加
熱し、加熱炉から抽出後テーブルローラーにより圧延機
へ搬送するにあたり、抽出後にスラブの下面温度を3°
C/sec以下の速度で1250℃以下に冷却せしめ、
しかる後にスラブをテーブルローラーで搬送することを
特徴とするものである。
Specifically, the slab processing method of this invention
~4.5%, Mn 0.03~0.10%, one or both of S and Se in total amount of 0.005~0.10
% silicon steel slab is heated in a walking beam heating furnace so that the bottom surface temperature of the slab reaches 1270℃ or higher, and after extraction from the heating furnace, the bottom surface temperature of the slab is transferred to a rolling mill by a table roller. 3°
Cooling to 1250°C or less at a rate of C/sec or less,
This method is characterized in that the slab is then transported by table rollers.

以下この発明のスラブ処理方法についてさらに詳細に説
明する。
The slab processing method of the present invention will be explained in more detail below.

この発明の方法において処理すべきスラブは、前述のよ
うにSi2.5〜4.5%、Mn0O3〜010%、S
およびSeの1種または2種を合計量で0.005〜0
.10%含有するものである。これらの成分限定理由に
ついて説明すると、Siは製品の鉄損値を低減するに有
効な元素であシ、鉄損値の低い優れた特性の一方向性珪
素鋼板を得るに必須のものであるが、2.5%未満では
充分に鉄損値が低減されず、一方45チを越えれば冷間
加工性が低下して脆性割れを生じ易くなるから、Siは
2.5〜4.5−の範囲とした。Mn 、 Sおよび/
またはSeは、最終高温焼鈍工程において(110)<
001>方位の二次再結晶粒を選択的に急速成長させる
べく不適当な方位の結晶粒の成長を抑制するだめのイン
ヒビターとしての析出分散相であるMnS 、 MnS
eを生成させるに必要、なものであり、Mn 0.03
%未満、Sおよび/またはSeの合計量0、0051未
満では析出分散相の生成が不充分であり、一方Mn O
,10チ、Sおよび/またはSeの合計量0.10%を
越えれば、熱間、冷間の加工性が低下するから、Mnを
0.03〜0.10%、S。
The slab to be treated in the method of this invention contains 2.5-4.5% Si, 3-010% Mn0O3, S
and one or two types of Se in a total amount of 0.005 to 0.
.. It contains 10%. To explain the reason for limiting these components, Si is an effective element for reducing the iron loss value of products, and is essential for obtaining unidirectional silicon steel sheets with excellent properties and low iron loss values. If Si is less than 2.5%, the iron loss value will not be sufficiently reduced, while if it exceeds 45%, cold workability will decrease and brittle cracks will easily occur. range. Mn, S and/
Or Se is (110) <
MnS, MnS, which is a precipitated dispersed phase, acts as an inhibitor to suppress the growth of crystal grains with inappropriate orientation in order to selectively and rapidly grow secondary recrystallized grains with 001> orientation.
It is necessary to generate e, and Mn 0.03
%, the total amount of S and/or Se is less than 0.0051, the formation of a precipitated dispersed phase is insufficient, while MnO
If the total amount of S and/or Se exceeds 0.10%, hot and cold workability will deteriorate.

Seの1mまだは2種の合計量を0.005〜0.10
%の範囲に限定した。この発明においては上述のような
範囲のSi、Mn、Sおよび/またはSeのほかは実質
的にFeおよび不可避的不純物よりなる珪素鋼スラブを
用いれば良いが、このほか℃は0、08 %程度まで含
有されることが許容される。
For 1m of Se, the total amount of the two types is 0.005 to 0.10
% range. In the present invention, a silicon steel slab consisting essentially of Fe and unavoidable impurities other than Si, Mn, S and/or Se within the above-mentioned range may be used; It is permissible to contain up to

まだこのほかMnSもしくはMnSeによる不適当な方
位の結晶粒の成長を抑制する効果を補強するため、Sb
 、 Sn 、 Bi 、 Mo 、 W 、 Cu 
、 B 、 AJ3等を含有することも差し支えない。
In addition, in order to reinforce the effect of MnS or MnSe on suppressing the growth of crystal grains with inappropriate orientation, Sb
, Sn, Bi, Mo, W, Cu
, B, AJ3, etc. may be contained.

上述のような成分の珪素鋼スラブを得る方法は特に限ら
れるものではなく、通常の製鋼法によって精錬された溶
鋼から常法にしたがって造塊−分塊圧延法あるいは連続
鋳造法によって製造されたスラブを用いれば良い。
The method for obtaining a silicon steel slab having the above-mentioned components is not particularly limited, and a slab manufactured by a conventional method from molten steel refined by a normal steel manufacturing method by an ingot-blubber rolling method or a continuous casting method. You can use .

この発明のスラブ処理方法においては、上述のような成
分の珪素鋼スラブを熱間圧延する前のスラブ加熱を、ウ
オーキングビーム式加熱炉で行なう。このスラブ加熱に
おいては、MnSおよび/またはMnSeを充分に解離
固溶させるため、通常の鋼のスラブ加熱の場合よりも高
温で加熱する必要がある。すなわち、MnSおよび/ま
たはMnSeの解離固溶の程度がスラブ加熱温度に依存
するだめ、最終製品の磁気特性にスラブ加熱温度が強い
影響を及ぼす。本発明者等は、Si2.8〜33%、M
n0.03〜0.08%、SおよびSeを合計量で0.
013〜0.035%それぞれ含有する250rrrr
A厚の連鋳スラブを種々の温度で加熱し、2.8〜3、
0 m+1厚に熱間圧延した後、中間焼鈍を挾む2回の
冷間圧延によって0.3Ofllllの最終板厚とし、
次いで湿水素中において820℃で脱炭焼鈍した後、焼
鈍分離剤としてマグネシアスラリーを塗布し、水素雰囲
気中で1200℃×10時間の最終高温・焼鈍を施して
一方向性珪素鋼板の製品を得る実験を行ない、その実験
におけるスラブ加熱温度(スラブF面温度)と製品の磁
気特性との関係を調べたところ、第3図に示す結果が得
られた。第3図から、良好な製品磁気特行を安定して得
るためには、スラブ下面温度が1270’C以上の高温
となるようにスラブ加熱を施す必要があることが明らか
である。したがってこの発明のスラブ処理方法において
は、ウオーキングビーム式加熱炉におけるスラブ加熱を
、スラブ下面温度1270’C以上と規定した。
In the slab processing method of the present invention, slab heating is performed in a walking beam heating furnace before hot rolling a silicon steel slab having the above-mentioned components. In this slab heating, in order to sufficiently dissociate and dissolve MnS and/or MnSe, it is necessary to heat the slab at a higher temperature than when heating a normal steel slab. That is, since the degree of dissociation and solid solution of MnS and/or MnSe depends on the slab heating temperature, the slab heating temperature has a strong influence on the magnetic properties of the final product. The present inventors have discovered that Si2.8-33%, M
n0.03-0.08%, S and Se in total amount 0.
250rrrr containing 013-0.035% respectively
A continuous cast slab of A thickness is heated at various temperatures, 2.8 to 3,
After hot rolling to a thickness of 0 m + 1, the final plate thickness was made to 0.3 Ofllll by cold rolling twice with intermediate annealing in between,
Next, after decarburizing annealing at 820°C in wet hydrogen, magnesia slurry is applied as an annealing separation agent, and final high temperature annealing is performed at 1200°C for 10 hours in a hydrogen atmosphere to obtain a unidirectional silicon steel sheet product. When an experiment was conducted and the relationship between the slab heating temperature (slab F surface temperature) and the magnetic properties of the product was investigated, the results shown in FIG. 3 were obtained. From FIG. 3, it is clear that in order to stably obtain good product magnetic properties, it is necessary to heat the slab so that the bottom surface temperature of the slab reaches a high temperature of 1270'C or higher. Therefore, in the slab processing method of the present invention, the heating of the slab in the walking beam heating furnace is defined as a slab bottom surface temperature of 1270'C or higher.

ウオーキングビーム式加熱炉によって上述のような高温
にスラブを加熱すれば、既に述べたようにスラブは長手
方向に波状に撓み、そのため加熱炉から抽出後テーブル
ローラーで搬送する際にスラブ下面の曲部分がローラー
から衝撃を受け、結晶粒界に微小割れを生ずることにな
る。このような衝撃による微小割れの発生を防止する方
策を見出すため、前記実験に用いたと同様な成分の珪素
鋼スラブから小試片を切出し、これを1250〜140
0℃の種々の温度に加熱し、加熱後の種々の温度の小試
片表面に重錘を落下させて衝撃を付加する試験を行ない
、その重錘落丁時の試片表面温度と微小割れ発生頻度と
の関係を調べたところ、第4図に示すように微小割れ発
生頻度は重錘落丁時すなわち衝撃付加時の試片表面温度
に強く依存しており、特に試片表面温度が1250℃以
下となれば微小割れ発生頻度が著しく低下することが判
明した。このことから、加熱炉から抽出されたスラブを
テーブルローラーによシ搬送するに際しては、スラブ下
面温度を1250℃以丁の温度に降下させてから搬送す
ることが微小割れ発生の防止に有効であることを見出し
た。
If a slab is heated to the above-mentioned high temperature using a walking beam heating furnace, the slab will bend in a wavy manner in the longitudinal direction as described above, and therefore, when the slab is transported by a table roller after being extracted from the heating furnace, the curved portion of the bottom surface of the slab will be distorted. receives impact from the rollers, resulting in microcracks at grain boundaries. In order to find a way to prevent the occurrence of microcracks due to such impact, a small specimen was cut from a silicon steel slab with the same composition as that used in the experiment, and was
A test was conducted in which a weight was applied to the surface of a small specimen heated to various temperatures of 0°C and then dropped at various temperatures to apply an impact. When we investigated the relationship with the frequency, we found that, as shown in Figure 4, the frequency of microcracks strongly depends on the surface temperature of the specimen when the weight drops, that is, when the impact is applied, and especially when the specimen surface temperature is below 1250℃. It was found that the frequency of occurrence of microcracks was significantly reduced. From this, when conveying the slab extracted from the heating furnace to the table roller, it is effective to prevent the occurrence of microcracks by lowering the temperature of the bottom surface of the slab to a temperature of 1250 degrees Celsius or more before conveying it. I discovered that.

さらに本発明者等は、上記同様な重錘落丁試験を行うに
あたシ、スラブ加熱温度から電離落下温度まで試片表面
温度を降下させる際の冷却速度を、水スプレー噴射、強
制空冷、自然放冷、炉冷等の方法で変化させて実験し、
冷却速度が微小割れ発生に及ぼす影響を調べたところ、
第5図に示す結果が得られた。但しここでスラブ加熱温
度は1300°G、1350°C,1400°Cの3種
類に変化させ、まだ重錘落下時の表面温度は1200°
Cとしだ。第5図から、スラブ加熱温度から重錘落丁温
度までの冷却速度を、3°C/s ec以下の徐冷とす
ることが微小割れ発生防止に有効であることが判明した
。しだがってウオーキングビーム式加熱炉から抽出され
たスラブをテーブルローラーにより搬送する前にスラブ
F面温度1250℃以下に冷却するに際しては、3°C
/sec以丁の冷却速度とすることが微小割れ発生に有
効であることが明らかである。
Furthermore, when performing the same weight drop test as described above, the inventors determined that the cooling rate when lowering the specimen surface temperature from the slab heating temperature to the ionization drop temperature was determined by water spray injection, forced air cooling, natural cooling, etc. Experiments were conducted by changing the temperature using methods such as air cooling and furnace cooling.
When we investigated the effect of cooling rate on the occurrence of microcracks, we found that
The results shown in FIG. 5 were obtained. However, here, the slab heating temperature was changed to three types: 1300°G, 1350°C, and 1400°C, and the surface temperature when the weight was dropped was still 1200°.
C and Toshida. From FIG. 5, it was found that slow cooling from the slab heating temperature to the weight dropping temperature at a slow cooling rate of 3°C/sec or less is effective in preventing the occurrence of microcracks. Therefore, when cooling the slab extracted from the walking beam heating furnace to a temperature of 1250°C or less on the F surface of the slab before conveying it by table rollers,
It is clear that a cooling rate of /sec or more is effective for generating microcracks.

以上のように、スラブ加熱後に3°C/s e c以下
の冷却速度で徐冷して、テーブルローラーにより衝撃が
、与えられる時点でのスラブF面温度を降下させておく
ことによって結晶粒界の微小割れを抑制し得る理由は次
のように考えられる。すなわち鋼中のSおよび/または
Seは、スラブ加熱時に固溶し、その一部は結晶粒界に
高濃度で偏析する。このため粒界は著しく脆化しておシ
、この状態で衝撃が付加されれば、その粒界から容易に
微小割れが生じる。ところがスラブ加熱後、衝撃付加ま
での間にスラブを徐冷すれば、粒界に偏析していたSお
よび/−!、たはSeの一部はMnSおよび/またはM
nSeとして析出して粒界偏析濃度が低Fするため、粒
界強度が回復し、衝撃を与えても割れが発生し難くなる
ものと思われる。
As described above, after heating the slab, it is slowly cooled at a cooling rate of 3°C/sec or less, and by lowering the temperature of the F-face of the slab at the time when an impact is applied by the table roller, grain boundaries are The reason why microcracks can be suppressed is considered to be as follows. That is, S and/or Se in the steel dissolves in solid solution during heating of the slab, and a portion of it segregates at a high concentration at grain boundaries. For this reason, the grain boundaries become extremely brittle, and if an impact is applied in this state, microcracks will easily occur from the grain boundaries. However, if the slab is slowly cooled after it is heated and before the impact is applied, the S and/-! , or a part of Se is MnS and/or M
Since it precipitates as nSe and the grain boundary segregation concentration becomes low, the grain boundary strength is recovered and cracks are thought to be less likely to occur even when subjected to impact.

なおスラブ徐冷の際に、スラブ内部においてもMnSお
よび/″iたはMnSeの析出が生じてSおよび/また
ばSeの固溶量が減少すれば製品磁気特性の劣化を招く
ことになるが、スラブ内部の降温はスラブ表面と比較し
て著しく遅いから、スラブ表面(下面)が割れ防止のた
めに適当な析出状態に達した時点ではスラブ内部は未だ
充分に高濃度の固溶Sおよび/またはSeを保持してお
り、シたがって後述する実施例にも示されているごとく
、製品の磁気特性が劣化するおそれはない。
Note that during slow cooling of the slab, if MnS and/or MnSe are precipitated inside the slab and the solid solution amount of S and/or Se decreases, this will lead to deterioration of the product's magnetic properties. Since the temperature inside the slab decreases significantly slower than that at the slab surface, by the time the slab surface (lower surface) reaches an appropriate precipitation state to prevent cracking, the inside of the slab still has a sufficiently high concentration of solid solution S and/or solid solution. or Se, and therefore there is no risk of deterioration of the magnetic properties of the product, as shown in the examples described later.

上述のようにしてウオ−キングビーム式加熱炉から抽出
されたスラブの下面温度を3°C/s ec以下の冷却
速度で1250°C以Fの温度まで徐冷しだ後、スラブ
をテーブルローラーで熱間圧延機へ搬送し、以下従来公
知の一方向性珪素鋼板の製造方法にしたがって処理する
。例えば熱間圧延後、中間焼鈍を挾む2回の冷間圧延を
施して最終板厚とし、脱炭焼鈍後、焼鈍分離剤を塗布し
て最終高温焼鈍を行えば良い。このようにして得られた
製品の一方向性珪素鋼板は、加熱したスラブのテーブル
ローラー搬送時の微小割れに起因する線状ヘゲ、が発生
せず、しだがって表面性状が従来と比較して格段に良好
となる。
After the bottom surface temperature of the slab extracted from the walking beam heating furnace as described above is slowly cooled to a temperature of 1250°C or higher at a cooling rate of 3°C/sec or less, the slab is placed on a table roller. The steel sheet is transported to a hot rolling mill, and then processed in accordance with a conventionally known method for manufacturing unidirectional silicon steel sheets. For example, after hot rolling, cold rolling is performed twice with intermediate annealing to obtain the final plate thickness, and after decarburization annealing, an annealing separator is applied and final high temperature annealing is performed. The unidirectional silicon steel plate obtained in this way does not suffer from linear flaking caused by micro-cracks when the heated slab is conveyed by table rollers, and therefore has a better surface quality compared to conventional products. It becomes much better.

なお、スラブ加熱後にテーブルローラーで搬送する際の
下限温度は特に規定しないが、続く熱間加工における加
工性の問題や、前述のように内部まで冷却された場合の
MnS 、 MnSeの析出に伴う製品磁気特性の劣化
等の問題から、通常は1000℃程度以上とすることが
望ましい。
Note that there is no specific lower limit temperature for conveying the slab by table rollers after heating, but there are problems with workability during subsequent hot working, and as mentioned above, there are problems with the product due to the precipitation of MnS and MnSe when it is cooled to the inside. Due to problems such as deterioration of magnetic properties, it is usually desirable to set the temperature to about 1000° C. or higher.

以上この発明の実施例を記す。The embodiments of this invention are described above.

実施例 C0,045%、Si 3.05%、 Mn O,08
% 、 5O1007%、SeO,0251!+、Sb
O,030%を含有する250鰭厚の連鋳スラブをウオ
ーキングビーム式加熱炉で加熱し、抽出時のスラブr面
温度を放射温度計による測定で1340’Cとした。ス
ラブ抽出後放冷し、下面温度が1150〜134゜°C
の範囲内の種々の温度に到達口た時点で、テーカローラ
ーによりスラブを搬送した。次いでスラブを熱間圧延し
て3.0 M厚とし、I O00℃X1分間の中間・焼
鈍を挾み、冷延圧下率75チの一次冷間圧延および圧下
率60%の二次冷間圧延を施す2回冷延工程により0.
30 fIlmの最終板厚とし、次いで湿水素中で85
0’CXa分間の脱炭焼鈍を施した後、焼鈍分離剤とし
てのマグネシアスラリーを塗布し、水素中で850 ’
CX 30時間および1200℃XIO時間の仕上焼鈍
を施した。得られた製品の線状ヘゲ発生率、すなわちコ
イル長さ5077mを1ブロツクとした場合のヘゲ発生
ブロックの割合、および磁気特性を調べた結果を、スラ
ブ加熱後テーブルローラー搬送開始時までの放冷時間お
よびテーブルローラー搬送開始時のスラブF面加熱開始
時のスラブ丁面温度と対応して第1表に示す。
Example C0,045%, Si 3.05%, MnO,08
%, 5O1007%, SeO,0251! +, Sb
A continuously cast slab with a thickness of 250 fins containing 30% O was heated in a walking beam heating furnace, and the temperature of the r-surface of the slab at the time of extraction was 1340'C as measured by a radiation thermometer. After extracting the slab, let it cool down until the bottom temperature reaches 1150-134°C.
After reaching various temperatures within the range of 1 to 1, the slabs were conveyed by taker rollers. The slab was then hot rolled to a thickness of 3.0 M, intermediate and annealed at 00°C for 1 minute, and then subjected to primary cold rolling at a cold rolling reduction of 75 inches and secondary cold rolling at a rolling reduction of 60%. 0.
A final thickness of 30 fIlm was obtained, then 85 mm in wet hydrogen.
After decarburizing annealing for 0'CXa minutes, magnesia slurry as an annealing separator was applied and annealing was performed for 850' in hydrogen.
Final annealing was performed at CX for 30 hours and at 1200° C. for XIO hours. The linear flaking occurrence rate of the obtained product, that is, the percentage of flaking blocks when one block has a coil length of 5077 m, and the results of examining the magnetic properties were calculated from the results of the investigation of the magnetic properties after heating the slab and up to the time when table roller conveyance was started. Table 1 shows the cooling time and the slab surface temperature at the start of heating of the slab F surface at the start of table roller conveyance.

第1表から、スラブ抽出後1250’″C以ドに放冷し
てから搬送を開始したスラブでは、製品における線状ヘ
ゲの発生が著しく少なくなっており、しかも製品の磁気
特性はスラブ抽出後1250°Cを越える時点で搬送を
開始した場合と遜色ない優れた値を示すことが明らかと
なった。
From Table 1, it can be seen that for the slabs that were allowed to cool down to 1250'''C or higher after slab extraction and then started to be transported, the occurrence of linear bald spots on the products was significantly reduced, and the magnetic properties of the products were similar to those extracted from the slabs. It has become clear that excellent values comparable to those obtained when conveyance is started when the temperature exceeds 1250°C are shown.

以上の説明で明らかなようにこの発明の珪素鋼スラブ処
理方法によれば、ウオーキングビーム式加熱炉から抽出
された波状の撓みを有するスラブをテーブルローラーに
より搬送するに際して、そのスラブ下面の凸部に対しロ
ーラーから衝撃が加えられても粒界微小割れが発生する
ことが防止され、その結果最終製品としての一方向性珪
素鋼板に線状ヘゲが発生することが有効に防止されるか
ら、表面性状の優れた一方向性珪素鋼板を得ることがで
き、また製品の磁気特性も特に劣化することがない等の
効果が得られる。
As is clear from the above explanation, according to the silicon steel slab processing method of the present invention, when a slab having wavy flexure extracted from a walking beam heating furnace is transported by a table roller, the convex portion on the lower surface of the slab is On the other hand, even if an impact is applied from a roller, grain boundary microcracks are prevented from occurring, and as a result, the occurrence of linear flakes on the unidirectional silicon steel sheet as a final product is effectively prevented. It is possible to obtain a unidirectional silicon steel sheet with excellent properties, and the magnetic properties of the product are not particularly deteriorated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法で使用されるウオーキングビー
ム式加熱炉の一例を示す略解的な断面図、第2図はウオ
ーキングビーム式加熱炉力1ら抽出された珪素鋼スラブ
の一例を示す略解的な(l!l 1Mi図、2g3図は
ウオーキングビーム式加熱炉eこおtする珪素鋼スラブ
加熱時のスラブ下面温度と最終的に11られた一方向性
゛珪素鋼板の磁気特性(磁束密ILLB および鉄損W
1715゜)との関係を示す相1力図、第0 4図は加熱された珪素鋼スラブの小試片に対する重錘落
下試験における重錘落下時の試片表面温度と微小割れ発
生頻度との関係を示す相関図、第5図は同じく重錘落下
試験における所定温度カロ熱後重錘落丁時までの冷却速
度を変化させた場合の冷却速度と微小割れ発生頻度との
関係を示す相1欄図である。 出願人 川崎製鉄株式会社 代理人 弁理士豊田武人 (ほか1名) 第1図 第2 [A 第3図 スラブ加憩圓の1:面遍&(’C) @4図 書入゛片刃o%渚is 屯鍾洛下量、& (’C)
FIG. 1 is a schematic cross-sectional view showing an example of a walking beam heating furnace used in the method of the present invention, and FIG. 2 is a schematic cross-sectional view showing an example of a silicon steel slab extracted from the walking beam heating furnace 1. Figures 1Mi and 2g3 show the bottom surface temperature of the silicon steel slab during heating in a walking beam heating furnace and the magnetic properties (magnetic flux density) of the final unidirectional silicon steel plate. ILLB and iron loss W
Figure 04 is a phase 1 force diagram showing the relationship between the surface temperature of a small specimen of a heated silicon steel slab and the frequency of occurrence of micro-cracks during a weight drop test on a small specimen of a heated silicon steel slab. A correlation diagram showing the relationship, and Figure 5 is the phase 1 column showing the relationship between the cooling rate and the frequency of microcracks when the cooling rate after heating at a predetermined temperature and until the weight falls off in the weight drop test is changed. It is a diagram. Applicant Kawasaki Steel Co., Ltd. Agent Patent Attorney Takehito Toyota (and 1 other person) Figure 1 Figure 2 [A Figure 3 Slab cutting circle 1: Menhen &('C) @ 4 books included゛Single blade o% Nagisa is tunjongrakuge amount, &('C)

Claims (1)

【特許請求の範囲】[Claims] Siを2.5〜4.5%(重量%、以下同じ)、Mnを
0.03〜0.10%、SおよびSeの1種または2種
を合計量で0.005〜0.10%それぞれ含有する珪
素鋼スラブを、ウオーキングビーム式加熱炉でスラブF
面温度が1270℃以上となるように加熱し、加熱炉か
ら抽出後、テーブルローラーにより熱間圧延機へ搬送す
るにあたシ、抽出後にスラブの下面温度を3 ’C/s
ec以下の冷却速度で1250℃以下に徐冷し、しかる
後にスラブをテーブルローラーで搬送することを特徴と
する珪素鋼スラブの処理方法。
2.5 to 4.5% Si (wt%, same below), 0.03 to 0.10% Mn, and 0.005 to 0.10% of one or both of S and Se in total amount. The silicon steel slabs containing each are heated to slab F in a walking beam heating furnace.
After heating the slab to a surface temperature of 1270°C or higher and extracting it from the heating furnace, the bottom surface temperature of the slab is reduced to 3'C/s before being transported to a hot rolling mill using table rollers.
A method for processing a silicon steel slab, which comprises slowly cooling the slab to 1250° C. or lower at a cooling rate of EC or lower, and then conveying the slab with a table roller.
JP18886482A 1982-10-27 1982-10-27 Treatment of silicon steel slab Granted JPS5980719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18886482A JPS5980719A (en) 1982-10-27 1982-10-27 Treatment of silicon steel slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18886482A JPS5980719A (en) 1982-10-27 1982-10-27 Treatment of silicon steel slab

Publications (2)

Publication Number Publication Date
JPS5980719A true JPS5980719A (en) 1984-05-10
JPH0338324B2 JPH0338324B2 (en) 1991-06-10

Family

ID=16231196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18886482A Granted JPS5980719A (en) 1982-10-27 1982-10-27 Treatment of silicon steel slab

Country Status (1)

Country Link
JP (1) JPS5980719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100128A (en) * 1986-06-30 1988-05-02 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet having satisfactory magnetic characteristic and surface property

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440054A (en) * 1977-09-06 1979-03-28 Toshiba Corp Information process system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440054A (en) * 1977-09-06 1979-03-28 Toshiba Corp Information process system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100128A (en) * 1986-06-30 1988-05-02 Kawasaki Steel Corp Manufacture of grain-oriented silicon steel sheet having satisfactory magnetic characteristic and surface property

Also Published As

Publication number Publication date
JPH0338324B2 (en) 1991-06-10

Similar Documents

Publication Publication Date Title
CS213306B2 (en) Method of making the metal sheets from the silicon steel with structure of the edge cube
RU2671033C1 (en) Strips from electrotechnical steel with oriented grain structure production method and strip from electrotechnical steel with oriented grain structure, produced in accordance with the said method
JPH09118964A (en) Grain-directional silicon steel having high volume resistivity
JP6631724B2 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2008032483A1 (en) Process for manufacturing grain-oriented silicon steel sheet of high magnetic flux density
JPS5813606B2 (en) It&#39;s hard to tell what&#39;s going on.
JP2001152250A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
EP0101321B1 (en) Method of producing grain oriented silicon steel sheets or strips having high magnetic induction and low iron loss
CN113825847B (en) Method for producing oriented electrical steel sheet
CN113710822B (en) Method for producing oriented electrical steel sheet
JP6631725B2 (en) Manufacturing method of grain-oriented electrical steel sheet
KR100831756B1 (en) Process for the control of inhibitors distribution in the production of grain oriented electrical steel strips
CN117460851A (en) Method for producing oriented electrical steel sheet
JPS5980719A (en) Treatment of silicon steel slab
US5370748A (en) Process for manufacturing double oriented electrical steel sheet having high magnetic flux density
JP3340754B2 (en) Method for producing unidirectional silicon steel sheet having uniform magnetic properties in the sheet width direction
JP2688146B2 (en) Method for producing unidirectional electrical steel sheet having high magnetic flux density
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JP3389402B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPS63109115A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JP3336172B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH0699750B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JPH01176032A (en) Production of anisotropic silicon steel sheet having uniform magnetic characteristic in cross direction
JPH066747B2 (en) Method for producing unidirectional silicon steel sheet having high magnetic flux density and low iron loss
JP6607176B2 (en) Method for producing grain-oriented electrical steel sheet