JPH06311669A - Storage-battery charging device using solar cell as power supply - Google Patents

Storage-battery charging device using solar cell as power supply

Info

Publication number
JPH06311669A
JPH06311669A JP9732393A JP9732393A JPH06311669A JP H06311669 A JPH06311669 A JP H06311669A JP 9732393 A JP9732393 A JP 9732393A JP 9732393 A JP9732393 A JP 9732393A JP H06311669 A JPH06311669 A JP H06311669A
Authority
JP
Japan
Prior art keywords
storage battery
battery
voltage
charging
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9732393A
Other languages
Japanese (ja)
Inventor
Akihiko Kudo
彰彦 工藤
Kensuke Hironaka
健介 弘中
Koji Yamaguchi
浩司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP9732393A priority Critical patent/JPH06311669A/en
Publication of JPH06311669A publication Critical patent/JPH06311669A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To provide a storage-battery charging device wherein a storage battery which cannot obtain a sufficient charging amount even when it has been charged up to a charging last-stage voltage can be charged fully by using a solar cell as a power supply and the temperature rise of the storage battery can be suppressed. CONSTITUTION:A storage battery 3 is charged by the output of a solar cell 1. When a voltage detection circuit 10 detects that the battery voltage of the storage battery 3 has reached a set voltage corresponding to a charging last- stage voltage, a timer circuit 13 starts counting a time limit. Then, while the timer circuit 13 is counting the time limit, a transistor 12 is set to continuity, the storage battery 3 is discharged, and a DC fan motor 11 is driven. When the timer circuit 13 finishes counting the time limit, the transistor 12 is set to a noncontinuity state, and the discharge of the storage battery 3 is stopped. In this manner, while the charging operation and the discharge operation of the battery 3 are being repeated, the charging operation of the storage battery 3 is continued.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池を電源とする
蓄電池充電装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a storage battery charging device using a solar cell as a power source.

【0002】[0002]

【従来の技術】街路灯等の電源として用いられる蓄電池
を充電する蓄電池充電装置として、複数の太陽電池セル
を直列接続してなる太陽電池パネルの出力で、密閉形鉛
蓄電池等の蓄電池を充電する蓄電池充電装置が知られて
いる。図4は、従来の蓄電池充電装置の一例の回路構成
を示している。従来の蓄電池充電装置では、蓄電池の過
充電を防止するために過充電防止回路を備えており、過
充電防止回路では蓄電池の電池電圧を検出し、電池電圧
が設定電圧に達すると太陽電池パネルの出力を短絡して
充電電流を遮断する。図4において、1は複数の太陽電
池セルを直列接続してなるセル列を備えた太陽電池であ
る。太陽電池1の出力は、太陽電池1のプラス出力端子
にアノードが接続された逆流防止用ダイオード2を介し
て蓄電池3に供給され、この出力で蓄電池3が充電され
る。そして蓄電池3の出力端子にはスイッチ4を介して
負荷5が並列接続されている。スイッチ4は、コントロ
ーラ9によって開閉が制御され、オン状態で負荷5に電
力を供給する。また太陽電池1の出力端子間に太陽電池
1の出力で順方向にバイアスされるサイリスタ6のアノ
ード・カソード回路が並列接続されている。サイリスタ
6のゲートは、カソードを逆流防止用ダイオード2のカ
ソード側に向けた定電圧ダイオード8と一端が定電圧ダ
イオード8のアノードに接続され他端が太陽電池1のマ
イナス端子に接続された抵抗7との直列回路の接続点に
接続されている。この回路では、サイリスタ6、定電圧
ダイオード8および抵抗7により過充電防止回路が構成
されている。
2. Description of the Related Art As a storage battery charging device for charging a storage battery used as a power source for a street light or the like, a storage battery such as a sealed lead storage battery is charged with the output of a solar battery panel formed by connecting a plurality of solar battery cells in series. Storage battery charging devices are known. FIG. 4 shows a circuit configuration of an example of a conventional storage battery charging device. The conventional storage battery charging device has an overcharge prevention circuit to prevent overcharge of the storage battery.The overcharge prevention circuit detects the battery voltage of the storage battery, and when the battery voltage reaches the set voltage, the solar battery panel Short the output and cut off the charging current. In FIG. 4, reference numeral 1 denotes a solar cell including a cell row formed by connecting a plurality of solar cells in series. The output of the solar cell 1 is supplied to the storage battery 3 via the backflow prevention diode 2 whose anode is connected to the positive output terminal of the solar cell 1, and the storage battery 3 is charged with this output. The load 5 is connected in parallel to the output terminal of the storage battery 3 via the switch 4. Opening and closing of the switch 4 is controlled by the controller 9, and power is supplied to the load 5 in the ON state. Further, an anode / cathode circuit of a thyristor 6 which is forward biased by the output of the solar cell 1 is connected in parallel between the output terminals of the solar cell 1. The gate of the thyristor 6 has a constant voltage diode 8 whose cathode is directed to the cathode side of the backflow prevention diode 2, a resistor 7 having one end connected to the anode of the constant voltage diode 8 and the other end connected to the negative terminal of the solar cell 1. It is connected to the connection point of the series circuit with. In this circuit, the thyristor 6, the constant voltage diode 8 and the resistor 7 constitute an overcharge prevention circuit.

【0003】定電圧ダイオード8の定電圧レベルは、蓄
電池3の電池電圧が充電末期電圧に達すると、サイリス
タ6のゲートに導通信号が与えられるように設定されて
いる。ちなみに蓄電池3として密閉形鉛蓄電池を用いる
場合には、充電末期電圧は、約2.5V/セルである。
電池電圧が充電末期電圧に達してサイリスタ6が導通す
ると、太陽電池1の出力が短絡されるため、蓄電池3へ
の充電は停止される。そして夜間になって太陽電池1の
出力電流がサイリスタ6の保持電流より小さくなると、
サイリスタ6は非導通状態となる。翌日、太陽電池が発
電を開始すると、再び蓄電池3の充電が再開されて以後
上記と同じ動作が繰り返される。
The constant voltage level of the constant voltage diode 8 is set so that a conduction signal is given to the gate of the thyristor 6 when the battery voltage of the storage battery 3 reaches the end-of-charge voltage. By the way, when a sealed lead storage battery is used as the storage battery 3, the end-of-charge voltage is about 2.5 V / cell.
When the battery voltage reaches the end-of-charge voltage and the thyristor 6 conducts, the output of the solar cell 1 is short-circuited, so that the charging of the storage battery 3 is stopped. When the output current of the solar cell 1 becomes smaller than the holding current of the thyristor 6 at night,
The thyristor 6 becomes non-conductive. The next day, when the solar cell starts power generation, charging of the storage battery 3 is restarted again, and the same operation as described above is repeated thereafter.

【0004】[0004]

【発明が解決しようとする課題】従来の充電装置のよう
に、電池電圧が設定電圧に達すると充電を停止して、以
後その日は充電を再開しない構成では、充電量を十分に
確保できなくなる可能性がある。例えば、非流動化した
電解液を用いる密閉形鉛蓄電池では、陰極におけるガス
吸収能力を高めることに限界があるために、液状の電解
液を用いる蓄電池と比べて、設定電圧を高くすることが
できず、そのために充電量が不足する可能性がある。こ
の例を図5を用いて詳細に説明する。図5は、2.5A
h、2Vの密閉形鉛蓄電池を、0.05Cで定電流充電
し、電池電圧が2.5Vに達したときに充電を停止した
場合の、電池の放電容量の変化の推移を示した特性線図
である。この例では、平均の充電率が98.7%であ
り、放電量以上の充電量を確保することができず、蓄電
池の放電容量は充放電サイクルを20サイクル繰り返し
ただけで、初期容量の41%まで減少した。
As in the conventional charging device, when the battery voltage reaches the set voltage, the charging is stopped and the charging is not restarted on that day, so that the sufficient charging amount cannot be secured. There is a nature. For example, in a sealed lead-acid battery that uses a non-fluidized electrolyte, the set voltage can be increased compared to a storage battery that uses a liquid electrolyte because there is a limit to increasing the gas absorption capacity at the cathode. Therefore, there is a possibility that the charge amount will be insufficient. This example will be described in detail with reference to FIG. Figure 5 shows 2.5A
h, a characteristic line showing a change in discharge capacity of a battery when a 2 V sealed lead-acid battery is charged with a constant current at 0.05 C and charging is stopped when the battery voltage reaches 2.5 V It is a figure. In this example, the average charging rate was 98.7%, and it was not possible to secure a charging amount equal to or more than the discharging amount. Therefore, the discharging capacity of the storage battery was 41 times the initial capacity after repeating 20 charging / discharging cycles. It decreased to%.

【0005】この現象は、太陽電池パネルの容量に比べ
て蓄電池の容量を小さくすると顕著になる。これは充電
電流の容量比が大きくなるために、蓄電池の容量が大き
い場合に比べて、蓄電池の電池電圧が早期に設定電圧に
達してしまい、充電率が低くなるからである。
This phenomenon becomes remarkable when the capacity of the storage battery is made smaller than the capacity of the solar cell panel. This is because the capacity ratio of the charging current becomes large, so that the battery voltage of the storage battery reaches the set voltage earlier than when the capacity of the storage battery is large, and the charging rate becomes low.

【0006】このような問題を解消するために、充電回
路中に充電電圧を制限する電圧制限回路を用いることも
考えられる。しかしながら電圧制限回路を用いると発熱
が大きくなるために、放熱を考慮する必要性が生じる
上、部品点数が増加して充電装置の価格が高くなる問題
が生じる。そのため比較的小型の街路灯等の電源システ
ム等では、電圧制限回路を備えた蓄電池充電装置は用い
られていない。
In order to solve such a problem, it may be considered to use a voltage limiting circuit for limiting the charging voltage in the charging circuit. However, when the voltage limiting circuit is used, the heat generation becomes large, so that it becomes necessary to consider the heat radiation, and the number of parts increases and the cost of the charging device increases. Therefore, a storage battery charging device having a voltage limiting circuit is not used in a power supply system such as a relatively small street light.

【0007】本発明の目的は、充電回路中に充電電圧を
制限する電圧制限回路を用いることなく、充電末期電圧
まで充電しても十分な充電量を得ることができない蓄電
池を十分に充電できる太陽電池を電源とする蓄電池充電
装置を提供することにある。本発明の他の目的は、上記
目的に加えて蓄電池の冷却を行える太陽電池を電源とす
る蓄電池充電装置を提供することにある。
An object of the present invention is to make it possible to sufficiently charge a storage battery that cannot obtain a sufficient amount of charge even if it is charged to the end-of-charge voltage without using a voltage limiting circuit for limiting the charging voltage in the charging circuit. It is to provide a storage battery charging device that uses a battery as a power source. Another object of the present invention is to provide a storage battery charging device using a solar battery as a power source, which can cool the storage battery in addition to the above objects.

【0008】[0008]

【課題を解決するための手段】本発明は、充電末期電圧
まで充電しても十分な充電量を得ることができない蓄電
池を複数の太陽電池セルを直列接続してなる太陽電池の
出力で設定電圧を越えないようにして充電する太陽電池
を電源とする蓄電池充電装置を改良の対象とする。
According to the present invention, a storage battery, which cannot obtain a sufficient amount of charge even if it is charged up to a terminal voltage of charge, has a set voltage at the output of a solar battery in which a plurality of solar cells are connected in series. A storage battery charging device that uses a solar cell as a power source for charging without exceeding the limit is targeted for improvement.

【0009】請求項1の発明では、蓄電池の電池電圧が
設定電圧に達したか否かを検出する電圧検出回路と、太
陽電池の最大出力電流より大きな電流が流れる負荷を含
み電池電圧が設定電圧に達したことを電圧検出回路が検
出すると所定期間負荷に電流を流して蓄電池を放電する
放電回路とを設ける。
According to the first aspect of the invention, the battery voltage includes the voltage detection circuit for detecting whether or not the battery voltage of the storage battery has reached the set voltage, and the load in which a current larger than the maximum output current of the solar cell flows. And a discharge circuit that discharges the storage battery by supplying a current to the load for a predetermined period when the voltage detection circuit detects that

【0010】なお電流を流す負荷は、蓄電池を用いるシ
ステムの負荷であってもよく、別の負荷でもよい。なお
負荷に電流を流す所定期間は、蓄電池が過充電状態にな
るのを抑制できる期間に定める。
The load for passing the current may be a load of a system using a storage battery or another load. It should be noted that the predetermined period in which the current is supplied to the load is set to a period in which the overcharge state of the storage battery can be suppressed.

【0011】請求項2の発明では、放電回路を前記負荷
に直列接続されたスイッチ回路と、電池電圧が設定電圧
に達したことを電圧検出回路が検出すると時限のカウン
トを開始してスイッチ回路を導通状態にし時限のカウン
トを完了するとスイッチ回路を非導通状態にするタイマ
回路とから構成する。
According to a second aspect of the present invention, a switch circuit in which a discharge circuit is connected in series to the load and a voltage detection circuit that detects that the battery voltage has reached a set voltage start timed counting and start the switch circuit. And a timer circuit which brings the switch circuit into a non-conducting state when the counting is completed in the conducting state.

【0012】請求項3の発明では、蓄電池を冷却するよ
うに配置した直流ファンモータを負荷とする。
According to the third aspect of the invention, the load is a DC fan motor arranged so as to cool the storage battery.

【0013】[0013]

【作用】請求項1の発明では、密閉形鉛蓄電池のように
充電末期電圧まで充電しても十分な充電量を得ることが
できない蓄電池の電池電圧が設定電圧(通常は充電末期
電圧)に達すると、太陽電池の最大負荷電流より大きな
負荷電流が放電回路を流れて、蓄電池が所定時間放電さ
れる。この放電により電池電圧は設定電圧より下がり、
放電終了後に蓄電池の充電が再開され、電池電圧が再び
設定電圧に達すると再び放電が行われる。以後この充放
電が繰り返される。このように本発明によれば、電池電
圧が設定電圧に達した後は、充放電を繰り返しながら充
電が継続されるため、充電末期電圧まで充電しても十分
な充電量を得ることができない蓄電池を、充電回路中に
充電電圧を制限する電圧制限回路を用いることなく、十
分に充電できる。本発明で密閉形鉛蓄電池を充電した場
合、実質の充電率は定電圧充電並の充電率が得られる。
According to the invention of claim 1, the battery voltage of a storage battery, such as a sealed lead-acid battery, which cannot obtain a sufficient charge amount even when charged to the end-of-charge voltage, reaches a set voltage (usually the end-of-charge voltage). Then, a load current larger than the maximum load current of the solar cell flows through the discharge circuit, and the storage battery is discharged for a predetermined time. This discharge causes the battery voltage to drop below the set voltage,
After the end of discharging, charging of the storage battery is restarted, and when the battery voltage reaches the set voltage again, discharging is performed again. Thereafter, this charging / discharging is repeated. As described above, according to the present invention, after the battery voltage reaches the set voltage, charging is continued while repeating charging and discharging, so that a sufficient amount of charge cannot be obtained even when the battery is charged to the end-of-charge voltage. Can be sufficiently charged without using a voltage limiting circuit for limiting the charging voltage in the charging circuit. When the sealed lead-acid battery is charged according to the present invention, the actual charging rate is as high as the constant voltage charging.

【0014】請求項2の発明のように、タイマ回路を用
いて放電回路の放電時間を制御するようにすると、確実
に蓄電池を放電できる。
When the discharge time of the discharge circuit is controlled by using the timer circuit as in the second aspect of the invention, the storage battery can be surely discharged.

【0015】蓄電池を放電する負荷は特に限定されない
が、請求項3の発明のように、放電回路の負荷として蓄
電池を冷却する直流ファンモータを用いると、蓄電池の
電池温度を下げることができる。本発明の蓄電池充電装
置は、街路灯の電源のように野外に設置される機器内に
配置されることが多い。特に夏期のように環境温度が高
くなると、密閉形鉛蓄電池等では電池温度が60℃以上
に達することもある。電池温度が高くなると、電解液中
の水分が電槽を通して抜け出る透湿現象が発生し、電解
液が減少して電池の容量が低下し、早期に寿命に至る。
本発明のように、蓄電池を放電する際に直流ファンモー
タを駆動して蓄電池を冷却すれば、電池温度が下がって
電解液の透湿を抑制できて、電池の容量の低下を抑制で
きる上、電池の寿命を延ばすことができる。
Although the load for discharging the storage battery is not particularly limited, when the DC fan motor for cooling the storage battery is used as the load of the discharging circuit as in the invention of claim 3, the battery temperature of the storage battery can be lowered. The storage battery charging device of the present invention is often arranged in a device installed outdoors, such as a street light power source. Particularly when the environmental temperature becomes high, such as in the summer, the battery temperature of the sealed lead-acid battery or the like may reach 60 ° C. or higher. When the battery temperature rises, a moisture permeation phenomenon occurs in which the water content in the electrolytic solution escapes through the battery case, the electrolytic solution decreases, the capacity of the battery decreases, and the service life is reached early.
As in the present invention, when the storage battery is cooled by driving the DC fan motor when discharging the storage battery, the battery temperature can be lowered and the moisture permeation of the electrolytic solution can be suppressed, and the decrease in the capacity of the battery can be suppressed. The battery life can be extended.

【0016】[0016]

【実施例】以下図面を参照して本発明の実施例を詳細に
説明する。図1は、本発明の実施例の概略回路図であ
る。図1において、図4に示した従来の構成と同じ部材
には図4に付した符号と同じ符号を付して説明を省略す
る。本実施例では、密閉形鉛蓄電池を蓄電池3として用
いている。蓄電池3の電池電圧を測定するために、蓄電
池3に対して電圧検出回路10が並列接続されている。
また蓄電池3には直流ファンモータ11がトランジスタ
12のカソード・エミッタ回路を介して並列接続されて
いる。トランジスタ12のベースは、タイマ回路13の
出力端子に接続され、タイマ回路13によってトランジ
スタ12が導通制御される。本実施例では、トランジス
タ12がスイッチ回路を構成し、直流ファンモータ11
とトランジスタ12とタイマ回路13とにより放電回路
が構成されている。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a schematic circuit diagram of an embodiment of the present invention. In FIG. 1, the same members as those of the conventional configuration shown in FIG. 4 are designated by the same reference numerals as those in FIG. In this embodiment, a sealed lead storage battery is used as the storage battery 3. In order to measure the battery voltage of the storage battery 3, the voltage detection circuit 10 is connected in parallel to the storage battery 3.
A DC fan motor 11 is connected in parallel to the storage battery 3 via a cathode / emitter circuit of a transistor 12. The base of the transistor 12 is connected to the output terminal of the timer circuit 13, and the timer circuit 13 controls the conduction of the transistor 12. In this embodiment, the transistor 12 constitutes a switch circuit, and the DC fan motor 11
The transistor 12 and the timer circuit 13 form a discharge circuit.

【0017】電圧検出回路10は蓄電池3の電池電圧が
設定電圧(通常は充電末期電圧)に達したか否かを検出
し、電池電圧が設定電圧に達したことを検出すると、検
出信号をタイマ回路13に出力する。設定電圧の設定
は、定電圧ダイオード等を用いて設定する。タイマ回路
13は、電池電圧が設定電圧に達したことを電圧検出回
路10が検出すると時限のカウントを開始してトランジ
スタ12にベース電流を供給して、トランジスタを導通
状態にし、時限のカウントを完了するとベース電流の供
給を停止してトランジスタ12を非導通状態にするよう
に構成されている。タイマ回路13に設定する時限は、
充放電を繰り返した場合でも、蓄電池を過充電状態にし
ないように定める。
The voltage detection circuit 10 detects whether or not the battery voltage of the storage battery 3 has reached a set voltage (usually the end-of-charging voltage), and when it detects that the battery voltage has reached the set voltage, it outputs a detection signal to a timer. Output to the circuit 13. The set voltage is set using a constant voltage diode or the like. When the voltage detection circuit 10 detects that the battery voltage has reached the set voltage, the timer circuit 13 starts timed counting and supplies a base current to the transistor 12 to make the transistor conductive and complete the timed counting. Then, the supply of the base current is stopped to make the transistor 12 non-conductive. The time limit set in the timer circuit 13 is
Even if charging and discharging are repeated, the storage battery should not be overcharged.

【0018】直流ファンモータ11としては、使用する
太陽電池1の最大出力電流よりも大きな駆動電流を必要
とするものを用いているため、トランジスタ12が導通
すると蓄電池3が主電源となって蓄電池3は放電され
る。直流ファンモータ11の取付け状態は、蓄電池を冷
却できる状態であればよく、特定の取付け状態に限定さ
れるものではない。必要であれば、2以上の直流ファン
モータを駆動するようにしてよい。昼間は蓄電池3の充
放電が繰り返されるが、夜間になって太陽電池1が出力
を停止すると、蓄電池の充電は停止され、直流ファンモ
ータ11の駆動も停止される。
Since the DC fan motor 11 requires a drive current larger than the maximum output current of the solar cell 1 used, the storage battery 3 becomes the main power source when the transistor 12 is turned on. Is discharged. The DC fan motor 11 may be mounted in any state as long as it can cool the storage battery, and is not limited to a particular mounting state. If necessary, two or more DC fan motors may be driven. Charging / discharging of the storage battery 3 is repeated in the daytime, but when the solar cell 1 stops outputting at night, charging of the storage battery is stopped and driving of the DC fan motor 11 is also stopped.

【0019】本発明の効果を確認するために、定格12
V,20Wの太陽電池1と12V,5.6Ahの密閉形
鉛蓄電池と、定格12V、20Wの直流ファンモータと
を用い、電圧検出回路10の設定電圧を15V(2.5
V/セル)とし、タイマ回路14の時限を1sec とし
て、試験を行った。密閉形鉛蓄電池の放電量は、2.8
Ahであった。図2は試験の結果を示している。電池電
圧が最初に設定電圧(15V)に達するまでの充電率は
98.0%であり、従来の装置ではこの状態で充電を停
止している。本実施例では、電池電圧が最初に設定電圧
(15V)に達した後も、直流ファンモータを断続的に
駆動しながら充電が継続され、太陽電池の発電が停止し
た時点での蓄電池への充電率は134.5%であった。
直流ファンモータへの放電量を差し引いた実質の充電率
は104.1%となり、十分な充電率が得られた。そし
て直流ファンモータへの放電回数は4448回で、約2
5Whの電力量が蓄電池の冷却に使用可能であった。な
お図2において、Vは蓄電池の充電電圧を示し、Iは充
電電流を示しており、斜線を付した領域Aは蓄電池の充
放電が繰り返されている領域である。図2では、充電電
圧Vが15Vに達していないように示されているが、こ
れは測定周期が約1分の打点記録計を使用したためであ
り、実際には充電電圧が15Vに達している。
In order to confirm the effect of the present invention, a rating of 12
Using a solar cell 1 of V, 20 W, a sealed lead acid battery of 12 V, 5.6 Ah, and a DC fan motor of 12 V, 20 W, a set voltage of the voltage detection circuit 10 is 15 V (2.5 V).
V / cell) and the time limit of the timer circuit 14 was 1 sec. The discharge amount of the sealed lead-acid battery is 2.8.
It was Ah. FIG. 2 shows the test results. The charging rate until the battery voltage first reaches the set voltage (15V) is 98.0%, and the conventional device stops charging in this state. In the present embodiment, even after the battery voltage first reaches the set voltage (15V), charging is continued while the DC fan motor is intermittently driven, and the storage battery is charged at the time when power generation by the solar cell is stopped. The rate was 134.5%.
The actual charging rate after subtracting the discharge amount to the DC fan motor was 104.1%, and a sufficient charging rate was obtained. And the number of discharges to the DC fan motor is 4448 times, about 2
A power amount of 5 Wh was available for cooling the storage battery. In FIG. 2, V indicates the charging voltage of the storage battery, I indicates the charging current, and the hatched area A is the area where the storage battery is repeatedly charged and discharged. In FIG. 2, it is shown that the charging voltage V does not reach 15V, but this is because a dot recording recorder having a measurement period of about 1 minute was used, and the charging voltage actually reaches 15V. .

【0020】次に直流ファンモータによる冷却の効果を
確認するために、太陽電池10が収納された太陽電池パ
ネルの裏側に蓄電池を配置して、従来の充電装置と本実
施例の充電装置とを用いて充電した際の電池温度の変化
を測定した。使用した太陽電池、蓄電池等の条件は、図
2に示した試験結果の試験と同じである。そして従来の
充電装置でも設定電圧を15Vとした。試験は蓄電池を
満充電状態にしてから充電を開始しているため、従来の
充電装置を用いた場合には、充電開始と同時に電池電圧
が15Vに達して充電を終了した。試験の結果は、図5
に示す通りであり、図5においてT1 は従来の充電装置
で充電した場合の電池温度の変化を示しており、T2 は
本実施例の充電装置で充電した場合の電池温度の変化を
示しており、T3 は外気温度の変化を示している。この
図から判るように、電池温度の最高温度は30℃で、外
気温度よりも7℃高くなった。充電を停止しているにも
にもかかわらず電池温度が上昇しているのは、電池を太
陽電池パネルのすぐ裏側に配置したため、太陽電池パネ
ルの温度上昇の影響を受けているためである。これに対
して本実施例の充電装置で充電を行った場合には、直流
ファンモータにより冷却しているため、充電を継続して
いても、電池の最高温度は26℃であり、外気温度より
も3℃高くなるだけであった。この結果からも判るよう
に、本実施例の充電装置を用いると電池温度を上げずに
充電率を高めることができる。
Next, in order to confirm the effect of cooling by the DC fan motor, a storage battery is arranged on the back side of the solar cell panel in which the solar cell 10 is housed, and the conventional charging device and the charging device of this embodiment are connected. The change in battery temperature during charging was measured. The conditions of the used solar cell, storage battery, etc. are the same as the test results shown in FIG. Even in the conventional charging device, the set voltage was set to 15V. In the test, the charging was started after the storage battery was fully charged. Therefore, when the conventional charging device was used, the battery voltage reached 15 V at the same time when the charging was started and the charging was terminated. The test results are shown in Figure 5.
5, T1 shows the change in battery temperature when charged by the conventional charging device, and T2 shows the change in battery temperature when charged by the charging device of this embodiment. , T3 indicate changes in the outside air temperature. As can be seen from this figure, the maximum battery temperature was 30 ° C, which was 7 ° C higher than the outside air temperature. The reason why the battery temperature rises despite the fact that charging is stopped is that the battery is placed immediately behind the solar cell panel and is affected by the temperature rise of the solar cell panel. On the other hand, when the battery is charged by the charging device of the present embodiment, the maximum temperature of the battery is 26 ° C. even if the battery is cooled by the DC fan motor, which is higher than the ambient temperature. Was only 3 ° C higher. As can be seen from this result, when the charging device of this embodiment is used, the charging rate can be increased without raising the battery temperature.

【0021】[0021]

【発明の効果】請求項1の発明によれば、電池電圧が設
定電圧に達した後は、充放電を繰り返しながら充電が継
続されるため、充電末期電圧まで充電しても十分な充電
量を得ることができない蓄電池を、充電回路中に充電電
圧を制限する電圧制限回路を用いることなく、十分に充
電できる利点がある。
According to the invention of claim 1, after the battery voltage reaches the set voltage, charging is continued while repeating charging and discharging, so that a sufficient charge amount can be obtained even if the battery is charged to the end-of-charge voltage. There is an advantage that a storage battery that cannot be obtained can be sufficiently charged without using a voltage limiting circuit that limits the charging voltage in the charging circuit.

【0022】請求項2の発明によれば、タイマ回路を用
いて放電回路の放電時間を制御するようにすると、確実
に蓄電池を放電できる利点がある。
According to the invention of claim 2, there is an advantage that the storage battery can be surely discharged by controlling the discharge time of the discharge circuit by using the timer circuit.

【0023】請求項3の発明によれば、蓄電池を放電す
る際に直流ファンモータを駆動して蓄電池を冷却するた
め、電池温度が下がって電解液の透湿を抑制できて、電
池の容量の低下を抑制できる上、電池の寿命を延ばすこ
とができる利点がある。
According to the third aspect of the invention, when the storage battery is discharged, the DC fan motor is driven to cool the storage battery, so that the temperature of the battery is lowered and moisture permeation of the electrolytic solution can be suppressed, and the capacity of the battery is reduced. There is an advantage that the decrease can be suppressed and the life of the battery can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の蓄電池充電装置の構成を示す
回路図である。
FIG. 1 is a circuit diagram showing a configuration of a storage battery charging device according to an embodiment of the present invention.

【図2】図1の実施例の蓄電池充電装置により密閉形鉛
蓄電池を充電した場合の充電特性を示す線図である。
FIG. 2 is a diagram showing a charging characteristic when a sealed lead-acid battery is charged by the storage battery charging device of the embodiment of FIG.

【図3】本発明の実施例の充電装置と従来の充電装置を
用いて蓄電池を充電した場合の電池温度の変化を示す特
性線図である。
FIG. 3 is a characteristic diagram showing a change in battery temperature when a storage battery is charged using the charging device of the embodiment of the present invention and a conventional charging device.

【図4】従来の太陽電池を電源とする蓄電池用充電装置
の概略回路図である。
FIG. 4 is a schematic circuit diagram of a storage battery charging device using a conventional solar battery as a power source.

【図5】2.5V/セルで充電を停止する充電サイクル
で充放電を繰り返した場合の密閉形鉛蓄電池の容量推移
を示す特性線図である。
FIG. 5 is a characteristic diagram showing a capacity transition of a sealed lead-acid battery when charging and discharging are repeated in a charging cycle in which charging is stopped at 2.5 V / cell.

【符号の説明】[Explanation of symbols]

1 太陽電池 2 逆流防止用ダイオード 3 蓄電池 4 スイッチ 5 負荷 6 サイリスタ 7 抵抗 8 定電圧ダイオード 9 コントローラ 10 電圧検出回路 11 直流ファンモータ 12 トランジスタ 13 タイマ回路 1 Solar Cell 2 Backflow Prevention Diode 3 Storage Battery 4 Switch 5 Load 6 Thyristor 7 Resistor 8 Constant Voltage Diode 9 Controller 10 Voltage Detection Circuit 11 DC Fan Motor 12 Transistor 13 Timer Circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 充電末期電圧まで充電しても十分な充電
量を得ることができない蓄電池を複数の太陽電池セルを
直列接続してなる太陽電池の出力で設定電圧を越えない
ように充電する太陽電池を電源とする蓄電池充電装置で
あって、 前記蓄電池の電池電圧が前記設定電圧に達したか否かを
検出する電圧検出回路と、 前記太陽電池の最大出力電流より大きな電流が流れる負
荷を含み、前記電池電圧が前記設定電圧に達したことを
前記電圧検出回路が検出すると所定期間前記負荷に電流
を流して前記蓄電池を放電する放電回路とを具備するこ
とを特徴とする太陽電池を電源とする蓄電池充電装置。
1. A solar battery for charging a storage battery, which cannot obtain a sufficient amount of charge even when it is charged to the end-of-charge voltage, so that the output of the solar battery does not exceed the set voltage. A storage battery charging device using a battery as a power source, including a voltage detection circuit for detecting whether or not the battery voltage of the storage battery has reached the set voltage, and a load in which a current larger than the maximum output current of the solar cell flows. A power source for the solar cell, comprising: a discharge circuit that discharges the storage battery by causing a current to flow through the load for a predetermined period when the voltage detection circuit detects that the battery voltage has reached the set voltage. Storage battery charging device.
【請求項2】 前記放電回路は、前記負荷に直列接続さ
れたスイッチ回路と、 前記電池電圧が前記設定電圧に達したことを前記電圧検
出回路が検出すると時限のカウントを開始して前記スイ
ッチ回路を導通状態にし前記時限のカウントを完了する
と前記スイッチ回路を非導通状態にするタイマ回路とを
具備する請求項1に記載の太陽電池を電源とする蓄電池
充電装置。
2. The switch circuit, wherein the discharge circuit starts a timed count when the voltage detection circuit detects that the switch circuit is connected in series to the load and the battery voltage reaches the set voltage. 2. The storage battery charging device using a solar cell as a power source according to claim 1, further comprising: a timer circuit that brings the switch circuit into a non-conducting state when the counter circuit is brought into a conducting state and the counting of the time period is completed.
【請求項3】 前記負荷は前記蓄電池を冷却するように
配置された直流ファンモータからなる請求項1または2
に記載の太陽電池を電源とする蓄電池充電装置。
3. The load comprises a DC fan motor arranged to cool the storage battery.
A storage battery charging device using the solar cell according to item 1 as a power source.
【請求項4】 前記蓄電池は密閉形鉛蓄電池である請求
項1、2または3に記載の太陽電池を電源とする蓄電池
充電装置。
4. The storage battery charging device using a solar cell as a power source according to claim 1, 2 or 3, wherein the storage battery is a sealed lead storage battery.
JP9732393A 1993-04-23 1993-04-23 Storage-battery charging device using solar cell as power supply Pending JPH06311669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9732393A JPH06311669A (en) 1993-04-23 1993-04-23 Storage-battery charging device using solar cell as power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9732393A JPH06311669A (en) 1993-04-23 1993-04-23 Storage-battery charging device using solar cell as power supply

Publications (1)

Publication Number Publication Date
JPH06311669A true JPH06311669A (en) 1994-11-04

Family

ID=14189281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9732393A Pending JPH06311669A (en) 1993-04-23 1993-04-23 Storage-battery charging device using solar cell as power supply

Country Status (1)

Country Link
JP (1) JPH06311669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102192A (en) * 1998-09-24 2000-04-07 Nippon Telegr & Teleph Corp <Ntt> Standalone photovoltaic power generation system
CN108808778A (en) * 2018-06-20 2018-11-13 国网江苏省电力有限公司泰州供电分公司 A kind of intelligent battery charging-discharging structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102192A (en) * 1998-09-24 2000-04-07 Nippon Telegr & Teleph Corp <Ntt> Standalone photovoltaic power generation system
CN108808778A (en) * 2018-06-20 2018-11-13 国网江苏省电力有限公司泰州供电分公司 A kind of intelligent battery charging-discharging structure
CN108808778B (en) * 2018-06-20 2024-03-26 国网江苏省电力有限公司泰州供电分公司 Intelligent storage battery charging and discharging structure

Similar Documents

Publication Publication Date Title
US11522370B2 (en) Equalization circuit, a charging device and an energy storage device
JP3231801B2 (en) Battery charger
US6828757B2 (en) Circuit for adjusting charging rate of cells in combination
US9401530B2 (en) Storage battery recycling apparatus
TWI436549B (en) Advanced rechargable battery system and vehicle having the same, and charging method thereof
JP3931446B2 (en) Battery charge state adjustment device
US7071653B2 (en) Method for charging a non-aqueous electrolyte secondary battery and charger therefor
US20070139011A1 (en) Battery charge circuit with multi-charge stage and method thereof
US20020196000A1 (en) Circuit for adjusting charging rate of cells in combination
US20230395899A1 (en) Heating method and heating system of traction battery
JPH10270092A (en) Secondary battery deterioration judging method and its device
CN1941546B (en) Rechargeable battery charging method
JPH06311669A (en) Storage-battery charging device using solar cell as power supply
JP2000012107A (en) Cooling device for battery pack
JP2003339124A (en) Power supply unit for vehicle
JPH06311670A (en) Storage-battery charging device using solar battery as power supply
JP3419122B2 (en) Battery protection device
JP3096319B2 (en) Quick charger
JPH08186940A (en) Charge control circuit for combined battery
JP2003134690A (en) Method and device for controlling charging and lighting system
KR102244124B1 (en) System for controlling a switching device
CN112952924A (en) Battery management device and electrical apparatus
JPH11150882A (en) Method for charging battery
CN212517289U (en) Photovoltaic energy storage battery repair system
CN213906343U (en) Intelligent battery repair pulse charging integrated machine