JPS5980122A - Method of dissipating heat of storage battery charger/discharger - Google Patents

Method of dissipating heat of storage battery charger/discharger

Info

Publication number
JPS5980122A
JPS5980122A JP57190066A JP19006682A JPS5980122A JP S5980122 A JPS5980122 A JP S5980122A JP 57190066 A JP57190066 A JP 57190066A JP 19006682 A JP19006682 A JP 19006682A JP S5980122 A JPS5980122 A JP S5980122A
Authority
JP
Japan
Prior art keywords
storage battery
semiconductor element
controlling
current
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57190066A
Other languages
Japanese (ja)
Inventor
努 尾形
良 田中
北川 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57190066A priority Critical patent/JPS5980122A/en
Publication of JPS5980122A publication Critical patent/JPS5980122A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、蓄電池充放電装置の充放電制御用の半導体素
子の放熱方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for dissipating heat from a semiconductor element for controlling charging and discharging of a storage battery charging and discharging device.

鉛給電池のような二次電池は、自己放電による容量低下
を防ぐために、′帛時維持充電され、所定の容量を確保
している。しかしながら、実際の蓄電池は、充放電サイ
クルの繰り返しや長時間の使用による経年劣化により容
量が低下し、停電等の非常時に必要な電力を供給できな
くなる膚がある。
In order to prevent capacity reduction due to self-discharge, secondary batteries such as lead-fed batteries are constantly charged to maintain a predetermined capacity. However, actual storage batteries tend to lose capacity due to aging due to repeated charging/discharging cycles and long-term use, making it impossible to supply the necessary power in emergencies such as power outages.

このため、蓄電池の劣化状態を把握するために、定期的
に蓄電池の放電試験を行い、電池容量を確認し、容量低
下が著しい場合は、取替等の処置を行っている。
For this reason, in order to understand the state of deterioration of storage batteries, discharge tests are periodically performed on storage batteries to check the battery capacity, and if the capacity has significantly decreased, measures such as replacement are taken.

第1図はその試験をするための従来の蓄電池充放電装置
を示すものであり、1は商用電源、2は整流部、3は鉛
蓄電池である。4はその蓄電池3の充電時にその充電電
流を一定に制御するための充電電流制御用半導体素子、
5は蓄電7I!!3の放電時にその放電電流を一定に制
御するための放電電流制御用半導体素子、6.7はそれ
ぞれ制御用半導体素子4.5の損失によって住しる熱を
放り“ハするための放熱フィンである。8は制御用半導
体素子4,5を流れる電流を一定に制御するための制御
回路、9は充放電切換用のスイ・ノチ、10は充放電電
流を検出するためのシャントである。
FIG. 1 shows a conventional storage battery charging/discharging device for testing, in which 1 is a commercial power source, 2 is a rectifier, and 3 is a lead-acid battery. 4 is a charging current control semiconductor element for controlling the charging current to be constant when charging the storage battery 3;
5 is electricity storage 7I! ! 3 is a discharge current control semiconductor element for controlling the discharge current to be constant during discharge, and 6.7 is a heat dissipation fin for dissipating the heat generated by the loss of the control semiconductor element 4.5. 8 is a control circuit for controlling the current flowing through the control semiconductor elements 4 and 5 at a constant level, 9 is a switch for switching charging and discharging, and 10 is a shunt for detecting the charging and discharging current.

この充放電装置は、蓄電/I!13の放電試験を実施す
る場合には、まずスイッチ9を実線の側に切り換えて、
制御回路8が放電電流制御用半導体素子5側に接続され
ろうにする。このようにすると、充電電流制御用半導体
素子4には駆動信号が送出さないために、その半導体素
子4の入出力間はオープン状態となる。一方、放電電流
制御用半導体素子5には駆動信号が送出されるために、
その半導体素子5は導通状態となり、蓄電池3はその半
導体素子5とシャント10を経由して放電する。
This charging/discharging device is a power storage/I! When carrying out the discharge test No. 13, first switch switch 9 to the solid line side,
The control circuit 8 is connected to the discharge current control semiconductor element 5 side. In this case, since no drive signal is sent to the charging current control semiconductor element 4, the input and output of the semiconductor element 4 are in an open state. On the other hand, since a drive signal is sent to the discharge current control semiconductor element 5,
The semiconductor element 5 becomes conductive, and the storage battery 3 discharges via the semiconductor element 5 and the shunt 10.

この時の放電電流は、シャント10により検出され、そ
の検出信号が制御回路8に人力して、その内部でその検
出信号と基準値とか比較され、この比較後の誤差信号が
スイッチ9を経由して半導体素子5に送出され、その半
導体素子5のインピーダンスが制御されて、その時の放
電電流が一定となる。
The discharge current at this time is detected by the shunt 10, and the detection signal is manually input to the control circuit 8, where it is compared with a reference value, etc., and the error signal after this comparison is sent via the switch 9. The discharge current is then sent to the semiconductor element 5, the impedance of the semiconductor element 5 is controlled, and the discharge current at that time becomes constant.

そして、このように蓄電池3が一定電流で放電し、その
蓄電池の電圧が放電終止電圧になった時点でスイッチ9
を実線側から破線側に切り換えると、半導体素子5がオ
ープン状態となり、他方の半導体素子4が導通する。
Then, when the storage battery 3 is discharged with a constant current and the voltage of the storage battery reaches the discharge end voltage, the switch 9 is activated.
When switching from the solid line side to the broken line side, the semiconductor element 5 becomes open, and the other semiconductor element 4 becomes conductive.

これにより、蓄電池3は整流部2、半導体素子4および
シャント10を経由して流れる電流により充電される。
Thereby, the storage battery 3 is charged by the current flowing through the rectifier 2, the semiconductor element 4, and the shunt 10.

この時は、その充電電流がシャント10によって検出さ
れ、制御回路8によってその検出信号と基準値が比較さ
れ、この比較後の誤差信号がスイッチ9を経由して半導
体素子4に送出され、その半導体素子4のインピーダン
スが制御されて、充電電流が一定となる。この充電は、
放電量のおよそ120%〜130%行った時点で通電は
終了とする。
At this time, the charging current is detected by the shunt 10, the detection signal is compared with a reference value by the control circuit 8, and the error signal after this comparison is sent to the semiconductor element 4 via the switch 9. The impedance of the element 4 is controlled and the charging current becomes constant. This charging is
The energization is terminated when approximately 120% to 130% of the discharge amount is reached.

なお、蓄電池3の容量は、放?1!電流と、放電開始か
ら放電終了までの時間を掛は合わせて放電量を求め、こ
れを温度補正することにより、求める。
In addition, the capacity of storage battery 3 is 1! The amount of discharge is determined by multiplying the current by the time from the start of discharge to the end of discharge, and this is determined by temperature correction.

このような充放電装置の制御用半導体素子4゜5の放熱
方法として、従来では、上記したようにその制御用半導
体素子4.5にそれぞれ放熱フィン6.7を設けている
Conventionally, as a method for dissipating heat from the control semiconductor elements 4.5 of such a charging/discharging device, each of the control semiconductor elements 4.5 is provided with a heat dissipation fin 6.7, as described above.

しかし、制御用半導体素子4,5のそれぞれに放熱フィ
ン6.7を設けると、蓄電池3の容量、9まり充放電電
流が大きくなると、その制御用半導体素子4,5の損失
が大きくなり、放熱フィン6.7か大形となる結果、充
放電装置も大形となるという欠点があった。
However, if heat dissipation fins 6.7 are provided for each of the control semiconductor elements 4 and 5, as the capacity of the storage battery 3 increases and the charging/discharging current increases, the loss of the control semiconductor elements 4 and 5 increases, causing heat dissipation. As a result of the 6.7 large fins, there was a drawback that the charging/discharging device also became large.

本発明は斯かる点に鑑みて成されたもので、その目的は
、充電電流制御用半導体素子用と放電電流制御用半導体
素子用の放熱フィンを供用して、装置の小形化を図るこ
とができるようにした放熱方法を提供することである。
The present invention has been made in view of the above, and an object of the present invention is to use heat dissipation fins for a semiconductor element for charging current control and a semiconductor element for discharging current control, thereby reducing the size of the device. An object of the present invention is to provide a heat dissipation method that makes it possible to dissipate heat.

以下、本発明の実施例について説明する。第2図はその
一実施例を示すものであり、第1図と同一のものには同
一符号を附した。この実施例においては、充電電流制御
用半導体素子4と放電電流制御用半導体素子5とを一個
の放熱フィン11に取り伺けている。第1図において説
明したように、充電と放電は同時には行われず、よって
放電電流制御用半導体素子5が動作している時には充電
ta原流制御半導体素子4は動作せず、また充電電流制
御用半導体素子4が動作している時には放電電流制御用
半導体素子5は動作しない。従って、両年導体素子4,
5用の放熱フィンを別々に設けず、第2図に示すように
、第1図における半導体素子4.5用のいずれかの大き
さの放熱フィン11に両年導体素子4.5を取り付ける
。つまり、第2図に示した放熱フィン11は、第1図に
おりノる放熱フィン6または7と同じ大きさのものであ
る。
Examples of the present invention will be described below. FIG. 2 shows one embodiment, and the same parts as in FIG. 1 are given the same reference numerals. In this embodiment, the charging current controlling semiconductor element 4 and the discharging current controlling semiconductor element 5 are arranged in one heat dissipating fin 11. As explained in FIG. 1, charging and discharging are not performed at the same time, so when the discharge current control semiconductor element 5 is operating, the charging ta source current control semiconductor element 4 is not operating, and the charging current control semiconductor element 4 is not operating. When the semiconductor element 4 is operating, the discharge current control semiconductor element 5 is not operating. Therefore, both conductor elements 4,
As shown in FIG. 2, the conductor element 4.5 for both years is attached to the heat radiation fin 11 of any size for the semiconductor element 4.5 in FIG. That is, the radiation fin 11 shown in FIG. 2 has the same size as the radiation fin 6 or 7 shown in FIG.

以上説明したように、本発明によれば、充電電流制御用
半導体素子と放電電流制御用半導体素子の放熱フィンを
供用することができるので、装置の小形化を実現するこ
とができ、また経済的にも有利となるという特徴がある
As explained above, according to the present invention, the heat dissipation fins of the semiconductor element for controlling the charging current and the semiconductor element for controlling the discharging current can be used, so the device can be made smaller and more economical. It also has some advantageous features.

【図面の簡単な説明】 第1図は従来の蓄電池充放電装置の回路図、第2図は本
発明の一実施例の蓄電池充放電装置の回路図である。 1・・・商用電源、2・・・整流部、3・・・鉛給電池
、4・・・充電電流制御用半導体素子、5・・・放電電
流制御用半導体素子、6.7・・・放熱フィン、8・・
・制御回路、9・・・充放電切換用のスイッチ、lO・
・・シャント、11・・・放熱フィン。 相許出)卵入 日本電信電話公社 代 理 人 弁理士 長尾當明
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a conventional storage battery charging/discharging device, and FIG. 2 is a circuit diagram of a storage battery charging/discharging device according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Commercial power supply, 2... Rectifier, 3... Lead-fed battery, 4... Semiconductor element for charging current control, 5... Semiconductor element for discharging current control, 6.7... Heat dissipation fin, 8...
・Control circuit, 9... Switch for charge/discharge switching, lO・
...Shunt, 11...Radiating fin. (Saikyo Ishi) Tamai, Nippon Telegraph and Telephone Public Corporation Representative, Patent Attorney Tomei Nagao

Claims (1)

【特許請求の範囲】[Claims] (1)、商用電源を入力とし、蓄電池充電電流制御用半
導体素子および蓄電池放電電流制御用半導体素子を自す
る蓄電池充放電装置において、上記蓄電池充電電流制御
用半導体素子あるいは上記蓄電池放電電流制御用半導体
素子で発生する損失による熱を放熱可能な大きさの放熱
フィンに、上記蓄電池充電電流制御用半導体素子および
上記蓄電池放電電流制御用半導体素子を実装し、上記蓄
電池充電電流制御用半導体素子および上記蓄電池放電電
流制御用半導体素子で発生する熱を放熱することを特徴
とする蓄電池充放電装置の放熱方法。
(1) In a storage battery charging/discharging device that receives a commercial power source and includes a semiconductor element for controlling a storage battery charging current and a semiconductor element for controlling a storage battery discharging current, the semiconductor element for controlling the storage battery charging current or the semiconductor element for controlling the storage battery discharging current is provided. The semiconductor device for controlling the storage battery charging current and the semiconductor device for controlling the storage battery discharging current are mounted on a heat radiation fin having a size capable of radiating heat due to loss generated in the device, and the semiconductor device for controlling the storage battery charging current and the storage battery are mounted. A heat dissipation method for a storage battery charging/discharging device characterized by dissipating heat generated in a semiconductor element for controlling discharge current.
JP57190066A 1982-10-29 1982-10-29 Method of dissipating heat of storage battery charger/discharger Pending JPS5980122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57190066A JPS5980122A (en) 1982-10-29 1982-10-29 Method of dissipating heat of storage battery charger/discharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57190066A JPS5980122A (en) 1982-10-29 1982-10-29 Method of dissipating heat of storage battery charger/discharger

Publications (1)

Publication Number Publication Date
JPS5980122A true JPS5980122A (en) 1984-05-09

Family

ID=16251775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57190066A Pending JPS5980122A (en) 1982-10-29 1982-10-29 Method of dissipating heat of storage battery charger/discharger

Country Status (1)

Country Link
JP (1) JPS5980122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07143689A (en) * 1993-11-15 1995-06-02 Nec Corp Uninterruptible power supply system
JP2013164297A (en) * 2012-02-09 2013-08-22 Nittetsu Elex Co Ltd Charge/discharge test device for battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07143689A (en) * 1993-11-15 1995-06-02 Nec Corp Uninterruptible power supply system
JP2013164297A (en) * 2012-02-09 2013-08-22 Nittetsu Elex Co Ltd Charge/discharge test device for battery

Similar Documents

Publication Publication Date Title
JP4951659B2 (en) Voltage equalization apparatus and voltage equalization method for battery system
US3393355A (en) Semiconductor charge control through thermal isolation of semiconductor and cell
JP2019009995A5 (en)
US20120094152A1 (en) Method and device for controlling battery heating
JPS6162325A (en) Charger
US3980940A (en) Battery equalizing system
JP3367382B2 (en) Lithium ion secondary battery
US4618803A (en) Current limited strobe charge circuit
CA2157814A1 (en) Equilization of charge on series connected cells or batteries
JPS5980122A (en) Method of dissipating heat of storage battery charger/discharger
JP2005020866A (en) Battery charger
JP2000253586A (en) Charging method for battery and power supply
JP2000012107A (en) Cooling device for battery pack
JP4066733B2 (en) Battery control device
EP0851717A1 (en) Electronic flash device
JP3100248U (en) Secondary battery storage and power supply device and secondary battery pack using the same
JPH05336676A (en) Charging circuit for secondary battery
JPH05146087A (en) Charger
JPH06311669A (en) Storage-battery charging device using solar cell as power supply
JPS58144542A (en) Charging system for rectifier
JP3056099B2 (en) Power supply device and power supply circuit for mobile terminal system
CN117060524A (en) Control method, device and management system of MOS (metal oxide semiconductor) tube in battery management system
JPS61277329A (en) Solar power generator
JPH09322401A (en) Capacitor device
JP3003210B2 (en) How to charge lead storage batteries