JPS5979074A - Improvement of engine absorbing exhaust fluid of jet engine, turbine engine and ship - Google Patents
Improvement of engine absorbing exhaust fluid of jet engine, turbine engine and shipInfo
- Publication number
- JPS5979074A JPS5979074A JP57189840A JP18984082A JPS5979074A JP S5979074 A JPS5979074 A JP S5979074A JP 57189840 A JP57189840 A JP 57189840A JP 18984082 A JP18984082 A JP 18984082A JP S5979074 A JPS5979074 A JP S5979074A
- Authority
- JP
- Japan
- Prior art keywords
- turbine
- engine
- valve
- water
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Hydraulic Turbines (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
【発明の詳細な説明】
本願はジエツトエンジン、船舶、タービンエンジンのプ
ロペラ、推進ノヅルより大なる排気流体が外部に排出し
て大なる損失がある、本願は本欠点を少なくする様にし
た前出願のエンジンの改良に関し実施例
(1)今日蒸気、瓦斯タービンエンジンに於ては蒸気は
蒸気、瓦斯は瓦斯と云■風に其のましの姿でタービン翼
に衝撃して居るがこの様にした場合蒸気、瓦斯は非常に
軽く、翼に当つた場合衝撃力が弱く、回転させるのに不
都合があつた、それで効率を上げる為にタービン段を非
常に多くし且つ高速回転を必要とする等の欠点を有して
居る本実施例は本欠点を少なくしたもので気体圧を液体
圧に変換してタービン翼に当てる様になしたものである
。[Detailed Description of the Invention] This application describes a jet engine, a ship, a propeller of a turbine engine, and a large amount of exhaust fluid discharged from the propulsion nozzle to the outside, resulting in a large loss.This application aims to reduce this drawback. Example (1) Regarding the improvement of the engine of the application: Today, in steam and gas turbine engines, steam is used as steam and gas is used as gas. In this case, the steam and gas were very light, and when they hit the blades, the impact force was weak and it was inconvenient to rotate them, so in order to increase efficiency, a large number of turbine stages and high speed rotation were required. In this embodiment, this disadvantage is reduced, and gas pressure is converted into liquid pressure, which is applied to the turbine blades.
次に図■就いて説明せんに(図面第1、第2図)加圧流
体発生源としてボイラ、ジエツトエンジンの燃焼室より
加圧流体が送圧管(1)を通つて流体圧変換水槽(7)
に入る様に送圧管(1)は二つに別れて二つの水槽(8
)の上方部に連結して居る、送圧管の両水槽(7)(8
)の接合部に各々に流体止弁(39)(40)があり、
これの側方に空気抜孔(5)(5)がある、又これの少
し下方に別のタービンに連結する排気管(6)(6)に
弁(12)(28)と弁を閉じるバネ(10)があり弁
棒(11)(11)に常時接触して居るカム(9)(9
)が軸(48)着されて居る該水槽は中央部で仕切板(
13)で二つの水槽(7)(8)になつて居り、該水槽
(7)(8)の下方部に水槽内に■注水する送水管(1
4)(14)に送水止弁(25)(25)が設けられ該
弁(25)(25)は弱いバネで常時送水管を閉じて居
る、該水槽の底部には各々に別紙第2図のタービンに送
水する送水管(24)(17)を集合する集合送水管(
18)があり、集合送水管が第2図タービンに連絡して
居る、送水管(24)(17)には逆止弁(42)(1
6)がある、二つの水槽(7)(8)の送水止弁、逆止
弁の4つのもの弁棒(38)(41)(23)(50)
は二つい二本のテコ棒(19)(19)で連結されテコ
棒の中央部は止軸によつて作動出来る様になつて居る、
テコ棒(19)の右側と別のテコ棒の左側端部をテコ棒
連結棒(A)が水槽(7、8)の外部を通つて連結して
居てこの場合片方の水槽(7)の弁二つ開いて居る様に
し他方の水槽(8)の弁(40)(16)は閉じて居る
様にするものである、水槽の一番下方部に軸(22)に
回転するカム(21)があり常時バネ(C)圧がテコ棒
(19)の別端部を押圧によつてカムとテコ棒は接触し
て居る、浮る(27)は長棒(33)を有し水槽(7)
の方の液に浮上して居り、長棒(33)の上端部はT字
形のスイツチとなつて居り向ふ側の、中央部で切れて居
る電極が上下に二つあり浮■の上下動によつてスイツチ
(35)が電極に接触して繋電してモーターに送電する
様になつて居る、それでテコ棒、弁棒、テコ棒連結棒の
各連結部は止軸の入る孔を多くの緩があつて曲げが出来
る様にする。Next, to explain Figure 1 (Figures 1 and 2), pressurized fluid from the combustion chamber of a boiler or jet engine as a pressurized fluid generation source passes through a pressure pipe (1) to a fluid pressure conversion water tank ( 7)
The pressure pipe (1) is divided into two to create two water tanks (8).
) are connected to the upper part of both water tanks (7) (8) of the pressure pipe.
) are each provided with a fluid stop valve (39) (40),
There are air vent holes (5) (5) on the sides of this, and a little below this there are valves (12) (28) in the exhaust pipe (6) (6) that connects to another turbine and a spring that closes the valve ( 10), and the cams (9) (9) are in constant contact with the valve stems (11) (11).
) is attached to the shaft (48), the aquarium has a partition plate (
13) into two water tanks (7) and (8), and the lower part of the water tanks (7) and (8) is the water pipe (1
4) A water stop valve (25) (25) is provided at (14), and the valve (25) (25) always closes the water pipe with a weak spring. A collection water pipe (24) (17) that collects water to the turbine of
There are check valves (42) (18) on the water pipes (24) (17), and the collective water pipes connect to the turbine in Figure 2.
6) There are four water stop valves and check valves for two water tanks (7) and (8), valve stems (38) (41) (23) (50).
are connected by two lever rods (19) (19), and the central part of the lever rods can be operated by a stop shaft.
A lever rod connecting rod (A) connects the right side of the lever rod (19) and the left end of another lever rod through the outside of the water tanks (7, 8). A cam (21) rotating on a shaft (22) is installed at the bottom of the tank to keep two valves open and the valves (40 and 16) of the other tank (8) closed. ), and the spring (C) pressure always presses the other end of the lever rod (19), so that the cam and the lever rod are in contact with each other. 7)
The upper end of the long rod (33) is a T-shaped switch, and on the opposite side there are two electrodes, one above the other and one above, which are cut at the center, allowing the floating to move up and down. The switch (35) contacts the electrode and connects it to transmit power to the motor.Therefore, each connection part of the lever rod, valve stem, and lever rod connecting rod has many holes for receiving the stop shaft. It should be loose enough so that it can be bent.
次に作用効果はボイラ、燃焼室から加圧流体力送圧管を
介して流体圧変換水槽に送られる時片方の水槽の止弁は
開き他方は閉じて居り、この操作はカムの回転によつて
行なわれ、カムは浮ふが水槽の水が上限、下限に到達し
た場合にスイツチが入つてモターが回転してカム軸(2
2)を回転し、テコ棒、テコ棒連結棒を介して行なはれ
る、加圧流体に押圧されて居る方の水槽の液は別紙のタ
ービンに送られるのであるが別の方の水槽は止弁(40
)(16)によつて加圧流体の侵入を防止し、送水管よ
り圧のある水道■水、又はタービンを回転した巡還水を
圧のあるポンプによつて貯水するものであり圧のある液
は送水管を閉じて置く弁を押圧して槽内に流水するもの
である、それで該水が入る前に排気弁が前記の止弁が開
く時モーターの回転でカムが回転されて他方の水槽のも
のは閉じ片方のものは開いて排気して別紙のタービンと
は別のタービンを回転せしめるもので、この場合別に水
槽を設けこの槽で完全に気体を膨脹させて液をタービン
に送るもので又水槽(7)(8)に於て気体の完全膨脹
をさせる場合は水槽の上部少しに加圧気体が入つた時加
圧気体が入らない様に上部弁(40)(39)が閉じ下
部弁(42)(16)が開いてタービンの方に水が送ら
れる様にするものである。排気管からでる気体には多大
の高圧があるので流体を変換せず其のま■気体でタービ
ンを回転させる場合もある。送水管(14)より液が入
る場合排気管の弁(12)は閉じられ空気抜孔(5)よ
り槽(8)内の空気が外部に排気されるのであるが空気
抜孔には弁があり弁は送水管にある弁(25)が開く時
スイツチが入る様になつて居てスイツチが入るとモータ
ーが回転してカムを回転し弁を開くもので液が槽(8)
1杯になつた場合止弁(40)(16)が開く場合スイ
ツチが入つて先と同様にして弁を閉いるものであるが該
空気抜孔(5)を設けないで送水管の送水するポンプ圧
で排気管(6)よりタービンに送気する場合もある又タ
ービンに直接でなく前記の如く別の水槽に送気するもの
である。Next, the effect is that when the pressurized fluid power is sent from the boiler and combustion chamber to the fluid pressure conversion water tank via the pressure sending pipe, the stop valve of one water tank is open and the other is closed, and this operation is performed by the rotation of the cam. The cam floats, but when the water in the tank reaches the upper or lower limit, a switch is turned on and the motor rotates, causing the cam shaft (2
2) is rotated, and the liquid in the water tank that is pressed by the pressurized fluid is sent to the turbine shown in the attached paper, which is carried out via the lever rod and the lever rod connecting rod, but the liquid in the other water tank is Stop valve (40
) (16) prevents the intrusion of pressurized fluid, and uses pressurized pumps to store pressurized tap water from water pipes, or recycled water from rotating turbines. The liquid flows into the tank by pressing the valve that closes the water pipe, so before the water enters the exhaust valve, when the stop valve opens, the cam is rotated by the rotation of the motor and the other valve is opened. The one in the water tank is closed, and the other one is opened and exhausted to rotate a turbine other than the turbine shown in the attached paper.In this case, a separate water tank is provided, and the gas is completely expanded in this tank, and the liquid is sent to the turbine. When the gas tank (7) (8) is fully expanded, the upper valves (40) (39) should be closed to prevent pressurized gas from entering when the pressurized gas enters the upper part of the tank. The lower valves (42) and (16) open to allow water to be directed towards the turbine. Since the gas coming out of the exhaust pipe has a high pressure, there are cases where the gas is used to rotate the turbine without converting the fluid. When liquid enters from the water pipe (14), the exhaust pipe valve (12) is closed and the air in the tank (8) is exhausted to the outside through the air vent hole (5). The switch is turned on when the valve (25) in the water pipe opens, and when the switch is turned on, the motor rotates and rotates the cam to open the valve, and the liquid flows into the tank (8).
When the stop valve (40) (16) opens when the tank is full, a switch is turned on and the valve is closed in the same way as before, but this pump does not have the air vent hole (5) and sends water from the water pipe. Air may be supplied to the turbine through the exhaust pipe (6) under pressure, or the air may be supplied not directly to the turbine but to another water tank as described above.
水槽一杯に液がなつた場合排気弁(12)と送水弁(2
5)か閉じられこれの弁の作動は送水弁は弁自体にある
バネ(51)で行ない排気弁は、止弁(40)(16)
(39)(42)が作動する事に連動装置によつてカム
が連動して片方の槽の弁(40)(16)を閉じて他方
の槽の弁(39)(42)を開ける様なすものである。When the water tank is full, use the exhaust valve (12) and the water supply valve (2).
5) When closed, the water supply valve is operated by a spring (51) on the valve itself, and the exhaust valve is operated by a stop valve (40) (16).
When (39) and (42) are activated, the cam is linked by the interlocking device to close the valves (40) and (16) in one tank and open the valves (39 and 42) in the other tank. It is something.
止弁はこの場合先に閉じて居た方が開き、開となつて居
た方が閉じる様になり開となつた方の水槽の液がタービ
ンに加圧流体によつて押圧■れタービンを(別紙タービ
ン)回転せしめるものである。よつてこの様にした場合
には非常にボイラで蒸気圧を蒸気そのもので使用して居
た時より非常に高圧に出来又タービンに於ては翼の段数
を非常に少なくし効率に於ても非常に改善される等の作
用効果がある。In this case, the stop valve that was previously closed will open, and the one that was open will now close, and the fluid in the open water tank will be pressed against the turbine by the pressurized fluid, causing the turbine to move. (Attachment Turbine) It rotates. Therefore, in this case, the steam pressure in the boiler can be made much higher than when steam itself is used, and the number of blade stages in the turbine can be greatly reduced, which also improves efficiency. It has the effects of being greatly improved.
実施例
(2)本実施例はノヅルの回転するタービンエンヂンで
回転するノヅルに弁を装置し且つ弁を作動する連結棒等
が回転軸芯を通したものである、従来この種エンヂンが
公知となつたものは回転するノヅルに弁は無く他の固定
した送圧管に調節弁が設けられて居るので、流体圧に合
致したノヅルの開度をしないと素通する流体が生じる様
になる、この場合は流体圧が低くて速度が遅くて其の割
合にノヅルの開度が大なる場合に起因するものである、
又これとは逆に流体圧の強い割合にノヅルの開度が小の
場合具の割にノヅルの反動力とタービン翼に衝撃が小で
あるこれ等はどちらも熱効率に於て多大なる損失である
、而し本実施例に於ては回転するノヅルにニドル弁が設
けて常時流体圧に合せて又は出力軸の回転に合せてノヅ
ルの開度を自在に調節出来る様に■エンヂンの効率を改
善したものである。Embodiment (2) This embodiment is a turbine engine in which a nozzle rotates, in which a valve is installed on the rotating nozzle, and a connecting rod, etc. that operates the valve is passed through the rotation axis, unlike conventional engines of this type. The older one has no valve on the rotating nozzle, but a regulating valve on the other fixed pressure pipe, so if the nozzle is not opened to match the fluid pressure, fluid will flow through it. In this case, the fluid pressure is low, the speed is slow, and the opening of the nozzle is proportionally large.
On the other hand, when the fluid pressure is strong and the nozzle opening is small, the reaction force of the nozzle and the impact on the turbine blade are small considering the tool, both of which result in a large loss in thermal efficiency. However, in this embodiment, a needle valve is provided on the rotating nozzle so that the opening degree of the nozzle can be adjusted freely according to the fluid pressure at all times or according to the rotation of the output shaft. ■ Engine efficiency is improved. This is an improvement.
次に図面第2図に就いて説明せんに固定送圧管(15)
が回転筒軸(10)に深く入つて居り、放射状にした水
圧管(25)が設けられ、これの先端部より近接してあ
るタービン翼の先端部に加圧流体を放射するノヅル(2
1)が設けられて居り、タービン翼(2)はタービン軸
に等間隔にして多数放射状に設けられて居り、タービン
軸(4)には出力軸(6)のギヤ(5)より径の小のギ
ヤ(3)とかみ合せ、回転筒軸(10)には径の大のギ
ヤ(16)と先の出力軸(6)には径の小のギヤ(8)
とをかみ合せ、ノヅルとタービンを囲むタービンカバー
(1)の下方に流体排水孔(7)が設けられて居る、ノ
ヅルの内部にノヅルの開度を出入によつて調節するニド
ル弁(20)がありこれの端部と折曲の固定送圧管(1
5)を通つて外部に突出する連動棒(22)と連結棒(
17)で連結しこれ等は止軸(19)で屈曲自在に止め
られる、固定送圧管(15)の外部には連動棒(22)
の回転止めがあるが該回転止(14)は必要ある時に限
つて設けるものでありこれは連動棒(22)が回転止(
14)の溝(12)に回転自在に嵌合されて居るもので
ある、回転止はオモリに連繋する作動棒(11)と■体
である次に作用効果であるが図面第1図の装置で加圧流
体が発生され固定送圧管、回転筒軸を通つてノヅルより
タービン翼に噴射のてノヅルは反動力タービン翼は衝撃
を受けて回転し、この場合ニドル弁(20)はオモリの
回転によつて矢印の様に連動棒が左右動してノヅルの開
度を調節するので今日使用して居るタービンエンジンよ
りも熱効率が改善されて居り前出願のものには回止にテ
コ棒を押圧して居るバネが本エンヂンでは取除かれて居
る為長時間使用によるバネの熱による劣下がないので安
心して長時間水力、蒸気、瓦斯等のタービンエンヂンと
して使用出来るものであるが本エンジンの特徴としてノ
ヅルを毎分1回転等とし固定した状態に近つげた事であ
るこれは図面で示した通りギヤ比によつてなすものであ
るが、ノヅルの方にタービン翼の軸よりも負荷の大なる
発電機を回転させノヅルの回転を前記の様に非常に遅い
回転にする場合もあるこの場合ギヤ比によつてノヅルよ
り非常に速い回転に発電機の方をする、この場合ノヅル
側とタービン側と別々の二個の発電機を使用するもので
ある。それでノヅルの回転を非常に遅くしたのは流体を
タービン翼に有効に当る為である。Next, let us explain the fixed pressure pipe (15) in Figure 2 of the drawing.
is deeply inserted into the rotary cylinder shaft (10), and is provided with a radial hydraulic pressure pipe (25), and a nozzle (2) for emitting pressurized fluid to the tip of the turbine blade, which is closer to the tip of the pressure pipe (25).
1), a large number of turbine blades (2) are provided radially at equal intervals on the turbine shaft, and the turbine shaft (4) has a blade smaller in diameter than the gear (5) of the output shaft (6). gear (3) with a large diameter on the rotary cylinder shaft (10) and a gear with a small diameter (8) on the output shaft (6).
There is a needle valve (20) inside the nozzle that adjusts the opening degree of the nozzle by moving it in and out, and a fluid drainage hole (7) is provided below the turbine cover (1) that surrounds the nozzle and the turbine. There is a fixed pressure pipe (1
The interlocking rod (22) and the connecting rod (
17), and these are bent and stopped by a stop shaft (19), and there is an interlocking rod (22) on the outside of the fixed pressure pipe (15).
There is a rotation stopper (14), but this rotation stop (14) is provided only when necessary, and this is because the interlocking rod (22) is not rotated (14).
The rotation stopper is rotatably fitted in the groove (12) of 14), and the rotation stop is made up of an actuating rod (11) connected to the weight. Pressurized fluid is generated and injected into the turbine blade from the nozzle through the fixed pressure pipe and rotating cylinder shaft.The nozzle is a reaction force and the turbine blade rotates due to the impact. The interlocking rod moves left and right as shown by the arrow to adjust the opening of the nozzle, so the thermal efficiency is improved compared to the turbine engines used today. Since the springs used in this engine have been removed, there is no deterioration due to the heat of the springs due to long-term use, so it can be used safely for long periods of time as a turbine engine for hydraulic power, steam, gas, etc. The characteristic is that the nozzle rotates at one revolution per minute, which is close to a fixed state.This is done by using the gear ratio as shown in the drawing, but the load is applied to the nozzle rather than the axis of the turbine blade. In some cases, a large generator is rotated and the nozzle rotates very slowly as described above. In this case, the gear ratio causes the generator to rotate much faster than the nozzle. In this case, the nozzle side and It uses two generators, one on the turbine side and one on the separate side. Therefore, the reason why the nozzle was rotated very slowly was to allow the fluid to hit the turbine blades effectively.
実施例
(3)本実施例は航空機のジエツトエンジンでスラスト
ノヅルの後方に近接して作タービン翼を設け、スラスト
ノヅルを調節する弁を設けたものに関し、今日使用され
て居るジエツトエンジンはスラストノヅルの後部にはタ
ービンがなく多くの排気損失が多大であり、且つ推進ノ
ヅルの開度を調節する弁か無く、エンジンの燃焼室の燃
焼気の圧力に応じたノヅルの開度の調整が出来ないと燃
焼室の圧力を非常に高く上げても其の割に反動力が発生
せず又これとは反対に圧力を低くした場合ノヅルを素通
りして其の割に反動力が発生しない等多大の欠点を有し
て居た本実施例は本欠点を改善したものである。Embodiment (3) This embodiment relates to an aircraft jet engine in which a turbine blade is installed close to the rear of the thrust nozzle and a valve for adjusting the thrust nozzle is installed. There is no turbine at the rear, so there is a lot of exhaust loss, and there is no valve to adjust the opening of the propulsion nozzle, so the opening of the nozzle cannot be adjusted according to the pressure of the combustion air in the engine's combustion chamber. Even if the pressure in the combustion chamber is raised to a very high level, no reaction force is generated; on the other hand, when the pressure is lowered, the combustion chamber passes through the nozzle without any reaction force, and so on. This embodiment has improved this drawback.
次に図面3図に就いて説明せんに1番前方に燃焼■空気
圧縮機(15)に接続して燃焼室(4)があり、これの
後部に外部に排気する管を有し、該管は真後方に向けた
スラストノヅルになつて居るスラストノヅル(20)の
内部にノヅルの開度を調節するニドル弁(12)か設け
てあり、ニドル弁と一体化する弁棒(1)が圧縮機(1
5)の軸芯を通つて外部に突出して連動棒に接続されて
操縱室内迄紳長し手動される様なつて居り又途中から別
の連動棒は圧縮機の軸のオモリに連繋てし居る、スラス
トノヅル(20)の外部には軸に放射状に翼を取りつけ
たタービン(6)があり翼は二、三枚程度とし、タービ
ンの回転はスラストノヅルから出る流体の速より少し遅
い程度としなるべく負荷を少なくして流体の速に近づけ
る様にする、タービン軸(10)の回転は後方よりチエ
ーン歯車(7)等によつて燃焼室(4)の外部を通つて
回転軸(2)によつて前方の圧縮機(15)軸(17)
を回転し燃焼用空気を圧縮する様になつ居る。次に作用
効果であるが空気取入に(16)より圧縮機に吸気して
圧縮された空気は燃焼室で燃焼され高温高圧となつてス
ラストノヅルより外部に流体が排出する時飛行機が推進
され、スラストノヅルを出だ流体はタービン翼に衝撃し
てタービン軸(10)を回転しこの回転で圧縮機が駆動
される様になつて居てノヅルから外部に排出する流体が
回収出来これがエンヂンの効率を高め、又ニドル弁のス
ラストノヅルの開度の調節によつてもエンヂンの効率を
高める要因にもなる等多大の作用効果が有る。Next, referring to Figure 3, there is a combustion chamber (4) connected to the combustion air compressor (15) at the very front, and at the rear of this there is a pipe for exhausting the air to the outside. A needle valve (12) for adjusting the opening degree of the nozzle is installed inside the thrust nozzle (20), which is a thrust nozzle facing directly rearward, and the valve stem (1) integrated with the needle valve is connected to the compressor ( 1
5) Projects outward through the shaft core and is connected to an interlocking rod, extending into the control room so that it can be operated manually, and another interlocking rod from the middle is connected to the weight of the shaft of the compressor. There is a turbine (6) on the outside of the thrust nozzle (20) with blades attached radially to the shaft, and there are about two or three blades, and the rotation of the turbine is slightly slower than the speed of the fluid coming out of the thrust nozzle, so that the load is kept as low as possible. The rotation of the turbine shaft (10) is controlled from the rear through the outside of the combustion chamber (4) by a chain gear (7), etc., and then forward by the rotating shaft (2). compressor (15) shaft (17)
The engine rotates to compress the combustion air. Next, as for the function and effect, the compressed air is taken into the compressor by (16) and burned in the combustion chamber, becoming high temperature and high pressure, and when the fluid is discharged to the outside from the thrust nozzle, the airplane is propelled. The fluid coming out of the thrust nozzle impacts the turbine blade and rotates the turbine shaft (10), and this rotation drives the compressor, and the fluid discharged from the nozzle to the outside can be recovered, which increases the efficiency of the engine. In addition, adjusting the opening degree of the thrust nozzle of the needle valve has many effects, such as being a factor in increasing the efficiency of the engine.
実施例
(4)本実施例は船舶のスクリユウ(推進器)から排出
される流体でタービンを回転しこれによつて発電機を回
転し発電された電気が船内の照明又は他の電力源、推進
器の補助回転等に使用せんとするものである、今日使用
されて居る船の推進エンヂンはスクリユウから出る流体
を皆捨て居たそれで本実施例は該流体を能率良く回収せ
んとするものである。Embodiment (4) In this embodiment, fluid discharged from a ship's screw (propulsion device) rotates a turbine, which rotates a generator, and the generated electricity is used for lighting inside the ship, other power sources, and propulsion. The propulsion engines of ships used today, which are not intended to be used for auxiliary rotation of vessels, throw away all the fluid coming out of the screw, so this embodiment aims to efficiently recover this fluid. .
次に図面4図に就いて説明するに船体から水中に突出す
る推進器軸(8)に回転するスクリユウ(7)を設け、
スクリユウ一の後部に近接してタービンがあり該タービ
ンは軸に放射状に翼(3)を取付け軸(5)には発電気
(9)を回転する傘歯車(10)にかみ合ふ歯車(4)
が設けられ、傘歯車(10)と発電気(9)は回転軸(
6)で連結されて居る、それで推進器から出る流体によ
つてタービンを回転する場合非常に遅い回転で発電機を
回転させる速度には足りないので傘歯車をこれとかみ合
ふ歯車より非常に小径としてこ■でタービンの回転を発
電機の回転に見合ふ様に増速する、タービン翼(3)は
船体(1)より外部に突出する支柱(2)によつて支持
されて居り、タービン翼は出来る限り水中に下半分と云
ふ風に空中に露出させるものである、又タービンの回転
をスクリユウから出る流体の速度に近くする為に出来る
限りタービン軸に負荷が小になる様な発電気とするもの
である。Next, referring to Figure 4, a rotating screw (7) is provided on the propeller shaft (8) protruding from the hull into the water,
There is a turbine adjacent to the rear of the screw, and the turbine has blades (3) radially attached to the shaft, and the shaft (5) has a bevel gear (10) that rotates the generated electricity (9). )
is provided, and the bevel gear (10) and the generator (9) are connected to the rotating shaft (
6), so when the turbine is rotated by the fluid coming out of the thruster, the rotation is very slow and is not fast enough to rotate the generator, so the bevel gear is much faster than the gear that meshes with it. The turbine blades (3), which have a small diameter and increase the rotation speed of the turbine to match the rotation of the generator, are supported by struts (2) that protrude outward from the hull (1). The blades are exposed in the air with the lower half submerged in the water as much as possible, and in order to make the rotation of the turbine close to the velocity of the fluid coming out of the screw, the load on the turbine shaft is minimized. Electricity is used.
次に本実施例の作用効果は回転するスクリユウから出る
流体の反動力で船体が推進され、該流体がタービン翼に
衝撃してタービン軸を回転し、軸の回転は増速されて発
電機を回転して居るので今日使用されて居る船舶のエン
ジンより効率が増進したものである。等の作用効果があ
る。Next, the effect of this embodiment is that the hull is propelled by the reaction force of the fluid emitted from the rotating screw, the fluid impacts the turbine blades and rotates the turbine shaft, and the rotation of the shaft is accelerated to drive the generator. Because they rotate, they are more efficient than marine engines in use today. It has the following effects.
図面中は本願発明の要部の理の説明図で第1図は流体圧
変換装置。第2図はタービンエンジン。第3図はジエツ
トエンジン。第4図は船舶のエンジン。The drawings are explanatory diagrams of the principle of the main parts of the present invention, and FIG. 1 is a fluid pressure conversion device. Figure 2 shows a turbine engine. Figure 3 shows a jet engine. Figure 4 shows a ship's engine.
Claims (1)
槽の水が加圧流体発生源の加圧流体によつて押圧され、
流下してタービン翼に衝撃してタービンを回転する様に
した事を特徴としたタービンエンジンの構造。A turbine blade is provided adjacent to a pressurized fluid pressure conversion water tank, and water in the water tank is pressed by pressurized fluid from a pressurized fluid generation source,
A turbine engine structure characterized by flowing water impacting the turbine blades and rotating the turbine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57189840A JPS5979074A (en) | 1982-10-28 | 1982-10-28 | Improvement of engine absorbing exhaust fluid of jet engine, turbine engine and ship |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57189840A JPS5979074A (en) | 1982-10-28 | 1982-10-28 | Improvement of engine absorbing exhaust fluid of jet engine, turbine engine and ship |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5979074A true JPS5979074A (en) | 1984-05-08 |
Family
ID=16248080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57189840A Pending JPS5979074A (en) | 1982-10-28 | 1982-10-28 | Improvement of engine absorbing exhaust fluid of jet engine, turbine engine and ship |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5979074A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0497083U (en) * | 1991-01-22 | 1992-08-21 | ||
CN105587460A (en) * | 2014-11-11 | 2016-05-18 | 黄国彰 | Power generation device suitable for ocean current |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5127647A (en) * | 1972-02-04 | 1976-03-08 | Hitoshi Sakai | |
JPS5499843A (en) * | 1977-12-05 | 1979-08-07 | Lochner Johannes P A | Method of and apparatus for generating motive power |
JPS551411A (en) * | 1978-06-17 | 1980-01-08 | Saburo Hirota | Water wheel employing compressed air |
-
1982
- 1982-10-28 JP JP57189840A patent/JPS5979074A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5127647A (en) * | 1972-02-04 | 1976-03-08 | Hitoshi Sakai | |
JPS5499843A (en) * | 1977-12-05 | 1979-08-07 | Lochner Johannes P A | Method of and apparatus for generating motive power |
JPS551411A (en) * | 1978-06-17 | 1980-01-08 | Saburo Hirota | Water wheel employing compressed air |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0497083U (en) * | 1991-01-22 | 1992-08-21 | ||
CN105587460A (en) * | 2014-11-11 | 2016-05-18 | 黄国彰 | Power generation device suitable for ocean current |
TWI659155B (en) * | 2014-11-11 | 2019-05-11 | 黃國彰 | Power generation device suitable for ocean current |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0333585B1 (en) | Combined propulsion unit provided with an air breathing turbo jet | |
CN110107426A (en) | Across the medium flight device power device shared based on combustion chamber between grade and turbine water sky | |
OA11178A (en) | Vertical wind turbines with low vertical axis | |
US4931026A (en) | Jet propeller | |
NO810854L (en) | WATER DRIVING DEVICE FOR OPERATION OF WATER VESSELS | |
JPS5979074A (en) | Improvement of engine absorbing exhaust fluid of jet engine, turbine engine and ship | |
US3940926A (en) | Jet propulsion engines | |
RU2728937C1 (en) | Method of using internal energy of thermal jet of air-jet engine | |
US5575587A (en) | Tide-operated driving system | |
US2735499A (en) | ehlers | |
JPS5755292A (en) | Auxiliary propulsion device of ship | |
CN101891012A (en) | Novel power plant of nuclear submarine | |
CN108639296A (en) | A kind of hull perforation hydraulic propeller peculiar to vessel | |
CN109339976B (en) | Pulse type underwater power system and use method thereof | |
FR2371342A1 (en) | Boat driven by pumped water jet - has pump driven electrically by generators powered by wind operated turbines | |
US3234902A (en) | Marine turbine drive system | |
US6224434B1 (en) | Pump jet with axial directional flow control device for thrust modulation | |
US5749220A (en) | Turbocharged RAM tornado engine with transmission and heat recovery system | |
US2984304A (en) | Helicopter lifting rotor having a propulsion unit at the blade tip | |
US1267928A (en) | Current water-motor. | |
RU2084674C1 (en) | Steam-gas jet propulsion engine | |
KR102704284B1 (en) | Power generation and propulsion system using hydraulic pressure difference | |
RU191201U1 (en) | Direct-flow steam engine with a nuclear heat source for ships. | |
US3116709A (en) | Atomic powered direct thrust vessel | |
CN111038675A (en) | Ship propelling device capable of utilizing wind power |