JPS5980714A - Manufacture of cast iron parts with high toughness and wear resistance - Google Patents

Manufacture of cast iron parts with high toughness and wear resistance

Info

Publication number
JPS5980714A
JPS5980714A JP19161382A JP19161382A JPS5980714A JP S5980714 A JPS5980714 A JP S5980714A JP 19161382 A JP19161382 A JP 19161382A JP 19161382 A JP19161382 A JP 19161382A JP S5980714 A JPS5980714 A JP S5980714A
Authority
JP
Japan
Prior art keywords
cast iron
wear resistance
air
cooling
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19161382A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
和雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP19161382A priority Critical patent/JPS5980714A/en
Publication of JPS5980714A publication Critical patent/JPS5980714A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture the titled parts without carrying out isothermal transformation by heat-treating an alloy cast iron material having the composition of acicular cast iron to convert the matrix structure into granular pearlite, mechanically working the material, and heat-treating it again to convert the granular pealite into uniform bainite. CONSTITUTION:A material consiting of, by weight, 0.5-2.0% Cu, 1.0-2.0% Mo, 1.0-3.0% Ni and the balance cast iron is heated, held at 800-1,000 deg.C for 0.5- 6.0hr, and allowed to cool in the air. It is heated again, held at 670-760 deg.C for 0.5-6.0hr, and allowed to cool in the air or furnace-cooled. The material heat- treated as mentioned above so as to condition the structure is mechanically worked to the shape of a product. The worked material is heated to 800- 1,000 deg.C to austenitize the matrix structure, and it is allowed to cool in the air to convert the austenite into bainite. Thus, a cast iron product with both high workability (toughness) and wear resistance is manufactured.

Description

【発明の詳細な説明】 本発明は、高靭性、高耐摩耗性を有する鋳鉄部品の製造
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing cast iron parts having high toughness and high wear resistance.

従来より、この種鋳鉄部品の製造法としてアシキュラー
鋳鉄による製造法が周知である。このものは、組成がN
i : 1.0〜8.0重量%と、Mo:0.5〜1.
0重量%と、残部が鋳鉄とからなる合金鋳鉄を鋳造後鋳
放して基地組織をベイナイト化することにより、工数の
多い恒温変態処理を施すことなく高硬度の鋳鉄部品を製
造するようにしたものである。しかるに、上記従来の製
造法では鋳放し後の硬度はHRC28〜44と機械加工
を施すには硬く、加工性、靭性が劣るという問題があっ
た。一方、耐摩耗性を必要とする場合には硬度不足であ
り、このため、通常の組成では焼入れ処理を必要とし、
その結果、水、オイル、ソルト等の冷媒を要して設備が
複雑化するという欠点があった。さらに、肉厚が一定し
ない部品を鋳造する際、冷却速度のばらつきによって均
一なベイナイト地か得られず、そのため硬度にむらがで
きるという不具合も生じた。
Conventionally, a manufacturing method using acicular cast iron has been well known as a manufacturing method for this kind of cast iron parts. This one has a composition of N
i: 1.0-8.0% by weight, Mo: 0.5-1.
By casting an alloy cast iron consisting of 0% by weight and the balance being cast iron, the matrix structure is changed to bainite by casting, thereby producing high-hardness cast iron parts without the need for constant temperature transformation treatment, which requires a lot of man-hours. It is. However, in the above-mentioned conventional manufacturing method, the hardness after as-casting is HRC28-44, which is too hard to perform machining, and there is a problem that workability and toughness are poor. On the other hand, if wear resistance is required, the hardness is insufficient, so the normal composition requires quenching.
As a result, there is a drawback that a refrigerant such as water, oil, salt, etc. is required, making the equipment complicated. Furthermore, when casting parts with inconsistent wall thickness, a uniform bainite base could not be obtained due to variations in the cooling rate, resulting in the problem of uneven hardness.

本発明は、かかる点に鑑みてなされたものであり、上記
アシキュラー鋳鉄域の組成を有する合金鋳鉄を素材とし
、該素材に熱処理を施して一旦基地組織を粒状パーライ
ト化して加工性、靭性の改善および空気焼入性の確保を
図った後機械加工し、その後、再度熱処理を施して基地
組織を均一にベイナイト化することにより耐摩耗性を向
上させ、よって恒温変態処理を施すことなく加工性(靭
性)と耐摩耗性とを両立させることに成功したものであ
る。
The present invention has been made in view of these points, and uses alloy cast iron having a composition in the above-mentioned acicular cast iron region as a material, and heat-treats the material to once transform the base structure into granular pearlite, thereby improving workability and toughness. After ensuring air hardenability, machining is performed, and then heat treatment is performed again to uniformly transform the base structure into bainite, improving wear resistance. This material has succeeded in achieving both toughness and wear resistance.

この目的を達成するため、本発明の鋳鉄部品の製造法は
、組成がCu : 0.5〜2.0重量%と、Mo:1
.0〜2.0重量%と、Ni:1.O〜3.0重量%と
、残部が鋳鉄とからなる素材に対し、800〜1000
°Cで0.5〜6時間加熱保持した後大気放冷し、つぎ
に再度670〜760°Cで0.5〜6時間加熱保持し
た後大気放冷ないし炉冷する組織調整熱処理を施し、そ
の後該素材を製品形状に機械加工し、次に800〜10
00°Cに加熱して基地組織をオーステナイト化した後
、大気放冷してベーナイト化するようにしたものである
To achieve this objective, the method for manufacturing cast iron parts of the present invention has a composition of Cu: 0.5 to 2.0% by weight and Mo: 1.
.. 0 to 2.0% by weight, and Ni: 1. 800 to 1000 for a material consisting of O to 3.0% by weight and the balance being cast iron.
After heating and holding at 670 to 760°C for 0.5 to 6 hours, cooling in the air, then heating and holding at 670 to 760°C for 0.5 to 6 hours, followed by cooling in the air or in a furnace. The material is then machined into a product shape, and then
After heating to 00°C to austenite the matrix structure, the base structure is left to cool in the atmosphere to become bainite.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明に用いる素材は、その組成は、Cuが0.5〜2
.0重量%と、MOが1.0〜2.0重量%と、Niが
1.0’ 〜3.0重量%と、残部がC,Si、Mn。
The composition of the material used in the present invention is that Cu is 0.5 to 2.
.. 0% by weight, MO 1.0 to 2.0% by weight, Ni 1.0' to 3.0% by weight, and the remainder C, Si, and Mn.

P、Sを通常の組成範囲内で配合する片状黒鉛鋳鉄とか
らなるものである。    − ここで、上記各元素の配合比率の限定理由について説明
するに、Cu 、 Mo 、 Niの各元素とも下限値
以下にすると、後述の3次熱処理における大気放冷時に
上記3元素の併用効果によるベイナイト化が達成できな
いため、耐摩耗性に優れた硬度の高いベイナイト地が得
られず、特にCuを0.5重量%以下にすると、後述す
る1次、2次熱処理において粒状パーライトを得る際、
パーライト分解抵抗が低下するためである。一方、各元
素とも上限値以上にすると、上記併用効果が飽和するた
め、配合した元素のうち無駄になる量が増えその分コス
トアップとなり、特にCuを2,0重量%以上にすると
、粒界に多量の偏析が生じて靭性の低下を招くという理
由による。
It consists of flake graphite cast iron containing P and S within the usual composition range. - Here, to explain the reason for limiting the blending ratio of each of the above elements, if each element of Cu, Mo, and Ni is kept below the lower limit value, the effect of the combination of the above three elements will be reduced during air cooling in the tertiary heat treatment described later. Since bainite formation cannot be achieved, a hard bainite base with excellent wear resistance cannot be obtained, and especially when Cu is reduced to 0.5% by weight or less, when obtaining granular pearlite in the primary and secondary heat treatments described below,
This is because pearlite decomposition resistance decreases. On the other hand, if the content of each element exceeds the upper limit, the above-mentioned combined effect will be saturated, and the amount of the blended elements will be wasted, resulting in an increase in cost.In particular, if Cu is made more than 2.0% by weight, the grain boundary This is because a large amount of segregation occurs in the steel, resulting in a decrease in toughness.

上記素材に対し、先ず800〜1000°Cで0.5〜
6.0時間加熱保持した後大気放冷する1次熱処理と、
その後、再度670〜760°Cで0.5〜6.0時間
加熱保持した後大気放冷ないし炉冷する2次熱処理とに
よる組織調整熱処理を施して、基地組織の30〜65%
(面積率)を粒状iR−ライト化する。このことにより
硬度が大巾に低下して加工性、靭性を高めるとともに調
質を行って3次熱処理における空気焼入性を確保するこ
とができる。
For the above materials, firstly, at 800-1000°C,
Primary heat treatment of heating and holding for 6.0 hours and then cooling to the atmosphere;
After that, a structure adjustment heat treatment is performed by heating and holding at 670 to 760°C for 0.5 to 6.0 hours, followed by cooling in the air or in a furnace.
(Area ratio) is converted into granular iR-write. This greatly reduces the hardness, improving workability and toughness, and also makes it possible to ensure air hardenability in the tertiary heat treatment by performing thermal refining.

この場合、1次熱処理での加熱温度を800〜1000
°Cの範囲に限定するのは、800°C以下では鋳造組
織の均一化が図れず、一方、1000°C以上では結晶
粒が粗大化して靭性が低下するためである。また、その
加熱保持時間を0.5〜6.0時間の範囲に限定するの
は、0.5時間以下では鋳造組織の均一化が図れず、一
方、6.0時間以上では鋳造組織の均一化が飽和すると
ともに生産性力(低下するという理由による。また、そ
の際の冷却方法は大気放冷としたが、これは、徐冷(炉
冷も含む)にすると2次熱処理において必要量の粒状パ
ーライトが得られないためである。
In this case, the heating temperature in the first heat treatment is set to 800 to 1000.
The reason for limiting the temperature range is that below 800°C, the casting structure cannot be made uniform, while above 1000°C, the crystal grains become coarse and the toughness decreases. In addition, limiting the heating holding time to a range of 0.5 to 6.0 hours is because if it is less than 0.5 hours, the casting structure cannot be made uniform, whereas if it is more than 6.0 hours, the casting structure cannot be made uniform. This is because productivity (decreases) as the temperature reaches saturation.In addition, the cooling method at that time was air cooling, but slow cooling (including furnace cooling) would reduce the amount required for secondary heat treatment. This is because granular pearlite cannot be obtained.

一方、2次熱処理での加熱温度を6.70〜760°C
の範囲に限定するのは、670 ’C以下ではノ々−ラ
イトの分解に長時間を要するので生産性が低下するとと
もに硬度が低下し難いため加工性、靭性の大巾な低下を
招き、一方、760°C以上では/’−ライトが粒状化
せず2相混合組織となり空気焼入′れ性は向上するもの
の加工性、靭性が大巾に低下するためである。また、そ
の加熱保持時間を0.5〜6.0時間の範囲に限定する
のは、0.5時間以下ではパーライトの分解が不充分と
なり3次熱処理でのオーステナイト化に要する時間は短
くてすむが加工性、靭性が大巾に低下し、一方、6,0
時間以上ではパーライトの粒状化が一層進んでフェライ
ト化してしまい空気焼入れ性が低下するという理由によ
る。また、その際の冷却方法は、大気放冷および炉冷の
いずれでも良いが生産性の面から大気放冷が望ましい。
On the other hand, the heating temperature in the secondary heat treatment was 6.70 to 760°C.
The reason why it is limited to this range is that below 670'C, it takes a long time to decompose the nonorite, which reduces productivity, and it also makes it difficult to reduce the hardness, resulting in a drastic decrease in workability and toughness. This is because at temperatures above 760 DEG C., the /'-lite does not become granular and forms a two-phase mixed structure, which improves air hardenability but greatly reduces workability and toughness. In addition, the reason why the heating holding time is limited to the range of 0.5 to 6.0 hours is because if it is less than 0.5 hours, the decomposition of pearlite will be insufficient and the time required for austenite formation in the tertiary heat treatment will be short. However, the workability and toughness decreased significantly;
This is because if the heating time is exceeded, the granulation of pearlite will further progress and become ferrite, resulting in a decrease in air hardenability. Further, the cooling method at that time may be either air cooling or furnace cooling, but air cooling is preferable from the viewpoint of productivity.

そして、上記のように熱処理が施されて加工性、靭性が
高められた素材を製品形状に機械加工する。
Then, the material, which has been heat-treated as described above to have improved workability and toughness, is machined into a product shape.

この場合、この機械加工を容易に行うことができる。In this case, this machining can be easily performed.

しかる後、上記機械加工された素材に対し800〜10
00°Cに加熱して基地組織をオーステナイト化した後
、大気放冷して均一なベーナイト化を図る3次熱処理を
施す。そのことにより、硬度が大巾に高められて耐摩耗
性を高めることができる。
After that, 800 to 10
After heating to 00°C to austenite the base structure, a tertiary heat treatment is performed to uniformly form bainite by cooling in the atmosphere. As a result, the hardness can be greatly increased and the wear resistance can be improved.

その際、3次熱処理の加熱温度を800〜1000°C
の範囲に限定するのは、800°C以下では充分な硬度
のベイナイト地が得られず耐摩耗性が劣り、一方、10
00°C以上では結晶粒の粗大化により靭性が低下する
という理由による。
At that time, the heating temperature for the tertiary heat treatment was set at 800 to 1000°C.
The reason why it is limited to the range of
This is because at temperatures above 00°C, toughness decreases due to coarsening of crystal grains.

したがって、本発明の製造法では、1次および2次熱処
理によって基地組織を粒状パーライト化することにより
硬度を下げることができるので、加工性、靭性を高めて
機械加工を容易に行うことが可能な上、最終的に得られ
る鋳鉄部品は、3次熱処理により工数の多い恒温変態処
理を施すことなく硬度を均一に上げて耐摩耗性を高めた
ものにすることができる。
Therefore, in the manufacturing method of the present invention, the hardness can be lowered by converting the base structure into granular pearlite through primary and secondary heat treatments, which improves workability and toughness and facilitates machining. Moreover, the finally obtained cast iron parts can be made to have uniform hardness and enhanced wear resistance through tertiary heat treatment without performing isothermal transformation treatment, which requires a large number of steps.

尚、本発明の製造法によりギヤ等疲労強度を必要とする
鋳造部品を製造する場合は、上記3次熱処理を施した後
、ショットピーニング処理を施して疲労強度を向上させ
ることが望ましい。
In addition, when manufacturing a cast part that requires fatigue strength, such as a gear, by the manufacturing method of the present invention, it is desirable to perform shot peening treatment to improve the fatigue strength after performing the above-mentioned tertiary heat treatment.

次に、具体的実施例について説明すると、供試材として
下記第1表に示す組成を有する本発明材I〜■と比較材
としての浸炭材とを用意した。
Next, specific examples will be described. Inventive materials I to (1) having the compositions shown in Table 1 below and a carburized material as a comparative material were prepared as test materials.

このうち、本発明材■は、920 ’Cの温度に3.5
時間保持した後大気放冷し、その後再度720 ’Cの
温度に4.5時間保持した後大気放冷する1次および2
次熱処理を施した。この状態で硬度はHRc15〜19
にまで下がっており、加工性、靭性を高めて機械加工の
容易化が可能であることを示している。尚、基地組織中
黒鉛の体積率は10%10yx”、粒状バーライトの面
積率は50%)/cm 2であった。
Among these, the present invention material ① had a temperature of 3.5
1st and 2nd stage, held for 4.5 hours and then cooled to the atmosphere.
Next, heat treatment was performed. In this state, the hardness is HRc15-19
This shows that it is possible to improve workability and toughness and facilitate machining. The volume fraction of graphite in the base structure was 10%10yx'', and the area fraction of granular barite was 50%)/cm2.

つぎに、この供試材を900 ’Cの温度に15秒間保
持した後強制空冷する3次熱処理を施した。
Next, this test material was subjected to a tertiary heat treatment in which it was held at a temperature of 900'C for 15 seconds and then forcedly air cooled.

その結果、硬度はHRC52〜54となり従来のアシキ
ュラー鋳鉄の)(RC28〜44を大きく上回る値を示
している。また、基地組織中ベイナイトの面積率は60
〜70%、残留オーステナイトの面積率は20〜30%
であり、それぞれ均一に分布していた。
As a result, the hardness was HRC52-54, which is much higher than that of conventional acicular cast iron (RC28-44).Also, the area ratio of bainite in the matrix structure was 60
~70%, area ratio of retained austenite is 20-30%
and were uniformly distributed.

また、上記本発明材Iに対して3次熱処理における冷却
方法を強制空冷に代えて自然放冷にしたところ、硬度(
よやはり従来のアシキュラー鋳鉄を上回る。HRC47
〜49を示した。
In addition, when the cooling method for the above-mentioned invention material I was natural cooling instead of forced air cooling in the tertiary heat treatment, the hardness (
It still outperforms conventional acicular cast iron. HRC47
~49 was shown.

これら2通りの3次熱処理を施した本発明材■と浸炭材
Scr 22 (HRC62)とにより耐摩耗性テスト
を行った。テストは、第1図に示すように2つの供試材
を用い、一方の供試材により形成し一定速度で回転する
回転軸1上に固定したディスク2と、他方の供試材によ
り形成し上記回転軸1とオフセットして固定しかつディ
スク2上面に荷重P (Kg)で押圧されるピン3とか
らなる試験機Tによるものである。尚、テスト条件とし
ては、摩擦速度は2.761 m/secで一定とし、
摩擦面積は9mm2、テスト時間は5分間、回転軸1と
ピン3とのオフセット量は4 Q 7nmであり、接触
状態は乾式とした。そのテスト結果を、荷重Pに対する
ピン3の摩耗量により第2図に示す。
A wear resistance test was conducted using the present invention material (1) and the carburized material Scr 22 (HRC62), which had been subjected to these two types of tertiary heat treatment. The test was carried out using two test materials, as shown in Figure 1, with a disk 2 formed of one test material and fixed on a rotating shaft 1 rotating at a constant speed, and a disk 2 formed of the other test material. This is based on a testing machine T consisting of a pin 3 fixed offset from the rotating shaft 1 and pressed against the upper surface of the disk 2 with a load P (Kg). The test conditions are that the friction speed is constant at 2.761 m/sec,
The friction area was 9 mm2, the test time was 5 minutes, the amount of offset between the rotating shaft 1 and the pin 3 was 4 Q 7 nm, and the contact condition was dry. The test results are shown in FIG. 2 in terms of the wear amount of the pin 3 with respect to the load P.

第2図において特性線Aは、ディスク2およびピン3を
ともに浸炭材により形成した場合を示すが、荷重Pが4
 Kifの時に焼付きを起している。
In FIG. 2, characteristic line A shows the case where both the disk 2 and the pin 3 are made of carburized material, and the load P is 4.
Burn-in occurs when using KIF.

これに対して、特性線BおよびBは、ディスク2および
ピン3をともに本発明材Iにより形成した場合を示し、
3次熱処理における冷却方法をそれぞれ強制空冷および
自然放冷としたものである。
On the other hand, characteristic lines B and B show the case where both the disk 2 and the pin 3 are made of the present invention material I,
The cooling methods in the tertiary heat treatment were forced air cooling and natural cooling, respectively.

これによると、強制空冷の場合と自然放冷の場合とでは
その特性上大差はなく、上記ディスク2およびピン3を
ともに浸炭材により形成した場合に比べて双方とも耐摩
耗性は同程度であるが、焼(−1きを起す限界の荷重P
が大巾に上っている。さらに、特性線CおよびC′は、
ディスク2を浸炭材により形成するとともに、ピン3を
本発明材1により形成した場合を示し、3次熱処理にお
ける冷却方法をそれぞれ強制空冷および自然放冷とした
ものである。これによると、やはり強制空冷の場合と自
然放冷の場合とではその特性上大差はないが、上記ディ
スク2およびピン3をともに本発明材■により形成した
場合に比べて双方とも耐摩耗性が向上し、しかもディス
ク2およびピン3をともに浸炭材により形成した場合に
比べて双方とも焼付きを起す限界の荷重Pが大巾に上っ
ている。
According to this, there is no major difference in characteristics between forced air cooling and natural cooling, and both have the same wear resistance compared to when both the disk 2 and pin 3 are made of carburized material. However, the limit load P that causes sintering (-1
is on the hood. Furthermore, the characteristic lines C and C' are
A case is shown in which the disk 2 is made of a carburized material and the pin 3 is made of the material 1 of the present invention, and the cooling methods in the tertiary heat treatment are forced air cooling and natural cooling, respectively. According to this, although there is not much difference in characteristics between forced air cooling and natural cooling, both have better wear resistance than when both the disk 2 and pin 3 are made of the inventive material (■). Furthermore, the limit load P at which seizure occurs in both the disk 2 and the pin 3 is significantly higher than in the case where both the disk 2 and the pin 3 are made of carburized material.

さらに、第3図は本発明材1〜■および浸炭材による耐
摩耗テストのテスト結果を2種類の荷重Pに対するピン
3の摩耗量により示したものである。
Further, FIG. 3 shows the test results of the wear resistance test using the present invention materials 1 to ① and the carburized material in terms of the wear amount of the pin 3 with respect to two types of loads P.

本発明品■〜■は、それぞれ上記本発明材■に施した場
合と同一の条件で1次〜3次熱処理を施し、3次熱処理
における冷却は自然放冷によった。
Inventive products (1) to (2) were each subjected to first to third heat treatments under the same conditions as those applied to the above-mentioned inventive material (1), and cooling in the third heat treatment was performed by natural cooling.

また、ディスク2およびピン3の材料はともに同一材料
を用いてテストした。これによると、本発明品I−II
Iによる摩耗量は、浸炭材による摩耗量と同等もしくは
それ以下であることが判る。
Further, the same material was used for both the disk 2 and the pin 3 in the test. According to this, the products of the present invention I-II
It can be seen that the amount of wear due to I is equal to or less than the amount of wear due to carburized material.

以上説明したように、本発明の製造法によれば、アシキ
ュラー鋳鉄域の組成を有する合金鋳鉄の素材に熱処理を
施して一旦基地組織を粒状パーライト化した後製品形状
に機械加工し、その後再度熱処理を施して基地組織を均
一にベイナイト化するようにしたので、工数の多い恒温
変態処理を施すことなく加工性、靭性と耐摩耗性という
相反する要件を両立させ、高靭性、高耐摩耗性を有する
鋳鉄部品の製造を簡易に行うことができるという優れた
効果を奏するものである。
As explained above, according to the manufacturing method of the present invention, a material of alloyed cast iron having a composition in the acicular cast iron region is heat-treated to transform the base structure into granular pearlite, then machined into a product shape, and then heat-treated again. As a result, the matrix structure is uniformly transformed into bainite, achieving both the contradictory requirements of workability, toughness, and wear resistance, without requiring a time-consuming isothermal transformation treatment, resulting in high toughness and high wear resistance. This has the excellent effect of simplifying the manufacture of cast iron parts having the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐摩耗テストの試験機を示す概略図、第2図お
よび第3図は荷重Pに対するピンの摩耗量を表わしたグ
ラフである。
FIG. 1 is a schematic diagram showing a testing machine for wear resistance testing, and FIGS. 2 and 3 are graphs showing the amount of pin wear against load P.

Claims (1)

【特許請求の範囲】[Claims] (1)組成がCu : 0.5〜2.0重量%と、Mo
 : 1.0〜2.0重量%と、Ni : 1.0〜3
,0重量%と、残部が鋳鉄とからなる素材に対し、80
0〜1000°Cで0.5〜6.0時間加熱保持した後
大気放冷し、つぎに再度670〜760′cで0.5〜
6.0時間加熱保持した後大気放冷ないし炉冷する組織
調整熱処理を施し、その後該素材を製品形状に機械加工
し、次に800〜1000 ’Cに加熱して基地組織を
オーステナイト化した後、大気放冷してベーナイト化す
ることを特徴とする高靭性、高耐摩耗性を有する鋳鉄部
品の製造法。
(1) Composition: Cu: 0.5 to 2.0% by weight, Mo
: 1.0-2.0% by weight, Ni: 1.0-3
,0% by weight and the balance is cast iron, 80% by weight.
After heating and holding at 0 to 1000°C for 0.5 to 6.0 hours, it is allowed to cool in the atmosphere, and then heated again at 670 to 760'C for 0.5 to 6.0 hours.
After being heated and held for 6.0 hours, a structure adjustment heat treatment is performed in which the material is cooled in the air or in a furnace, and then the material is machined into a product shape, and then heated to 800 to 1000'C to austenite the base structure. A method for manufacturing cast iron parts having high toughness and high wear resistance, which is characterized by forming bainite by cooling in the atmosphere.
JP19161382A 1982-10-30 1982-10-30 Manufacture of cast iron parts with high toughness and wear resistance Pending JPS5980714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19161382A JPS5980714A (en) 1982-10-30 1982-10-30 Manufacture of cast iron parts with high toughness and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19161382A JPS5980714A (en) 1982-10-30 1982-10-30 Manufacture of cast iron parts with high toughness and wear resistance

Publications (1)

Publication Number Publication Date
JPS5980714A true JPS5980714A (en) 1984-05-10

Family

ID=16277542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19161382A Pending JPS5980714A (en) 1982-10-30 1982-10-30 Manufacture of cast iron parts with high toughness and wear resistance

Country Status (1)

Country Link
JP (1) JPS5980714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288011A (en) * 1985-06-13 1986-12-18 Kubota Ltd Production of high strength casting spheroidal graphite cast iron
JPH01136932A (en) * 1987-11-20 1989-05-30 Kurimoto Ltd Manufacture of bainite ductile cast iron tube
CN113355495A (en) * 2021-05-31 2021-09-07 东风商用车有限公司 Conditioning vermicular graphite cast iron, conditioning method of vermicular graphite cast iron and application of conditioning method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288011A (en) * 1985-06-13 1986-12-18 Kubota Ltd Production of high strength casting spheroidal graphite cast iron
JPH01136932A (en) * 1987-11-20 1989-05-30 Kurimoto Ltd Manufacture of bainite ductile cast iron tube
JPH0255489B2 (en) * 1987-11-20 1990-11-27 Kurimoto Ltd
CN113355495A (en) * 2021-05-31 2021-09-07 东风商用车有限公司 Conditioning vermicular graphite cast iron, conditioning method of vermicular graphite cast iron and application of conditioning method

Similar Documents

Publication Publication Date Title
US8257514B2 (en) Ferrous seal sliding parts and producing method thereof
JPS5910988B2 (en) Spheroidal graphite cast iron and its manufacturing method
JPH0461047B2 (en)
JPS589813B2 (en) Manufacturing method for non-thermal forged steel products
JPS5980714A (en) Manufacture of cast iron parts with high toughness and wear resistance
US4666533A (en) Hardenable cast iron and the method of making cast iron
JPS60187621A (en) Heat treatment of spheroidal graphite cast iron
JP4631617B2 (en) Manufacturing method of steel parts for bearings with excellent fatigue characteristics
JP2001131678A (en) High strength spheroidal graphite cast iron and producing method therefor
JPS6154864B2 (en)
CN112795722A (en) Austempering technology for austempered ductile iron
JPS6338420B2 (en)
JPH05239602A (en) High bearing pressure parts
JPS62994B2 (en)
JP3701145B2 (en) Crankshaft manufacturing method
JPH0227408B2 (en)
JP2002146438A (en) Method for producing case-hardening steel having excellent cold workability and grain size characteristic
JPH01104718A (en) Manufacture of bar stock or wire rod for cold forging
JPS5867844A (en) Spherical graphite cast iron excellent in tenacity and preparation thereof
JPS61210151A (en) Casting of spheroidal graphite cast iron
JPH02166257A (en) Spheroidal graphite cast iron and its production
JPS6196054A (en) Spheroidal graphite cast iron and manufacture thereof
JPH0379739A (en) High strength and high toughness spheroidal graphite cast iron
JPH1112685A (en) Manufacture of nitriding steel and machine structure part
JPH0116886B2 (en)