JPS597852A - Reflective heat-absorbing window - Google Patents

Reflective heat-absorbing window

Info

Publication number
JPS597852A
JPS597852A JP57114829A JP11482982A JPS597852A JP S597852 A JPS597852 A JP S597852A JP 57114829 A JP57114829 A JP 57114829A JP 11482982 A JP11482982 A JP 11482982A JP S597852 A JPS597852 A JP S597852A
Authority
JP
Japan
Prior art keywords
window
heat
solar radiation
frame
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57114829A
Other languages
Japanese (ja)
Inventor
Tadao Nakamura
忠雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57114829A priority Critical patent/JPS597852A/en
Publication of JPS597852A publication Critical patent/JPS597852A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/63Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of windows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To give a remarkable effect on energy conservation in a building through the year, by a method wherein a reflective heat-absorbing glass window in rotatably provided, solar radiations are effectively excluded in summer, and the solar radiations are effectively taken into the interior in winter. CONSTITUTION:In a light-transmitting body 41 for a composite window, a surface of a light-transmitting flat plate capable of absorbing a portion of solar radiations is treated to be capable of reflecting a part of the solar radiations, and a frame 42 for supporting and fixing the body 41 is supported by a window frame member 44 so that the frame 42 can be rotated by at least 180 deg. relatively to the frame member 44. Accordingly, solar heat can be effectively utilized in each period of the year by directing the reflection-augmented surface of the light-transmitting body 41 to the exterior to reduce cooling load in summer or in intermediate periods of cooling, and directing the surface to the interior in winter or in intermediate periods of heating.

Description

【発明の詳細な説明】 本発明は建物の開口部に設置され、建物の冷Uに房負荷
に強い影響を与える太陽輻射を制御する反射吸熱窓に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reflective heat-absorbing window installed in an opening of a building to control solar radiation which has a strong influence on the cooling unit load of the building.

冷暖房に関連して太陽輻射の室内へ侵入の遮蔽あるいは
導入を制御するためには、従来、ガラスの一面に金属性
反射体を貼着したり、金属性反射体を貼着したフィルム
をラミネートした輻射除去ガラスあるいは太陽輻射に対
して透過性を改善した輻射取得ガラスあるいは太陽輻射
のうち近赤外部を選択的に吸収するようにし、室内への
再輻射により太陽熱を取得するようにした熱線吸収ガラ
スあるいはこれらの複合した特性をもたせたガラスが用
いられてきた。しかしながらこれらの方式はいずれも冷
房または暖房のどちらか一方にしか効果を示さず、冷房
用に用いられる輻射除去ガラスは冬期には有、効に太陽
エネルギーを室内に導入できない点ではむしろエネルギ
ー的には損失となっている。同様に、冬期用いられる輻
射取得ガラスや熱線吸収ガラスが、夏期太陽輻射を通常
ガラス以上に室内に取り込むことになり、冷房負荷を増
大させる原因となる。これらのフィルムやガラスは通常
、エネルギー取得分が損失分を相殺することをむしろ前
提条件とし、2年間のエネルギーの損得を計算し、その
上で、エネルギー利得がありと認められるか否かを判断
してその採用を決定しているのが現状である。例えば、
開口が大きく、ひさしがなく空調を前提とした温暖地域
での事務所、ビル等では、冷房負荷に対する太陽輻射の
寄与分が極めて大きいため、暖房期における太陽熱除去
損失をおぎなって余りある場合が多いが、比較的寒冷な
地域にあるビルや冷房より暖房を重視する住宅等におい
ては、これは必ずしもあてはまらない。すなわち、従来
技術による種々のフィルムやガラスの適用範囲は比較的
限定されるという欠点があった。
Conventionally, in order to block or control the entry of solar radiation into a room in connection with air conditioning, a metallic reflector was attached to one side of the glass, or a film with a metallic reflector attached was laminated. Radiation removal glass, radiation acquisition glass with improved transparency for solar radiation, or heat ray absorption glass that selectively absorbs near-infrared radiation from the sun and acquires solar heat by re-radiating it indoors. Alternatively, glasses with a combination of these properties have been used. However, all of these methods are only effective for either cooling or heating, and the radiation-eliminating glass used for cooling is effective in the winter, but it is rather energy-efficient as it cannot effectively introduce solar energy into the room. is a loss. Similarly, radiation acquisition glass and heat ray absorbing glass used in the winter allow more summer solar radiation to enter the room than ordinary glass, causing an increase in the cooling load. These films and glasses usually require that the amount of energy gained offsets the amount of loss, calculating the energy gain or loss over two years, and then determining whether or not there is an energy gain. The current situation is that the company has decided to adopt it. for example,
In offices, buildings, etc. in warm regions with large openings, no eaves, and air conditioning, the contribution of solar radiation to the cooling load is extremely large, often exceeding the solar heat removal loss during the heating season. However, this is not necessarily true for buildings located in relatively cold regions or homes where heating is more important than air conditioning. That is, the range of application of various films and glasses according to the prior art is relatively limited.

しかるに近年、建物における省エネルギー化の必要が叫
ばれ、建物断熱化とともに、窓開口部力。
However, in recent years, the need for energy conservation in buildings has been emphasized, and along with building insulation, the power of window openings has increased.

らの冬期の積極的な太陽熱取得と、夏期の輻射熱除去に
関し、両方の機能を相そなえだ窓開口部材の開発が嘱望
されている現状にある。
There is currently a strong demand for the development of window opening members that have both the functions of actively acquiring solar heat in the winter and removing radiant heat in the summer.

本発明は、°これらの現状を背景になされたもので、反
射吸熱性ガラス窓を回転できる構成とし、夏期、冬期で
表裏を、室内側に対し変更する簡単ガ操作で実現する全
シーズン省エネルギー型窓を提供することを目的とする
The present invention was developed against the background of these current circumstances, and is an all-season energy-saving type that uses a rotatable reflective and heat-absorbing glass window and can be easily changed from front to back to the indoor side in summer and winter. The purpose is to provide a window.

以下、本発明の一実施例を図面を用いて説明する0 第1図は本発明の反射吸熱窓を構成する主要な要素であ
る複合芯透光体の側断面図で太陽輻射に対し、吸収率を
増強した例えばガラスなどの透光性平板1の一面に反射
増強層2を付着させ反射処理を施したものである0ガラ
スの吸収率増強には公知の金属元素を導入する方法によ
り任意の太陽輻射吸収率を得ることができる。特に本発
明の実施にあたっては可視光吸収性より近赤外吸収性の
大きいガラスが望ましく、その目的から金属元素として
は鉄分などを用いることが推奨される。ガラス等透光体
乎板1の一面の反射処理においても公知の種々の方法を
採用することができる○例えはアルミ、銅などの金属を
蒸着、ス・4ツタ−、メッキなどの方法により薄膜状に
結着し、樹脂等で保護コートするか、あるいは高分子膜
に同様な方法で金属薄膜を結着し、ガラス等の一面に貼
付結着する方法である。いずれも反射率は比較的任意に
選定できる。ただし、上記吸収率と反射率の選択と、そ
れによる省エネルギー性の間には、後述するように一定
の関係があり、吸収率としては1o%から50%の値を
、また反射率としては20%以上の値を室内への光線透
過率との関連において採用することが必要である。
An embodiment of the present invention will be described below with reference to the drawings. Figure 1 is a side cross-sectional view of a composite core transparent material that is the main element constituting the reflective heat-absorbing window of the present invention. A reflection-enhancing layer 2 is attached to one surface of a light-transmitting flat plate 1 such as glass, which has been subjected to a reflection treatment.In order to enhance the absorption rate of glass, an arbitrary method can be applied by introducing a known metal element. Solar radiation absorption rate can be obtained. Particularly in carrying out the present invention, it is desirable to use a glass that has higher near-infrared absorption than visible light absorption, and for that purpose, it is recommended to use iron or the like as the metal element. Various known methods can be used for the reflection treatment on one side of the transparent plate 1, such as glass. For example, metals such as aluminum and copper can be deposited as a thin film by vapor deposition, sintering, plating, etc. In this method, a thin metal film is bonded to a polymer film and coated with a protective coating such as a resin, or a thin metal film is bonded to a polymer film using a similar method, and the metal thin film is bonded to one surface of a glass or the like. In either case, the reflectance can be selected relatively arbitrarily. However, there is a certain relationship between the above-mentioned selection of absorptance and reflectance and the resulting energy saving, as will be described later. % or more in relation to the light transmittance into the room.

第2図、第3図は、それぞれ前記複合芯透光体を太陽輻
射の入射面を反射増強面とする場合と、その相対する面
とする場合の反射吸収特性を説明する図である。
FIGS. 2 and 3 are diagrams illustrating the reflection/absorption characteristics of the composite core transmissive body when the solar radiation incident surface is the reflection enhancing surface and when the opposite surface is the reflection enhancing surface, respectively.

図に示された分岐する矢印は太陽輻射と複合芯透光体の
吸収率、反射率とのかねあいで、室外に除去される輻射
と室内に透過する輻射の各成分を模式的に示したもので
ある。図を単純化するために裏面反射や、高次の内部反
射は図示していないがこの単純化により、本発明の原理
が一般性を失なうことはない点は明らかである。
The branching arrows shown in the figure schematically show each component of the radiation that is removed outdoors and the radiation that is transmitted indoors due to the balance between solar radiation and the absorption rate and reflectance of the composite core transparent material. It is. Although back reflections and higher-order internal reflections are not shown to simplify the drawing, it is clear that the principles of the present invention do not lose their generality due to this simplification.

第2図において、反射増強面2から太陽輻射3が入射す
ると、まず表面で反射増強面2の反射率に対応して、反
射成分4が室外へ除去される〇一方、残りの輻射成分は
ガラス内を貫通し、ガラスの吸収率に対応した吸収をう
けた後、室内へ透過成分6として取得される。その間吸
収された輻射成分はガラス等透光性乎板1を伝導し、そ
の温度を高め、その結果として、室内外に放熱成分6゜
7として放熱される。室内放熱分6と室外放熱分7の割
合は室内および外気温湿度、天空輻射量により異なる値
となる。
In Fig. 2, when solar radiation 3 enters from the reflection-enhancing surface 2, the reflected component 4 is first removed to the outside according to the reflectance of the reflection-enhancing surface 2, while the remaining radiation components are After penetrating through the glass and receiving absorption corresponding to the absorption rate of the glass, it is acquired into the room as a transmitted component 6. The radiant components absorbed during this period are conducted through the light-transmitting plate 1 such as glass, increasing its temperature, and as a result, the heat is radiated indoors and outdoors as heat radiating components. The ratio of indoor heat radiation 6 to outdoor heat radiation 7 has different values depending on the indoor and outdoor temperature and humidity, and the amount of sky radiation.

反射成分4と吸収伝導放熱の室外成分7を加えたエネル
ギー成分の入射成分3との比を太陽輻射除去率、透過成
分5と室内放熱成分6を加えたものの入射成分3との比
を太陽輻射全透過率と呼称することもあり、ここでは簡
略にそれぞれ除去率および全透過率と記述し、通常用い
られる透過成分5のみを考慮した透過率と区別する。
The ratio of the energy component, which is the sum of the reflected component 4 and the outdoor component 7 of absorption and conduction heat radiation, to the incident component 3 is the solar radiation removal rate, and the ratio of the energy component, which is the sum of the transmitted component 5 and the indoor heat radiation component 6, to the incident component 3 is the solar radiation. This is sometimes called total transmittance, and here they are simply described as removal rate and total transmittance, respectively, to distinguish it from the normally used transmittance in which only the transmitted component 5 is considered.

第3図は反射増強図2の相対する面に太陽輻射を入射さ
せた場合を示しており、入射する太陽輻射3は透光性平
板1で吸収・伝導し、室内側および室外側にそれぞれ伝
導放熱成分9.10として放熱する。残部の輻射は反射
増強面2で反射率に対応した反射をうけるが、その輻射
成分の一部はガラス1を貫通する間再度吸収され伝導し
、室内。
Figure 3 shows the case where solar radiation is incident on the opposite surfaces of the reflection enhancement diagram 2. The incident solar radiation 3 is absorbed and conducted by the transparent flat plate 1, and is conducted to the indoor side and the outdoor side, respectively. Heat is radiated as heat radiation component 9.10. The remaining radiation is reflected by the reflection-enhancing surface 2 in accordance with the reflectance, but a part of the radiation component is absorbed again while passing through the glass 1 and is conducted into the room.

室内にそれぞれ伝導放熱成分11.12として放熱する
。残部は室外へ反射成分8として除去される。一方反射
増強面2で反射されなかった残部の輻射が透過成分5と
して室内に取得される。したがってこの場合の除去率は
反射成分8と伝導放熱成分10および12を加算したも
のであり、全透過率は透過成分5と伝導放熱成分9およ
び11を加算したものとなる。
Heat is radiated into the room as conduction heat radiation components 11 and 12, respectively. The remainder is removed to the outside as a reflected component 8. On the other hand, the remaining radiation that is not reflected by the reflection-enhancing surface 2 is acquired into the room as a transmitted component 5. Therefore, the removal rate in this case is the sum of the reflection component 8 and the conduction heat radiation components 10 and 12, and the total transmittance is the sum of the transmission component 5 and the conduction heat radiation components 9 and 11.

このように第2図、第3図の説明と図から定性的に理解
されるように、第2図の入射状態(は第3図のそれに比
べ、除去率が大きく、第3図の入射状態は第2図にそれ
に比べ室内への全透過率が大きい。したがって夏期や冷
房中間期、冷房負荷を小さくするには複合窓透光体を反
射増強面2を室外側に向け、冬期や暖房中間期には、反
射増強面2を室内側に向けるようにすれば、各時期の太
陽熱利用は非常に効果的に行なわれることが理解されよ
う。
As can be qualitatively understood from the explanations and diagrams in Figures 2 and 3, the incidence state in Figure 2 (has a higher removal rate than that in Figure 3), and the incidence state in Figure 3 The total transmittance into the room is larger than that shown in Figure 2. Therefore, in order to reduce the cooling load in the summer or mid-air cooling period, the composite window transmissive material should be used with the reflection-enhancing surface 2 facing the outdoor side. It will be understood that if the reflection-enhancing surface 2 is directed toward the indoor side during each season, the solar heat can be utilized very effectively during each season.

このような複合窓ガラスを上記のように使用するだめの
具体的な窓部材として構成する反射吸熱窓としての一実
施例を第4図に示す。図中41は前述の反射・吸熱性複
合窓透光体、42はそれを支持固定するフレームである
。フレーム42は夏冬で複合窓透光体410表裏が変更
できるように透光体面に沿う回転軸43との交点部分で
、窓枠材44に対し少くとも180°回転自在に支持さ
れる。このような構成により、夏は反射増強面を外側に
、冬は内側にするようフレームを42回転させ、口、り
46,46′等により、フレーム42を窓枠材44に固
定することができる。
FIG. 4 shows an embodiment of a reflective heat-absorbing window in which such a composite window glass is used as a specific window member as described above. In the figure, numeral 41 denotes the above-mentioned reflective/endothermic composite window transmissive body, and numeral 42 denotes a frame for supporting and fixing it. The frame 42 is rotatably supported by at least 180° relative to the window frame material 44 at the intersection with a rotating shaft 43 along the surface of the transparent body so that the front and back sides of the composite window transparent body 410 can be changed in summer and winter. With this configuration, the frame 42 can be rotated 42 times so that the reflection-enhancing surface faces outward in summer and inward in winter, and the frame 42 can be fixed to the window frame material 44 using the holes, rips 46, 46', etc. .

つぎに、複合窓透光体の関連物理量の間の関係と、省エ
ネルギー効果を、第5図の特性図を中心に説明する。第
5図は本発明の複合窓透光体の母材をガラスとした場合
の透過率および反射増強面の反射率を多様に変化させ、
その表裏に対し複合芯透過体の太陽輻射全透過率の冬期
における増分を省エネルギ一度として百分率であられし
たものである。すなわちここで省エネルギ一度とは、夏
期従来法と同様に反射性ガラスとして用いる場合すなわ
ち、反射増強面を外側に用いる場合に対し、冬期もその
状態で放置する場合と、本発明の方式により、冬期は反
射増強面を内側に回転して用いる場合の太陽輻射の室内
への取得量に関連する全透過率の増分を百分率で示した
ものである0図中、横軸Aはガラスの吸収率を百分率で
示し、Bは前述の省エネルギ一度を示し、曲線1D〜6
Dに対応する。Cは対応する反射増強面の反射率を百分
率で示し、曲線1E〜6Eに対応する。
Next, the relationship between the related physical quantities of the composite window transparent body and the energy saving effect will be explained with reference to the characteristic diagram shown in FIG. 5. FIG. 5 shows various changes in the transmittance and reflectance of the reflection-enhancing surface when glass is used as the base material of the composite window transmissive body of the present invention.
The increase in the total solar radiation transmittance of the composite core transmittance during the winter season with respect to the front and back sides is expressed as a percentage, assuming that the energy saving is one time. In other words, here, the term "one-time energy saving" refers to when the glass is used as a reflective glass in the same way as the conventional method in the summer, that is, when the reflection-enhancing surface is used on the outside, and when it is left in that state in the winter, and when the method of the present invention is used as a reflective glass. In the winter, the increase in total transmittance related to the amount of solar radiation entering the room when the reflection-enhancing surface is rotated inward is shown as a percentage.In the figure, the horizontal axis A is the absorption rate of the glass. is expressed as a percentage, B indicates the energy saving degree mentioned above, and curves 1D to 6
Corresponds to D. C indicates the reflectance of the corresponding reflection-enhancing surface in percentage and corresponds to curves 1E to 6E.

また、iD、IEは複合窓ガラスの透過率(第2図、第
3図の透過成分5に対応)が百分率で30%の場合、2
D、2Eは36%、3D、3Eは4o%、4D、4には
45%、5D、5には50%、eD、eEは55%とし
た場合の特性曲線である○ 第5図より明らかなように、本発明において、吸収率、
透過率、反射率は独立かつ任意的ではなく一定の関係に
あり、例えば透過率の種々の値に対して省エネルギ一度
が最適となる吸収率が存在する。また、前述したように
図に示す特性は冬期における基準条件下での省エネルギ
一度を示したものであり、夏期の効果を大きく期待する
には、反射率をより大きな値に選定する方が有利である
0さらに、これらの語数値は実際的な生活における窓の
本来的機能からくる条件からも制約される。
In addition, iD and IE are 2 if the transmittance of the composite window glass (corresponding to the transmitted component 5 in Figures 2 and 3) is 30%
This is the characteristic curve when D and 2E are 36%, 3D and 3E are 4o%, 4D and 4 are 45%, 5D and 5 are 50%, and eD and eE are 55% ○ It is clear from Figure 5 As such, in the present invention, the absorption rate,
Transmittance and reflectance are not independent and arbitrary but have a constant relationship, and for example, there is an absorption rate at which energy saving is optimal once for various values of transmittance. In addition, as mentioned above, the characteristics shown in the figure indicate energy savings under standard conditions in the winter, so in order to expect a large effect in the summer, it is advantageous to select a larger value for the reflectance. In addition, these word values are constrained by conditions arising from the original function of windows in practical life.

これは例えば、省エネルギ一度を向上させるためとはい
え、透過率を大幅に低下させることは明るさ等の点で好
ましくない等の条件である。
For example, this is a condition where, although the purpose is to improve energy saving, it is undesirable to significantly reduce transmittance in terms of brightness and the like.

以下、これらの諸条件における限界値から、本発明を効
果的に実施するだめの吸収率および反射率の最適範囲に
ついて説明する。
The optimal ranges of absorption and reflectance for effectively carrying out the present invention will be explained below based on the limit values under these various conditions.

省エネルギ一度は少なくとも6%以上あることが本発明
における材料的投資増分等を考慮して推奨される。また
、透過率は視覚的にもある程度抑えた方が外界のぎらつ
き、まぶしさを防止する[mで快適ではあるが、視覚的
には少くとも30%以上の透過率を保持することが望ま
しい。一方、太陽輻射に対する反射率については夏期に
おける輻射除去効果を確保するために、少くとも20%
以上とすることが推奨される。
It is recommended that the energy saving is at least 6% or more in consideration of the increase in material investment in the present invention. Also, visually, it is better to suppress the transmittance to a certain extent to prevent glare from the outside world [m is comfortable, but visually it is desirable to maintain a transmittance of at least 30%. . On the other hand, the reflectance against solar radiation should be at least 20% to ensure the radiation removal effect in summer.
It is recommended that the above is set.

これらの条件を考慮すると複合窓透光体の太陽輻射吸収
率Aは第6図より、少なくとも10%より50%の範囲
にあることが推奨される。
Taking these conditions into account, it is recommended that the solar radiation absorption rate A of the composite window transmissive body is in the range of at least 10% to 50%, as shown in FIG.

本発明をさらに有効たらしめる他の実施例を第6図に示
す。図中1,2はこれ捷でに説明してきた吸収性ガラス
と、反射増強層を夫々示す。この複合窓透光体面に平行
して空隙61を介して、例えば通常の透明ガラス62な
どの透光性平板を、第4図に示したフレーム42、窓枠
材44に前述の例と同様に設置し、前例と同様、夏期は
反射増強面2を室外側に、冬期は室内側にして用いる。
Another embodiment that makes the present invention even more effective is shown in FIG. In the figure, numerals 1 and 2 indicate the absorbent glass and the reflection enhancing layer, respectively, which have been explained above. A light-transmitting flat plate such as ordinary transparent glass 62 is attached to the frame 42 and window frame material 44 shown in FIG. As in the previous example, the reflection-enhancing surface 2 is used on the outside of the room in the summer and on the inside of the room in the winter.

本例の顕著な特徴は本発明の夏期および冬期の効果をそ
れぞれ増強させるだけでなく、通常ペアガラスとして知
られる二重ガラスによる熱量流率の減少、遮音特性の改
良をも意図したものである0夏期および冬期の効果をそ
れぞれ増大する理由は以下の説明により明らかであろう
0本実施例の要件の一つは複合窓透光体の透光性平板の
吸収率を通常にくらべ増大させる点にあり、その点複合
窓透光体自身は通常ガラスに比べ温度が上昇するので、
そのためこの複合窓透光体が室外側にある夏期には、こ
の複合窓透光体から室外への伝熱が大きくなり、結果と
して太陽輻射除去率を大きくするよう作用する。一方冬
期においては前述した本発明の動作から、複合窓透光体
は室内側にあり、通常ガラスに比しより高温である点と
空隙61の温度が外気温より高くなる点を考慮すると、
室内への太陽輻射全透過率が、単一の複合窓透光体を用
いる場合に比べ著しく大きくなるのである。このように
本実施例の効果は熱量流率減少による熱損失の減少と、
遮音特性向上のみならず、本発明の省エネルギ一度向上
に顕著な効果を有するものである。
The salient feature of this example is that it is intended not only to enhance the summer and winter effects of the present invention, but also to reduce the heat flow rate and improve the sound insulation properties of double glazing, commonly known as double glazing. The reason for increasing the effects in summer and winter will be clear from the following explanation.One of the requirements of this example is to increase the absorption rate of the transparent flat plate of the composite window transparent body compared to normal. In this respect, the temperature of the composite window transparent material itself increases compared to normal glass, so
Therefore, in the summer when this composite window transparent body is located outside the room, heat transfer from this composite window transparent body to the outside increases, and as a result, the solar radiation removal rate is increased. On the other hand, in winter, from the operation of the present invention described above, considering that the composite window transparent body is on the indoor side and has a higher temperature than normal glass, and that the temperature of the void 61 is higher than the outside temperature,
The total transmittance of solar radiation into the room is significantly greater than when using a single composite window transmissive body. In this way, the effects of this embodiment are a reduction in heat loss due to a reduction in heat flow rate, and
This has a remarkable effect not only in improving the sound insulation properties but also in improving the energy saving of the present invention.

以上の実施例は、本発明の態様を理解するために特定の
・材料、構成を取り上げ説明しているが、実施にあたっ
ては同様な機能を有する他の材料あるいは構成または異
なる組み合わせが可能である。
Although the above embodiments have been described using specific materials and configurations for understanding aspects of the present invention, other materials or configurations having similar functions or different combinations may be used in practice.

例えば複合窓透光体は必ずしもガラスに限定されるもの
ではなく、アクリル、ポリカーボネートなど合成樹脂材
料によっても、本発明は実施できる0以上詳述してきた
ように、本発明は太陽輻射の一部を吸収する透光性平板
の一面に反射処理を施した複合窓透光体を回転自在に形
成した反射吸熱窓で夏期や冷房中間期において太陽輻射
を有効に除去し、一方冬期や暖房中間期には太陽輻射を
有効に室内に取得することによって年間にわたる建物の
省エネルギーに顕著な効果を有するものである0
For example, the composite window transmissive body is not necessarily limited to glass, and the present invention can also be implemented using synthetic resin materials such as acrylic and polycarbonate. Reflective heat-absorbing windows, which are rotatably formed with a compound window transparent body that has been subjected to reflective treatment on one side of an absorbing light-transmitting flat plate, effectively remove solar radiation in the summer and during the cooling period, while being effective in the winter and during the heating period. has a remarkable effect on building energy savings over the year by effectively capturing solar radiation indoors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用される複合窓透光体の実施例を示
す断面側面図、第2図および第3図は第1図に示した複
合窓透光体の反射吸収特性の説明図、第4図は本発明に
よる反射吸熱窓の実施例を示す斜視図、第5図は本発明
による反射吸熱窓の特性図、第6図は本発明に使用され
る複合窓透光体の他の実施例を示す断面側面図である0
1・・・・透光性平板、2・・・・・・反射増強層、4
1・・・・複合窓透光体、42・・・・・フレーム、4
4・・・・・・窓枠材、61・・・・空隙、62・・・
・透光性乎板0代理人の氏名 弁理士 中 尾 敏 男
 ほか1名第1図 第4図 3
Fig. 1 is a cross-sectional side view showing an example of the composite window transmissive body used in the present invention, and Figs. 2 and 3 are explanatory diagrams of the reflection/absorption characteristics of the composite window transmissive body shown in Fig. 1. , FIG. 4 is a perspective view showing an embodiment of the reflective heat-absorbing window according to the present invention, FIG. 5 is a characteristic diagram of the reflective heat-absorbing window according to the present invention, and FIG. 6 is a perspective view showing an embodiment of the reflective heat-absorbing window according to the present invention. 0 is a cross-sectional side view showing an example of
1... Translucent flat plate, 2... Reflection enhancing layer, 4
1...Composite window translucent body, 42...Frame, 4
4...Window frame material, 61...Gap, 62...
・Translucent board 0 Name of agent: Patent attorney Toshio Nakao and one other person Figure 1 Figure 4 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)太陽輻射の一部を吸収する透光性平板の一面に太
陽輻射の一部を反射する処理を施した複合窓透光体と、
前記複合窓透光体を支持固定するフレームと、前記フレ
ームを支持する窓枠材とを有し、前記フレームが窓枠材
に対して少なくとも1800回転可能であることを特徴
とする反射吸熱窓。
(1) A composite window transparent body in which one surface of a transparent flat plate that absorbs a portion of solar radiation is treated to reflect a portion of solar radiation;
A reflective heat-absorbing window comprising a frame for supporting and fixing the composite window transparent body, and a window frame member for supporting the frame, wherein the frame is rotatable at least 1800 degrees with respect to the window frame member.
(2)透光性平板の太陽輻射吸収率が10%から6o%
の間にあり、かつ、反射処理を施こした面の太陽輻射反
射率が20%以上である特許請求の範囲第1項記載の反
射吸熱窓。
(2) The solar radiation absorption rate of the transparent flat plate is 10% to 6o%
2. The reflective heat-absorbing window according to claim 1, wherein the reflection-treated surface has a solar radiation reflectance of 20% or more.
(3)複合窓透光体の反射処理を施こしていない側に、
当該複合窓透光体面と平行に太陽輻射透過性透光平板を
空隙をもって配置した構造体をフレームに支持固定した
特許請求の範囲第1項記南Vの反射吸凱窒。
(3) On the non-reflective side of the composite window transparent material,
A reflective phosphor nitride according to claim 1, wherein a structure in which solar radiation-transmitting flat plates are arranged with gaps in parallel with the surface of the composite window transparent body is supported and fixed to a frame.
JP57114829A 1982-07-01 1982-07-01 Reflective heat-absorbing window Pending JPS597852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57114829A JPS597852A (en) 1982-07-01 1982-07-01 Reflective heat-absorbing window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57114829A JPS597852A (en) 1982-07-01 1982-07-01 Reflective heat-absorbing window

Publications (1)

Publication Number Publication Date
JPS597852A true JPS597852A (en) 1984-01-17

Family

ID=14647727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57114829A Pending JPS597852A (en) 1982-07-01 1982-07-01 Reflective heat-absorbing window

Country Status (1)

Country Link
JP (1) JPS597852A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205042A (en) * 1984-03-29 1985-10-16 Tokai Rubber Ind Ltd Mount filled with fluid
JPS62158235U (en) * 1986-03-31 1987-10-07
JPS62237130A (en) * 1986-04-07 1987-10-17 ロ−ド・コ−ポレ−シヨン Fluid supporter for vibration and shock damping
US5772189A (en) * 1995-06-15 1998-06-30 Yamashita Rubber Kabuskiki Kaisha Antivibration rubber device
EP1065450A3 (en) * 1999-06-30 2002-05-29 Acktar Ltd. Absorber-reflector for solar heating
CN109629959A (en) * 2018-12-29 2019-04-16 同济大学 The energy conservation and environmental protection method in Different climate area
CN111684317A (en) * 2018-02-09 2020-09-18 矢崎能源系统公司 Retroreflective window

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170950A (en) * 1974-12-15 1976-06-19 Matsushita Electric Works Ltd

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170950A (en) * 1974-12-15 1976-06-19 Matsushita Electric Works Ltd

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205042A (en) * 1984-03-29 1985-10-16 Tokai Rubber Ind Ltd Mount filled with fluid
JPS62158235U (en) * 1986-03-31 1987-10-07
JPS62237130A (en) * 1986-04-07 1987-10-17 ロ−ド・コ−ポレ−シヨン Fluid supporter for vibration and shock damping
JPH0555737B2 (en) * 1986-04-07 1993-08-17 Lord Corp
US5772189A (en) * 1995-06-15 1998-06-30 Yamashita Rubber Kabuskiki Kaisha Antivibration rubber device
EP1065450A3 (en) * 1999-06-30 2002-05-29 Acktar Ltd. Absorber-reflector for solar heating
CN111684317A (en) * 2018-02-09 2020-09-18 矢崎能源系统公司 Retroreflective window
CN111684317B (en) * 2018-02-09 2022-04-26 矢崎能源系统公司 Retroreflective window
CN109629959A (en) * 2018-12-29 2019-04-16 同济大学 The energy conservation and environmental protection method in Different climate area

Similar Documents

Publication Publication Date Title
JPH0517233Y2 (en)
US4226910A (en) Energy control sheet having insulative properties
JPS62268445A (en) Wall element and/or enclosure element
WO2019157798A1 (en) Double-silver low-emission coated glass and preparation method thereof
JPS597852A (en) Reflective heat-absorbing window
CN208682255U (en) A kind of thermal isolation film
KR102371008B1 (en) A complex window system for better energy efficiency
CN108191260A (en) A kind of high temperature resistant low radiation coated glass
JPS6236186Y2 (en)
CN107724935A (en) A kind of low heat transfer glass pane with blind
JPH0741341A (en) Heat rays reflecting double-layered structure
JPH0440161Y2 (en)
JPH0547274Y2 (en)
CN207598166U (en) A kind of low heat transfer glass pane with blind
JPS6044738A (en) Energy saving type glass window
JP3534725B2 (en) High efficiency heat recovery type window and air conditioning management method in building using the same
JPS6059294A (en) Sun ray blocking controller
KR102596853B1 (en) A complex window system for better energy efficiency
CN201574521U (en) Laminated heat-insulating glass
CN207891264U (en) A kind of coated glass
JPH0331839Y2 (en)
CN207891265U (en) A kind of low radiation coated glass
Sachez et al. Energy impact of the use of daylighting in offices
CN210828901U (en) Plastic-steel composite building glass
CN208949146U (en) A kind of electrochromism doubling energy-saving glass, hollow glass and vehicle dormer window