JPS597756B2 - Wet desulfurization method for coke oven gas - Google Patents

Wet desulfurization method for coke oven gas

Info

Publication number
JPS597756B2
JPS597756B2 JP55063185A JP6318580A JPS597756B2 JP S597756 B2 JPS597756 B2 JP S597756B2 JP 55063185 A JP55063185 A JP 55063185A JP 6318580 A JP6318580 A JP 6318580A JP S597756 B2 JPS597756 B2 JP S597756B2
Authority
JP
Japan
Prior art keywords
coke oven
desulfurization
oven gas
catalyst
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55063185A
Other languages
Japanese (ja)
Other versions
JPS56166292A (en
Inventor
「かおる」 宮川
彰 京谷
久明 久保
義雄 畠山
勝宏 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP55063185A priority Critical patent/JPS597756B2/en
Publication of JPS56166292A publication Critical patent/JPS56166292A/en
Publication of JPS597756B2 publication Critical patent/JPS597756B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Industrial Gases (AREA)

Description

【発明の詳細な説明】 本発明はコークス炉ガスの湿式脱硫法に関するものであ
り、硫黄を生成させずにコークス炉ガスの脱硫を行うこ
とを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wet desulfurization method for coke oven gas, and its object is to desulfurize coke oven gas without producing sulfur.

コークス炉ガスは通常2〜6 g/ N 7F+”の硫
化水素、0.5〜3 g/ N 771″のシアン化水
素を含有する。
Coke oven gas usually contains 2-6 g/N 7F+'' hydrogen sulfide and 0.5-3 g/N 771'' hydrogen cyanide.

硫化水素は燃焼して亜硫酸ガスとなり大気を汚染するの
で精製過程で除去する必要がある。
Hydrogen sulfide burns and becomes sulfur dioxide gas, which pollutes the atmosphere, so it must be removed during the purification process.

コークス炉ガス中の硫化水素の除去法としては、ガス中
のアンモニャをアルカリ源として吸収する方法、あらか
じめアンモニャを除いたガスをカセイソーダをアリカリ
源として吸収する方法があるが、いずれも硫化水素を吸
収した液を酸素を含むガスで酸化する際、キノン誘導体
、ナフトキノン誘導体、アントラキノン誘導体、ピクリ
ン酸等の酸化還元触媒を用いて主として単体硫黄、チオ
シアン化物、副反応としてチオ硫酸化物、硫酸化物を生
成させ、単体硫黄は分離し吸収液は再循環し吸収液中の
塩濃度が上らないよう一部を抜取り補給水、触媒、アル
カリを添加している。
Methods for removing hydrogen sulfide from coke oven gas include a method of absorbing ammonia in the gas as an alkali source, and a method of absorbing gas from which ammonia has been removed in advance using caustic soda as an alkali source, but both methods absorb hydrogen sulfide. When the oxidized liquid is oxidized with a gas containing oxygen, a redox catalyst such as a quinone derivative, naphthoquinone derivative, anthraquinone derivative, or picric acid is used to generate mainly elemental sulfur, thiocyanide, and as a side reaction, thiosulfate and sulfate. Elemental sulfur is separated and the absorption liquid is recirculated. A portion is extracted to prevent the salt concentration from rising in the absorption liquid and supplementary water, catalyst, and alkali are added.

此の方法がいわゆるレドツクス反応型コークス炉ガスの
湿式脱硫法で、いづれも触媒を用いて吸収液中に吸収さ
れたl{2S又はHS−イオンを効率良く単体硫黄まで
酸化してしまうもので、脱硫液中に懸濁する単体硫黄は
主として戸過遠心法など物理的手段で除去するものであ
った。
This method is a so-called redox reaction type wet desulfurization method for coke oven gas, and both use a catalyst to efficiently oxidize l{2S or HS- ions absorbed in the absorption liquid to elemental sulfur. Elemental sulfur suspended in the desulfurization solution was mainly removed by physical means such as Todori centrifugation.

しかし、其の後脱硫液の新しい処理方法として高温高圧
で湿式酸化を行い単体硫黄・硫黄化合物をいつきに全部
硫酸化物としてしまう方法が開発され単体硫黄を発生さ
せる方法は意味がなくなり、そればかりでなく単体硫黄
は脱硫液の循環系や脱硫塔を閉塞させる原因となるもの
であった。
However, as a new treatment method for desulfurization liquid was developed, a method was developed in which wet oxidation was carried out at high temperature and high pressure, and all of the elemental sulfur and sulfur compounds were eventually converted to sulfates, and the method of generating elemental sulfur became meaningless, and the method of generating elemental sulfur became meaningless. Elemental sulfur causes clogging of the desulfurization liquid circulation system and desulfurization tower.

特にコークス炉ガス脱硫工程を脱軽油・脱ナフタリン前
に設置する脱硫法にあってはコークス炉ガスに含まれる
重質不飽和炭化水素が、生成した単体硫黄と結合して粘
度の高い油状硫黄化合物を生成しこれが脱硫塔の充填層
に付着するなど閉塞を促進する大きな原因となっていた
In particular, in the desulfurization method where the coke oven gas desulfurization process is installed before the removal of light oil and naphthalene, the heavy unsaturated hydrocarbons contained in the coke oven gas combine with the generated elemental sulfur to form a highly viscous oily sulfur compound. This was a major cause of clogging, such as adhesion to the packed bed of the desulfurization tower.

また、生成した単体硫黄は脱硫液の処理設備である湿式
酸化工程でも熱交換器の閉塞や局部的異常酸化反応を起
す原因となり好ましいものではなかった。
Furthermore, the generated elemental sulfur is not desirable because it causes clogging of heat exchangers and local abnormal oxidation reactions even in the wet oxidation process, which is a treatment facility for desulfurization liquid.

更に脱硫液の処理工程・湿式酸化に於でこの単体硫黄は
すべて硫酸となり反応生成物を強酸性とする作用をもつ
ため中和に必要なアンモニア等のアルカリを添加する必
要があり、又この単体硫黄は低温で酸化を開始するとと
もに高い発熱量を持つために湿式酸化設備に装入する濃
度も強い制約を受けるものであった。
Furthermore, in the desulfurization solution treatment process/wet oxidation, all of this elemental sulfur becomes sulfuric acid, which has the effect of making the reaction product strongly acidic, so it is necessary to add alkali such as ammonia, which is necessary for neutralization. Since sulfur starts to oxidize at low temperatures and has a high calorific value, there are strong restrictions on the concentration that can be charged to wet oxidation equipment.

一方この単体硫黄を発生させない脱硫操業方法の一方法
として、触媒の酸化再生工程で酸素の供給量を制限し、
或は添加する触媒濃度を下げてHS−イオンをHSx又
はS20x−までの酸化にとどめ極力単体硫黄を発生さ
せない操業法も行なわれている。
On the other hand, one method of desulfurization operation that does not generate elemental sulfur is to limit the amount of oxygen supplied during the oxidation and regeneration process of the catalyst.
Alternatively, an operating method is used in which the concentration of the added catalyst is reduced to limit the oxidation of HS- ions to HSx or S20x-, thereby minimizing the generation of elemental sulfur.

しかしこの方法もコークス炉ガスの硫化水素濃度やガス
流量の変動で単体硫黄を全く発生させない操業は不可能
で、しかも酸化工程での触媒の酸化再生が悪くなるため
脱硫率を下げる影響が表われ効率の良い脱硫方法とは言
えない欠点があった。
However, even with this method, it is impossible to operate without generating elemental sulfur at all due to fluctuations in the hydrogen sulfide concentration of coke oven gas and gas flow rate, and furthermore, the oxidation regeneration of the catalyst in the oxidation process becomes poor, which has the effect of lowering the desulfurization rate. There were drawbacks that made it difficult to say that it was an efficient desulfurization method.

本発明はこのような従来技術の問題点を解決するために
なされたものであって、コークス炉ガスをアルカリを含
む吸収液と接触させ、吸収した液中に含まれる硫化水素
を酸化還元触媒を使用して酸化し、アルカリは再生して
循環しコークス炉ガスを脱硫する方法において、特定触
媒物質を添加することなく、コークス炉から発生するガ
スドレンを適宜脱硫中に添加するか、又は脱硫液を長期
間コークス炉ガスと接触吸収させることにより、コーク
ス炉ガス自身に含まれる触媒性物質を脱硫液中に吸収濃
縮させることを特徴とするものである。
The present invention was made to solve the problems of the prior art, and involves bringing coke oven gas into contact with an alkali-containing absorption liquid, and removing hydrogen sulfide contained in the absorbed liquid using a redox catalyst. In the method of desulfurizing coke oven gas by using and oxidizing the alkali and regenerating and circulating the alkali, the gas drain generated from the coke oven is appropriately added during desulfurization, or the desulfurization liquid is added without adding a specific catalyst substance. It is characterized by absorbing and concentrating the catalytic substances contained in the coke oven gas itself into the desulfurization liquid by contacting and absorbing the coke oven gas for a long period of time.

即ち、本発明者等はコークス炉ガスから発生する濃縮ア
ンモニャ水(以下安水と称する)や前記湿式脱硫装置の
運転中における脱硫液を詳細に検討した結果、コークス
炉ガス中には微量ではあるがレドツクス反応型脱硫にお
ける触媒性能を示す物質が含まれていることをみい出し
、更にこの物質をレドツクス反応型脱硫法に触媒として
使用すると問題となる単体硫黄を全く発生させずに脱硫
率、脱シアン率とも従来の触媒添加型の脱硫と全く変ら
ない操業が維持できるという知見を得た。
That is, as a result of a detailed study of concentrated ammonia water (hereinafter referred to as ammonium water) generated from coke oven gas and the desulfurization liquid during operation of the wet desulfurization equipment, the present inventors found that there is a trace amount of ammonia in coke oven gas. found that it contains a substance that exhibits catalytic performance in redox reaction type desulfurization, and furthermore, when this substance is used as a catalyst in redox reaction type desulfurization method, the desulfurization rate and desulfurization rate increase without generating any problematic elemental sulfur. We obtained the knowledge that it is possible to maintain operations that are no different from conventional catalyst-added desulfurization in terms of cyanide content.

特に安水中に含まれる触媒性物質を使用すると触媒の酸
化再生工程において従来単体硫黄の発生し易い酸化還元
電位(−2 0 0 〜−3 0 0 mV ’)でも
全く単体硫黄を発生せず、チオ硫酸・硫酸への転化率も
極めて高く維持でき廃脱硫液の後処理工程(湿式酸化工
程など)に極めて有利であることが判明した。
In particular, when the catalytic substance contained in ammonium chloride is used, no elemental sulfur is generated in the catalyst oxidation regeneration process even at redox potentials (-200 to -300 mV') where elemental sulfur is likely to be generated in the past. It has been found that the conversion rate to thiosulfuric acid and sulfuric acid can be maintained extremely high, making it extremely advantageous in post-treatment processes (wet oxidation processes, etc.) of waste desulfurization liquid.

第1図にHS一の酸化選択性の触媒による特性比較を示
す。
Figure 1 shows a comparison of the oxidation selectivity characteristics of HS-1 catalysts.

第1図に示すように従来の触媒β−ナフトキノンスルホ
ン酸ソーダNQを使用した場合には酸化還元電位が−2
00〜−300mVで単体硫黄の発生は著しいが本発明
に係る安水を触媒とする場合には単位硫黄の発生はない
As shown in Figure 1, when the conventional catalyst β-naphthoquinone sodium sulfonate NQ is used, the redox potential is -2.
At 00 to -300 mV, the generation of elemental sulfur is significant, but when the ammonium water according to the present invention is used as a catalyst, no unit sulfur is generated.

また、NQを触媒とした従来法ではs2o,j及びSO
:−の発生量は少ないのに対し本発明に係る安水を触媒
とした場合は酸化還元電位が前記範囲内で比較してs2
o:j一及びSO2,−は著しく多いことがわかる。
In addition, in the conventional method using NQ as a catalyst, s2o,j and SO
:- The amount of generated is small, but when the ammonium water according to the present invention is used as a catalyst, the oxidation-reduction potential is s2 within the above range.
It can be seen that there are significantly more o:j- and SO2,-.

本発明に係る前記コークス炉ガス中に微量含まれる酸化
還元反応時における触媒性物質は側鎖フェノール類、環
状多価フェノール類、キノン類などの水に可啓性物質で
あり、タール酸成分として定量される比較的高沸点物質
である。
The catalytic substances contained in the coke oven gas in small amounts in the redox reaction according to the present invention are water-revealable substances such as side chain phenols, cyclic polyhydric phenols, and quinones, and as tar acid components. It is a relatively high boiling point substance that is quantified.

この物質は主としてコークス炉ドライメインにフラツシ
ングされた安水又はプライマリークーラー凝縮安水中に
多量に存在し、更にプライマリークーラー後のコークス
炉ガス中にも微量存在する。
This substance mainly exists in large amounts in the ammonium water flushed into the dry main of the coke oven or in the ammonium water condensed in the primary cooler, and is also present in trace amounts in the coke oven gas after the primary cooler.

このことはプライマリークーラー後のコークス炉ガスか
らの凝縮水が僅かではあるが酸化還元触媒性能を示すこ
とも明らかである。
It is also clear that the condensed water from the coke oven gas after the primary cooler exhibits redox catalytic performance, albeit to a small extent.

次にコークス炉ガス中に含まれる前記酸化還元触媒性物
質について其の触媒能力について説明する。
Next, the catalytic ability of the redox catalytic substance contained in the coke oven gas will be explained.

酸素を飽和させた水200mlに7.5係硫化ナトリウ
ム溶液2mlを加えた液に、触媒としてコークス炉ガス
から冷却凝縮した安水1 0 ml ,0.1mo l
/m3β−ナフトキノンスルホン酸ソーダ10ml,純
水10Tllをそれぞれ別々に加えて温度30°Cに保
持し空気が入らないように密閉した状態で同一速度で撹
拌し、容存酸素計で溶存酸素濃度の経時変化を比較測定
し、硫化ナトリウムを酸化する触媒能力について調べた
Add 2 ml of 7.5-carbon sodium sulfide solution to 200 ml of oxygen-saturated water, and add 10 ml of ammonium water, 0.1 mol, cooled and condensed from coke oven gas as a catalyst.
/m3 β-Naphthoquinone sulfonate sodium 10ml and pure water 10Tll were added separately, kept at a temperature of 30°C, and stirred at the same speed in a sealed state to prevent air from entering.The dissolved oxygen concentration was measured using a oxygen meter. The catalytic ability to oxidize sodium sulfide was investigated by comparatively measuring changes over time.

第2図にその結果を示す。第2図に示すように純水では
啓存酸素は殆んど減少しないが安水を10TLl加える
と約7分で溶存酸素はなくなる。
Figure 2 shows the results. As shown in Figure 2, dissolved oxygen hardly decreases in pure water, but when 10 TLl of ammonium water is added, dissolved oxygen disappears in about 7 minutes.

酸化還元触媒であるβ−ナフトキノンスルホン酸ソーダ
0. 1 mo l /711溶液では約6分で啓存酸
素はなくなる。
Sodium β-naphthoquinone sulfonate which is a redox catalyst 0. In a 1 mol/711 solution, free oxygen disappears in about 6 minutes.

啓存酸素1m9/l減少するに要する時間はβ−ナフト
キノンスルホン酸ソーダで約50秒、安水では約60秒
で、硫化ナトリ・クムを酸化する触媒能力は0. 1
mo l /m″の濃度のβ−ナフトキノンスルホン酸
ソーダと安水の触媒能力とはあまり差がないことがわか
る。
The time required to reduce the free oxygen by 1 m9/l is approximately 50 seconds for sodium β-naphthoquinone sulfonate and approximately 60 seconds for ammonium sulfate, and the catalytic ability to oxidize sodium/cum sulfide is 0. 1
It can be seen that there is not much difference in the catalytic ability between sodium β-naphthoquinone sulfonate and ammonium water at a concentration of mol/m''.

又、このコークス炉ガスを冷却凝縮した安水中の触媒性
物質を抽出分離した操作系統図を第3図に示す。
FIG. 3 shows an operational system diagram for extracting and separating the catalytic substances in the ammonium water obtained by cooling and condensing the coke oven gas.

この図からわかるようにコークス炉ガスから冷却凝縮し
た安水中に含まれる触媒性物質は比較的高沸点の水溶性
物質で苛性ソーダで抽出されるいわゆるタール酸分とし
て抽出分離されるものである。
As can be seen from this figure, the catalytic substances contained in ammonium water cooled and condensed from coke oven gas are water-soluble substances with a relatively high boiling point and are extracted and separated as so-called tar acid components extracted with caustic soda.

第4図は本発明に係るレドツクス反応型コークス炉ガス
湿式脱硫装置を例示する工程図である。
FIG. 4 is a process diagram illustrating a redox reaction type coke oven gas wet desulfurization apparatus according to the present invention.

図中1は未脱硫コークス炉ガスで、このガス1は吸収塔
2に導かれ、吸収塔2内で吸収液3と接触してガス1中
の硫化水素を吸収し、該ガス1は脱硫コークス炉ガス4
になる。
In the figure, 1 is undesulfurized coke oven gas. This gas 1 is led to an absorption tower 2, and in the absorption tower 2 it comes into contact with an absorption liquid 3 to absorb hydrogen sulfide in the gas 1. Furnace gas 4
become.

一方吸収液3は酸化塔5で酸素を含むガス6及び触媒に
よって硫化水素が酸化され、吸収塔2で同時に吸収され
たシアン化水素と反応したチオシアン化物、硫化水素の
酸化物である単体硫黄、チオ硫酸化物、硫酸化物の水溶
性の塩になる。
On the other hand, in the oxidation tower 5, hydrogen sulfide is oxidized by an oxygen-containing gas 6 and a catalyst, and in the absorption tower 2, thiocyanide, elemental sulfur, which is an oxide of hydrogen sulfide, and thiosulfuric acid react with hydrogen cyanide absorbed simultaneously. It becomes water-soluble salts of compounds and sulfates.

吸収液3は脱硫率を維持するため、塩濃度が上らないよ
うにその一部をブロー10として抜取り、β−ナフトキ
ノンスルホン酸ソーダ等の触媒7、補給水8、アルカリ
源9を補給する。
In order to maintain the desulfurization rate, a portion of the absorption liquid 3 is extracted as a blow 10 so as not to increase the salt concentration, and a catalyst 7 such as β-naphthoquinone sodium sulfonate, make-up water 8, and an alkali source 9 are replenished.

ブロー10はCODが高いので湿式酸化・還元燃焼等で
処理される。
Since the blow 10 has a high COD, it is treated by wet oxidation/reduction combustion, etc.

実施例 1 第4図のような設備に於で、吸収液3に触媒としてコー
クス炉ガスを冷却凝縮した安水を添加し、チオシアン酸
アンモニウム、チオ硫酸アンモニウム、硫酸アンモニウ
ムを各々60 g/l,5g/l,4 0 g/Lさら
にアンモニャ8 g#を含む吸収液を使用し、脱硫率・
脱シアン率を調べた。
Example 1 In the equipment shown in Fig. 4, ammonium thiocyanate, ammonium thiosulfate, and ammonium sulfate were added as a catalyst to the absorption liquid 3, and ammonium thiocyanate, ammonium thiosulfate, and ammonium sulfate were added at 60 g/l and 5 g/l, respectively. 1,40 g/L and using an absorption liquid containing 8 g/L of ammonia, the desulfurization rate and
The cyanide removal rate was investigated.

酸化塔5への供給ガスは空気を用い空気比は0.05(
空気/C O G )吸収液及びガスの温度は35℃で
、吸収液のアルカリ源としては、コークス炉ガス中のア
ンモニャを利用した。
Air is used as the gas supplied to the oxidation tower 5, and the air ratio is 0.05 (
Air/C O G ) The temperature of the absorption liquid and gas was 35° C., and ammonia in coke oven gas was used as an alkali source for the absorption liquid.

未脱硫コークス炉ガス中のアンモニャは8〜’1.0g
/Nm3硫化水素は2〜3g/N7ri:、シアン化水
素は0.6〜1.1g/ N tri:であった。
Ammonia in undesulfurized coke oven gas is 8~1.0g
/Nm3 Hydrogen sulfide was 2 to 3 g/N7ri:, and hydrogen cyanide was 0.6 to 1.1 g/Ntri:.

比較のために触媒無添加の場合及びβ−ナフトキノンス
ルホン酸ソーダを用いた試験も同時に行った。
For comparison, tests were also conducted without the addition of a catalyst and with sodium β-naphthoquinone sulfonate.

表1に脱硫率,脱シアン率.吸収液中の硫黄及び酸化塔
前後のHS一 濃度を示す。
Table 1 shows the desulfurization rate and cyanide removal rate. The sulfur in the absorption liquid and the HS concentration before and after the oxidation tower are shown.

表1に示すようにアンモニャ水を吸収液にし触媒を添加
しない場合は脱硫は殆んど行なわれない(約12%)が
、吸収液にコークス炉ガスを冷却凝縮した安水を添加す
ると脱硫率は約97%になる。
As shown in Table 1, when aqueous ammonia is used as the absorption liquid and no catalyst is added, almost no desulfurization occurs (approximately 12%), but when ammonium water obtained by cooling and condensing coke oven gas is added to the absorption liquid, the desulfurization rate increases. is approximately 97%.

吸収液に対する安水の添加割合を減少させると脱硫率も
低下するが安水添加割合が10係でも80係以上の脱硫
率を示し、安水を用いると、いづれの場合も硫黄の発生
はなかった。
Desulfurization efficiency also decreases when the proportion of ammonium water added to the absorption liquid is reduced, but even when the proportion of ammonium water added is 10 parts, the desulfurization rate is over 80 parts, and when ammonium water is used, no sulfur is generated in any case. Ta.

吸収液にβ−ナフトキノンスルホン酸ソーダを9.2m
ol/m”添加した液では同一条件で約96係の脱硫率
を示したが0.4g/lの単体硫黄を発生した。
9.2m of β-naphthoquinone sulfonic acid sodium in the absorption liquid
ol/m" showed a desulfurization rate of about 96% under the same conditions, but generated 0.4 g/l of elemental sulfur.

触媒の酸化能力を示す酸化塔出口の硫化水素は、触媒無
添加のアンモニャ水を吸収液とした場合は0.0 4
7 g/lであるが安水を添加したものでは0.0 0
8 g/lでβ−ナフトキノンスルホン酸ソーダを使
用した場合と同じで安水に硫化水素を酸化させる触媒性
能力があるこ吉がわかる.実施例 2 実施例1と同じ吸収設備で吸収液として水にβ一ナフト
キノンスルホン酸ソーダ0.2mol/m’加えたもの
と吸収液に安水を10係添加し、各々アンモニャ( N
H3) 8 j!/lを含む吸収液を作り、実施例1と
同一条件で連続吸収実験を行い吸収液の組成を調べた。
Hydrogen sulfide at the outlet of the oxidation tower, which indicates the oxidation ability of the catalyst, is 0.04 when aqueous ammonia without catalyst is used as the absorption liquid.
7 g/l, but with ammonium water added it is 0.0 0
This is the same as when using sodium β-naphthoquinone sulfonate at 8 g/l, which shows that ammonia water has the catalytic ability to oxidize hydrogen sulfide. Example 2 Using the same absorption equipment as in Example 1, 0.2 mol/m' of sodium β-naphthoquinone sulfonate was added to water as an absorption liquid, and 10 parts of ammonium was added to the absorption liquid, and ammonia (N
H3) 8 j! An absorption liquid containing /l was prepared and a continuous absorption experiment was conducted under the same conditions as in Example 1 to investigate the composition of the absorption liquid.

8日後の吸収液の組成を表2に示す。Table 2 shows the composition of the absorption liquid after 8 days.

表2に示すように、吸収液にβ−ナフトキノンスルホン
酸ソーダ0.2mol/m3の濃度添加して同一条件で
実験を行うと、チオ硫酸化物が35.1g/l生成し、
硫酸化物より多くなっており、単体硫黄を0.69/l
発生した。
As shown in Table 2, when an experiment was carried out under the same conditions with the addition of sodium β-naphthoquinone sulfonate at a concentration of 0.2 mol/m3 to the absorption liquid, 35.1 g/l of thiosulfate was produced.
It is higher than sulfates, with elemental sulfur at 0.69/l.
Occurred.

しかし本発明の安水10係添加ではチオ硫酸化物は4.
7g/lと少くなり硫酸化物が多く、単体硫黄は発生し
なかった。
However, when the ammonium water of the present invention is added at 10%, the thiosulfate is 4.
The amount was 7 g/l, and there were many sulfates, and no elemental sulfur was generated.

また、コークス炉ガスと1ケ月接触させたアンモニャ水
を使用しても同等の効果が得られた。
Furthermore, the same effect was obtained by using ammonia water that had been in contact with coke oven gas for one month.

このように本発明によれば吸収液の酸化が進み、次工程
(湿式酸化等)での処理が容易になることがわかる。
As described above, it can be seen that according to the present invention, the oxidation of the absorption liquid progresses, and the treatment in the next step (wet oxidation, etc.) becomes easier.

以上説明したように本発明方法は、コークス炉ガスのレ
ドツクス反応型湿式脱硫方法に於で特定の触媒物質を添
加することなくコークス炉から発生するガスドレンを適
宜脱硫液中に添加するか、脱硫液を長期間コークス炉ガ
スと接触吸収させることによりコークス炉ガス自身に含
まれる触媒性物質を脱硫液中に吸収濃縮させ脱硫を行う
ことが出来るものであや。
As explained above, the method of the present invention is a redox reaction type wet desulfurization method for coke oven gas, in which the gas drain generated from the coke oven is appropriately added to the desulfurization solution without adding a specific catalyst substance, or the desulfurization solution is added to the desulfurization solution. By contacting and absorbing coke oven gas for a long period of time, the catalytic substances contained in the coke oven gas itself are absorbed and concentrated in the desulfurization liquid, and desulfurization can be performed.

また、本発明方法によれば、従来のレドツクス反応型コ
ークス炉ガス湿式脱硫法に於で、特定の触媒の添加が不
要となり単体硫黄の発生がなくなるので吸収塔、酸化塔
、熱交換器其の他の機器の単体硫黄による閉塞を防止す
ると同時に脱硫液処理工程に於ける湿式酸化法の処理能
率の向上、安定操業の確保、アンモニア水の添加が不要
になるなど極めて大きい経済的効果を得るものである。
Furthermore, according to the method of the present invention, in the conventional redox reaction type coke oven gas wet desulfurization method, there is no need to add a specific catalyst and no elemental sulfur is generated. This product prevents clogging of other equipment due to elemental sulfur, and at the same time provides extremely large economic effects such as improving the processing efficiency of the wet oxidation method in the desulfurization liquid treatment process, ensuring stable operation, and eliminating the need for the addition of ammonia water. It is.

更に、予熱炭コークス炉の凝縮安水を本発明方法に適用
すれば発生する高COD,高ロダン液の処理をCOG脱
硫液処理で硫酸・硫安などとして有効に処理回収できる
ので安水の処理工程として活性汚泥処理などが不要とな
り更に経済的方法となるものである。
Furthermore, if the method of the present invention is applied to condensed ammonium water from a preheated coal coke oven, the generated high COD and high rhodane liquid can be effectively treated and recovered as sulfuric acid, ammonium sulfate, etc. by COG desulfurization liquid treatment, so that the ammonium water treatment process can be improved. This method eliminates the need for activated sludge treatment, making it a more economical method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はHS−の酸化選択性の触媒による特性比較を示
す図、第2図は触媒によるNa2S溶液中の溶存酸素の
経時変化を示す図、第3図は本発明に係る物質を安水か
ら分離した操作系統図、第4図は本発明に係るレドツク
ス反応型コークス炉ガス湿式脱硫装置を例示する工程図
である≦ 1:未脱硫コークス炉ガス、2:吸収塔、3:吸収液、
4:脱硫コークス炉ガス、5:酸化塔、6:酸素を含む
ガス、7:触媒、8:補給水、9:アルカリを含む水、
10:ブロー液、11:排気。
Figure 1 is a diagram showing a comparison of the characteristics of the oxidation selectivity of HS- using a catalyst, Figure 2 is a diagram showing changes in dissolved oxygen in a Na2S solution over time due to a catalyst, and Figure 3 is a diagram showing a comparison of the characteristics of the oxidation selectivity of HS- using a catalyst. Fig. 4 is a process diagram illustrating the redox reaction type coke oven gas wet desulfurization apparatus according to the present invention.
4: desulfurization coke oven gas, 5: oxidation tower, 6: gas containing oxygen, 7: catalyst, 8: makeup water, 9: water containing alkali,
10: Blow liquid, 11: Exhaust.

Claims (1)

【特許請求の範囲】[Claims] 1 コークス炉ガスをアルカリを含む吸収液と接触させ
、吸収した液中に含まれる硫化水素を酸化還元触媒を使
用して酸化し、アルカリは再生して循環しコークス炉ガ
スを脱硫する方法において、特定触媒物質を添加するこ
となく、コークス炉から発生するガスドレンを適宜脱硫
液中に添加するか、又は脱硫液を長期間コークス炉ガス
と接触吸収させることにより、コークス炉ガス自身に含
まれる触媒性物質を脱硫液中に吸収濃縮させることを特
徴とするコークス炉ガスの湿式脱硫方法。
1. A method for desulfurizing coke oven gas by bringing coke oven gas into contact with an absorption liquid containing an alkali, oxidizing hydrogen sulfide contained in the absorbed liquid using a redox catalyst, and regenerating and circulating the alkali. The catalytic properties contained in the coke oven gas itself can be removed by adding the gas drain generated from the coke oven to the desulfurization solution, or by allowing the desulfurization solution to contact and absorb the coke oven gas for a long period of time without adding a specific catalyst substance. A wet desulfurization method for coke oven gas characterized by absorbing and concentrating substances in a desulfurization liquid.
JP55063185A 1980-05-13 1980-05-13 Wet desulfurization method for coke oven gas Expired JPS597756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55063185A JPS597756B2 (en) 1980-05-13 1980-05-13 Wet desulfurization method for coke oven gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55063185A JPS597756B2 (en) 1980-05-13 1980-05-13 Wet desulfurization method for coke oven gas

Publications (2)

Publication Number Publication Date
JPS56166292A JPS56166292A (en) 1981-12-21
JPS597756B2 true JPS597756B2 (en) 1984-02-20

Family

ID=13221922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55063185A Expired JPS597756B2 (en) 1980-05-13 1980-05-13 Wet desulfurization method for coke oven gas

Country Status (1)

Country Link
JP (1) JPS597756B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188558U (en) * 1985-05-16 1986-11-25

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532614U (en) * 1976-06-28 1978-01-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532614U (en) * 1976-06-28 1978-01-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188558U (en) * 1985-05-16 1986-11-25

Also Published As

Publication number Publication date
JPS56166292A (en) 1981-12-21

Similar Documents

Publication Publication Date Title
US4076621A (en) Chelate oxidation of hydrogen sulfide in sour water
US3752877A (en) Recovery of sulfur compounds from tail gases
RU2241527C2 (en) Gas desulfurization process
US4041130A (en) Process for desulfurization of coke oven gas
EP0244249B1 (en) Process for the removal of hydrogen sulfide from gaseous streams
US4125597A (en) Method of removing hydrogen sulfide from gas
BR112013003959B1 (en) high pressure reduction-oxidation desulfurization process
US3972989A (en) Reducing the consumption of anthraquinone disulfonate in Stretford solutions
US4325936A (en) Method for removing hydrogen sulfide from gas streams
JPS61191504A (en) Removal of hydrogen sulfide from gas stream
KR850006152A (en) Removal of sulfur compounds from exhaust gases
CN110252090B (en) Method for improving absorption capacity and utilization rate of sodium sulfite desulfurization process by using triethanolamine
JP2000239673A (en) Method for purifying coke oven gas
US5215728A (en) Method and apparatus for removal of h2s from a process gas, including thiosulfate and/or cyanide salt decomposition
US4432962A (en) Method for removing hydrogen sulfide from gas streams
JPS597756B2 (en) Wet desulfurization method for coke oven gas
US1918153A (en) Process for extracting hydrogen sulphide from refinery gases
KR900000187B1 (en) Sulphur recovery process
EP1156867B1 (en) Method for conversion of hydrogen sulfide to elemental sulfur
JPH06228573A (en) Treatment of tail gas in coal gasification plant
US3923957A (en) Conversion of hydrogen cyanide in foul gas streams to carbon disulfide
US3535083A (en) Gas purification
JPS60139319A (en) Method of removing sulfur dioxide from flue gas of combustion apparatus by washing by liquid having oxidation action
JPS5849591B2 (en) Wet desulfurization method for coke oven gas
DE2250934A1 (en) METHOD OF PURIFYING GASES CONTAINING HYDROGEN CYAN