JPS597750B2 - Ground injection method - Google Patents

Ground injection method

Info

Publication number
JPS597750B2
JPS597750B2 JP52051395A JP5139577A JPS597750B2 JP S597750 B2 JPS597750 B2 JP S597750B2 JP 52051395 A JP52051395 A JP 52051395A JP 5139577 A JP5139577 A JP 5139577A JP S597750 B2 JPS597750 B2 JP S597750B2
Authority
JP
Japan
Prior art keywords
aqueous solution
acidic
silicic acid
value
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52051395A
Other languages
Japanese (ja)
Other versions
JPS53136309A (en
Inventor
健二 「かし」原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP52051395A priority Critical patent/JPS597750B2/en
Publication of JPS53136309A publication Critical patent/JPS53136309A/en
Publication of JPS597750B2 publication Critical patent/JPS597750B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【発明の詳細な説明】 本発明は軟弱あるいは漏水地盤に固結液を注入して該地
盤を固結する地盤注入工法に係り、特に固結液として非
アルカリ性珪酸水溶液を用いた工法に係り、詳細には非
アルカリ性珪酸水溶液として一定の条件を満たす酸性珪
酸水溶液を用いる事により、それ自体はPH5以下の酸
性値を呈するグラウトを注入しながら、地下水のPH値
は排水基準値たる5.8〜8.6の範囲内におさめる事
が出来るため、施工領域における地下水の水値保全性に
すぐれた注入工法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ground injection method of injecting a consolidation liquid into soft or leaky ground to consolidate the ground, and particularly relates to a method using a non-alkaline silicic acid aqueous solution as the consolidation liquid. Specifically, by using an acidic silicic acid aqueous solution that satisfies certain conditions as a non-alkaline silicic acid aqueous solution, while injecting grout that itself exhibits an acidic value of PH5 or less, the pH value of groundwater is 5.8 to 5.8, which is the drainage standard value. This relates to an injection method that is excellent in maintaining the groundwater level in the construction area because it can keep the value within the range of 8.6.

このような本発明は、公害の点から安全性が高く、水中
固結性、恒久性等にすぐれ、さらにセメントグラウトと
の併用も可能であるのみならず、中性領域の水ガラスグ
ラウトにくらべ、充分なゲル化時間を保持しうるため浸
透性にすぐれしかも高強度を得る事が出来るという注入
工法上きわめて有用な技術を提供するものである。
As described above, the present invention is highly safe in terms of pollution, has excellent underwater solidification properties and durability, and can be used in combination with cement grout. This provides an extremely useful technique for injection construction, in that it can maintain sufficient gelation time, has excellent permeability, and can obtain high strength.

従来、水ガラスを用いた地盤注入工法として、水ガラス
に反応剤を加えるにつれてゲル化時間が短縮するという
ゲル化の現象を応用した方法が用いられていた。
Conventionally, as a ground injection method using water glass, a method has been used that applies the phenomenon of gelation, in which gelation time decreases as a reactant is added to water glass.

従つて、このような方法では、水ガラスそのものが高ア
ルカリ性であり、又PHが弱アルカリ性付近で瞬結にな
るため、固結体もアルカリ性(通常PHは12〜10付
近)を呈し、しかも地下水をアルカリ性にするという問
題が生じる。さらに未反応水ガラスがゲル中に存在して
いるため、長期的に未反応の水ガラスの溶脱がおこり、
このため、固結体の恒久性が期特出来ず、強度が経時的
に低下するという問題も生じる。水ガラス水溶液中に酸
性反応剤水溶液を攪拌しながら徐々に加えていくと、通
常注入工法として使用する水ガラス濃度では、PHがア
ルカリ性の範囲内でゲル化に至り、更に酸性反応剤水溶
液を加えてPHが7あるいは酸性に至るまで加えても、
配合液は固結状を呈して流動性は保持しえない。しかる
に、まず酸性反応剤水溶液を調整し、その水溶液中に急
速に撹拌しながら水ガラス水溶液を混合していくと、充
分な水ガラス量を加えながらも、充分な流動性を保持し
、所定時間後にゲル化しうる配合液をうることができる
。そして配合液のPH値が中性に近くなる程、ゲル化時
間は短くなる。水ガラス水溶液はPHが8付近でゲル化
が最も早く、含有するシリカ分が最も不安定な状態にな
る。
Therefore, in such a method, the water glass itself is highly alkaline, and since it solidifies instantaneously when the pH is around weak alkalinity, the solidified material is also alkaline (usually around 12 to 10), and moreover, the water glass itself is highly alkaline. The problem arises of making alkaline. Furthermore, since unreacted water glass is present in the gel, leaching of unreacted water glass occurs over a long period of time.
For this reason, the permanence of the solidified body cannot be determined, and the problem arises that the strength decreases over time. When the acidic reactant aqueous solution is gradually added to the water glass aqueous solution while stirring, gelation occurs when the pH is within the alkaline range at the water glass concentration normally used for the injection method, and further acidic reactant aqueous solution is added. Even if you add it until the pH reaches 7 or acidic,
The blended liquid appears solidified and cannot maintain fluidity. However, by first preparing an aqueous acidic reactant solution and then mixing a water glass aqueous solution into the aqueous solution while stirring rapidly, it is possible to maintain sufficient fluidity while adding a sufficient amount of water glass, and to maintain sufficient fluidity over a specified period of time. It is possible to obtain a formulation that can later be gelled. The closer the pH value of the blended solution is to neutrality, the shorter the gelation time becomes. A water glass aqueous solution gels fastest when the pH is around 8, and the silica content therein becomes most unstable.

従つて水ガラスに酸を加えてアルカリ性から中性をへて
酸性に至らしめる場合、ゲル化してしまうか或は塊状の
シリカ分が析出して不安定な状態になる。したがつてこ
のようなグラウトは流動性がえられないかあるいは土粒
子間に目づまりをおこして浸透が不完全となつてしまい
注入は不適である。
Therefore, when an acid is added to water glass to change it from alkaline to neutral to acidic, it becomes gelatinous or lumps of silica precipitate, resulting in an unstable state. Therefore, such grout is not suitable for injection because it does not have fluidity or causes clogging between soil particles, resulting in incomplete penetration.

それに対して酸性液中に水ガラスを加えて酸性珪酸水溶
液をつくる方法はその過程において珪酸分が最も不安定
になるPH8付近を経ないため珪酸濃度が濃くても溶液
中に含まれている珪酸分は安定した溶液状態を保持しう
る。さらにまた、中性領域の水ガラスグラウトも知られ
ている。この中性領域の水ガラスグラウトの基本的考え
は地下水のアルカリ汚染を防ぐために中性のグラウトを
注入すれば、地下水も中性を保持しうるという考えに基
ずく。しかるに本発明者は種々の研究の結果ある条件下
の酸性珪酸水溶液を用いる事によりグラウト自体は酸性
であるにも拘わらず、注入領域の地下水は中性領域のP
H値を保持しうることを発見し、しかもグラウト自体が
中性領域の水ガラスグラウトでは得られない高強度と高
い浸透性を得る注入結果を有するグラウトを発明するに
致つた。
On the other hand, in the method of adding water glass to an acidic solution to create an acidic silicic acid aqueous solution, the silicic acid content does not pass through the pH range of around 8, where it becomes most unstable, even if the silicic acid concentration is high. can maintain a stable solution state for several minutes. Furthermore, water glass grouts in the neutral range are also known. The basic idea behind water glass grout in the neutral range is that if neutral grout is injected to prevent alkali contamination of groundwater, the groundwater can also be kept neutral. However, as a result of various studies, the present inventor found that by using an acidic silicic acid aqueous solution under certain conditions, the groundwater in the injection area has P in the neutral range, even though the grout itself is acidic.
They discovered that it is possible to maintain the H value, and also invented a grout that has high strength and high permeability that cannot be obtained with water glass grout, which itself is in the neutral range.

即ち本発明者は、種々の研究の結果、非アルカリ性珪酸
水溶液の注人材としての特性は、単に水ガラスの組成、
濃度、PH等によつてそれぞれ一義的に定められるもの
ではなく、これらが総合的に関連するものである事に着
目し、これらに総合的に関〔H+U連する因子をX=?
と表現し この値 〔SiO2〕n ゝ が1×10−3以下、特に、1×10−3〜5×10−
6の範囲内にある場合、注人材としてきわめてすぐれた
特性を発揮しうる事をみいだし、本発明を完成するに至
つた。
That is, as a result of various studies, the present inventor has found that the properties of non-alkaline silicic acid aqueous solution as a pouring agent are simply due to the composition of water glass,
Focusing on the fact that these are not uniquely determined by concentration, pH, etc., but are comprehensively related, we calculated the factor related to H+U as X=?
Expressed as
It has been found that when the number is within the range of 6, extremely excellent characteristics can be exhibited as an injector, and the present invention has been completed.

このような本発明は水ガラスと酸性反応剤水溶液に水ガ
ラスを加えてえられる非アルカリ性珪酸水溶液を軟弱あ
るいは漏水地盤に注入して該地盤を固結する地盤注入工
法において、該非アルカリ性珪酸水溶液として次の囚お
よび田の両方を満たす酸性珪酸水溶液を用いることから
なる。
As described above, the present invention is applicable to a ground injection method in which a non-alkaline silicic acid aqueous solution obtained by adding water glass to an acidic reactant aqueous solution is injected into soft or leaking ground to solidify the ground. It consists of using an acidic silicic acid aqueous solution that satisfies both the following requirements.

囚 PH値が約5以下であること。PH value must be approximately 5 or less.

田−4?;共−の値が約1×10−3以下であること。Ta-4? ;The co-value is approximately 1 x 10-3 or less.

たマし、〔H+〕は水素イオンのモル濃度であり、〔S
iO2〕は二酸化珪素のモル濃度であり、nは水ガラス
のモル比である。
However, [H+] is the molar concentration of hydrogen ions, and [S
iO2] is the molar concentration of silicon dioxide and n is the molar ratio of water glass.

水ガラスのゲル化を地盤注入に適用する場合、地盤注入
の手段、目的に適した挙動と環境保全に適したものであ
る事が必要であり、このためには以下の要件をみたす事
が必要である。
When gelling water glass is applied to ground injection, it is necessary that the means of ground injection be suitable for the purpose and be suitable for environmental conservation.To this end, the following requirements must be met: It is.

1.ミキシング、注入操作、地盤中への浸透という注入
工法の手段に適合しうるために、1ゲル化に至るまでの
時間が数十分〜数時間を保持しうる事。
1. Since it is compatible with the injection method of mixing, injection operation, and penetration into the ground, it can take several tens of minutes to several hours to form a gel.

2粘性が数Cp〜10cp付近を保持しうる事。2. The viscosity can be maintained at around several Cp to 10 cp.

3注入液のPHを正確に制御しうる事。3. The pH of the injection solution can be accurately controlled.

2.,固結という目的に適用しうるため、1一軸圧縮強
度が数K9/CT!l〜101<g/d以上の強度を保
持しうる事。
2. , Since it can be applied to the purpose of consolidation, the uniaxial compressive strength is several K9/CT! Able to maintain strength of 1~101<g/d or more.

2強度の経時的低下がなく恒久性にすぐれていること。2. Excellent permanence with no decrease in strength over time.

3水中固結性にすぐれている事。3. Excellent solidification properties in water.

4セメントグラウトのような併用する注人材料の固結性
を阻害せしめないこと。
4.Do not impede the solidification of the pouring material used in combination, such as cement grout.

3.環境保全にすぐれ、公害を生ぜせしめないこと。3. Good for environmental conservation and does not cause pollution.

1注入区域における水質をアルカリ性あるいは酸性に規
制以上に変動せしめないこと。
1. Do not allow the water quality in the injection area to become alkaline or acidic beyond regulations.

2用水に直接流入した場合、容易に検出しうる事。2. It can be easily detected if it flows directly into the water supply.

アルカリ領域における水ガラスのゲル化を利用Kg/C
Tl以上の固結強度を得るためには、水ガラス濃度を濃
くしなくてはならず、この結果、注入液のPHは12〜
11付近となり、又主成分たる水ガラスの未反応分が溶
脱するため、経時的に強度が低下し、かつ周辺地下水が
アルカリ側に変動しやすいという問題があつた。
Kg/C utilizing gelation of water glass in alkaline region
In order to obtain a consolidation strength higher than Tl, the water glass concentration must be increased, and as a result, the pH of the injection solution is 12~12.
11, and unreacted portions of water glass, which is the main component, were leached out, resulting in a problem that the strength decreased over time and that the surrounding groundwater tended to fluctuate towards the alkaline side.

このような点を考慮して本発明者は非アルカリ性珪酸水
溶液のゲル化を注入工法へ適用することに着目した。
Taking these points into consideration, the present inventor focused on applying gelation of a non-alkaline silicic acid aqueous solution to the injection method.

PHが5〜8付近のほぼ中性付近のゲル化を注入に応用
した場合、地下水のPHが全く変化せず、強度の経時的
変化も生じない点は非常にすぐれているが、固結砂の一
軸圧縮強度が1〜2kg/d程度しか得られず、しかも
ゲル化時間は瞬結から数分という非常に短い時間に限定
されてしまう。
When gelation with a pH of around 5 to 8, which is almost neutral, is applied to injection, it is very good that the pH of groundwater does not change at all and the strength does not change over time. The unconfined compressive strength of only about 1 to 2 kg/d can be obtained, and the gelation time is limited to a very short period of several minutes after instant setting.

(特に夏期にはゲル化時間が短かくなる)もし、中性領
域のゲル化において強度を2〜3k9/d以上にしよう
とすると、水ガラス濃度を濃くしなくてはならず、その
結果、ゲル化時間は更に短かくなり、注入液の地中にお
ける流動性を保持しえなくなる。又、このように1〜2
k9/d程度の強度を得る場合でも、短いゲル化時間で
注入しなくてはならないから、A液として酸性の強い配
合液を、B液としてアルカリ性の配合液を用い、A,B
両液を等量づつ注入するなど、一定の比率で合流して注
入して中性領域になるように注入しなくてはならないが
、注入操作の誤差により正確に合流をするのが難しいの
が常であるから、合流液のPH値が酸性あるいはアルカ
リ性に大きく変動し、かつゲル化時間もばらつきやすい
という問題があつた。又、水ガラス濃度を非常にうすく
すればゲル化時間を数十分まで延長しうるが、この場合
は強度が大巾に低下して1k9/011程度あるいはそ
れ以下になる。又中性領域におけるゲル化を応用した注
入が正確に行われた場合、地下水のPH値を殆んど変化
させない点では、すぐれているが、これが飲料用井戸等
に直接流入した場合、PH測定によつて簡便に検出しえ
ない問題がある。即ち、PH値そのものが中性を示して
も直接流入した用水を飲料用に用いる事は好ましくない
のは当然であつて、これが容易に検出しえない事は実用
上の問題が残ることになる。このように、弱酸性(5付
近)から中性付近(8付近まで)のゲル化を利用したグ
ラウトは浸透性と強度の要素を同時に満足しにくい事と
ゲル化時間が短いため組成をA液とB液に分けて配合し
、両液を合流して注入しなくてはならず、注入液のPH
とゲル化時間を正確に制御することが困難である事、並
びに用水に流入した場合、簡便に検出しにくい等の問題
がある。
(Gelation time is particularly short in summer) If you try to increase the strength to 2 to 3k9/d or higher in gelation in the neutral region, the water glass concentration must be increased, and as a result, The gelation time becomes even shorter, and the fluidity of the injection solution in the ground cannot be maintained. Also, like this 1-2
Even if a strength of about k9/d is to be obtained, it must be injected in a short gelation time, so a highly acidic compounded solution is used as the A solution and an alkaline compounded solution is used as the B solution.
It is necessary to inject equal amounts of both liquids so that they meet at a certain ratio and inject to reach a neutral region, but it is difficult to achieve accurate merging due to errors in the injection operation. As usual, there is a problem that the pH value of the combined liquid fluctuates greatly between acidic and alkaline, and the gelation time also tends to vary. Furthermore, if the water glass concentration is made very dilute, the gelation time can be extended to several tens of minutes, but in this case, the strength decreases significantly to about 1k9/011 or less. In addition, if the injection is performed accurately by applying gelation in the neutral region, it is excellent in that it hardly changes the pH value of groundwater, but if it flows directly into a drinking well etc., the pH measurement will be difficult. There is a problem that cannot be easily detected depending on the method. In other words, it is natural that it is not preferable to use water that directly flows in for drinking even if the pH value itself is neutral, and the fact that this cannot be easily detected leaves a practical problem. . In this way, grout that utilizes gelation from weakly acidic (around 5) to neutral (up to around 8) is difficult to satisfy the elements of permeability and strength at the same time, and the gelation time is short, so the composition is changed to liquid A. The PH of the injection solution must be mixed separately, and the two solutions must be combined and injected.
There are problems such as the difficulty of accurately controlling the gelation time, and the difficulty of easily detecting the presence of water in water.

一方、酸性領域における水ガラスのゲル化に着目した場
合、PHが非常に低い酸性珪酸水溶液を用いれば、地下
水を酸性に変動する傾向を生じ、また、一般に地盤注入
において、多かれ少なかれ、セメント注入を併用するが
、この際、セメントの固結を阻害するという問題も生じ
る。
On the other hand, when focusing on the gelation of water glass in acidic regions, if an acidic silicic acid aqueous solution with a very low pH is used, there is a tendency for groundwater to become acidic. Although they are used together, there is also the problem of inhibiting the setting of cement.

ところが、PHが5以下、でかつ前述のX値が10−3
以下の範囲の酸性珪酸水溶液のゲル化を地盤注入に適用
した場合、前述の地盤注入の要件をことごとく満足しう
ることがわかつた。特に、○充分なゲル化時間で高強度
を保持しうるという浸透性の良さと高強度を同時に満足
しうる。
However, if the pH is 5 or less and the above-mentioned X value is 10-3
It has been found that when gelation of an acidic silicic acid aqueous solution in the following range is applied to ground injection, all of the above-mentioned requirements for ground injection can be satisfied. In particular, it is possible to simultaneously satisfy good permeability and high strength by maintaining high strength with sufficient gelation time.

Oセメントグラウトを併用してもその固結性を阻害しな
い。○地下水の水質のPH値を酸性側にする傾向が非常
に少なく、地下水に関する水質基準値たるPHが5.8
よりも中性の範囲以内におさめることが出来る。
Even when used together with O-cement grout, its caking property is not impaired. ○There is very little tendency for the pH value of groundwater to be on the acid side, and the water quality standard value for groundwater is 5.8.
can be kept within a more neutral range.

○長いゲル化時間をうる事が出来るので、ミキサーの中
で正確に配合する事が出来、注入液のPHを完全に制御
し得、かつゲル化時間も正確に設定しうる。
○ Since a long gelation time can be obtained, it is possible to mix accurately in a mixer, the pH of the injection solution can be completely controlled, and the gelation time can be set accurately.

O注入液そのものはPH5以下にあるので、用水に直接
流入した場合、PHメータにより容易に検出し得、安全
性の点から実用性が飛躍的に増大する。
Since the O injection liquid itself has a pH of 5 or less, if it directly flows into water, it can be easily detected with a PH meter, dramatically increasing its practicality in terms of safety.

このような利点は酸性珪酸水溶液のPH値が5〜8付近
では全く得られないものであり、PH値10−3以下、
特に1×10−3〜5X10−6の範囲内で、はじめて
得られるものである。
Such advantages cannot be obtained at all when the pH value of the acidic silicic acid aqueous solution is around 5 to 8, and when the pH value is below 10-3,
In particular, it can only be obtained within the range of 1 x 10-3 to 5 x 10-6.

前述の因子の関係を図面に示す。The relationship between the aforementioned factors is shown in the drawing.

図中、使用された酸性反応剤は硫酸である。In the figure, the acidic reactant used is sulfuric acid.

しかしながら、酸性反応剤は基本的にはいかなるもので
あつてもよく、どのような酸性反応剤を用いてもほマ同
様の傾向を示す。経済的には強酸がよいのはもちろんで
ある。実際の注入にあたつて、図面の函数にしたがつて
直接ゲル化時間を調整できるのはもちろんのこと、さら
に、あらかじめ長時間でゲル化する酸性珪酸水溶液を調
整しておいてから、これにアルカリ剤等のPH調整剤を
加えて所望のゲル化時間に合わせることも、この函数の
適用によつて可能である。たマし、その緩衝作用の大小
によつて調整の難易があるのはもちろんである。図面は
酸性反応剤としての硫酸水溶液中に種々のモル比の水ガ
ラスを急速撹拌しながら混合して得られた酸性珪酸水溶
液のゲル化時間としH+J X= の関係を示したものである。
However, basically any acidic reactant may be used, and no matter what kind of acidic reactant is used, almost the same tendency will be exhibited. Of course, strong acids are economically better. During actual injection, it is not only possible to directly adjust the gelation time according to the function shown in the drawing, but also to prepare an acidic silicic acid aqueous solution that gels over a long period of time beforehand. By applying this function, it is also possible to adjust the desired gelation time by adding a pH adjuster such as an alkaline agent. However, it goes without saying that adjustment is difficult depending on the size of the buffering effect. The figure shows the gelation time of an acidic silicic acid aqueous solution obtained by mixing various molar ratios of water glass in a sulfuric acid aqueous solution as an acidic reactant with rapid stirring, and the relationship H+J X=.

RO!八)n表1は、モル比3.0の水ガラスを用いた
場合のPH,〔H+〕,〔S!02〕 に対応したXの
値を表示したものである。
RO! 8) n Table 1 shows the PH, [H+], [S!] when using water glass with a molar ratio of 3.0. 02] The value of X corresponding to is displayed.

但し、使用した水ガラスは、一 しH“j図面に
示すX=?の値は注入工法に 『SiO,,〕n 酸性珪酸水溶液のゲル化を応用する際に配合液の調整、
ゲルタイムの設定に役立つのみならず、前述した注入工
法において必要とされる要件にも大きく関連している。
However, the water glass used is
Not only is this useful for setting gel time, but it is also closely related to the requirements for the injection method mentioned above.

即ち、本発明者の研究によれ(1▲ノば、X=1。That is, according to the research of the present inventor (1▲, X=1.

ぃ 、,.の範囲が1×10−3以下、特に、ほぼ1X
10−3〜5×10−6の間にある、それ自体ゲル化し
うる酸性珪酸水溶液は注入工法として必要とされる要件
、特に地下水のPH値に対する影響、水中固結性、固結
体の恒久性などにおいて、すぐれた特性を発揮すること
が判つた。即ち、後述する実験結果から判るように、X
〉1×10−3の場合は、地下水が酸性になりやすく、
又、水中固結性などの点が劣つてくる。又、セメントの
併用性も悪くなる。さらにXく5×10−6の場合は浸
透時間が保持しにくくなり、粘性も高くなる。即ち、1
×10−3〉X〉5×10−6の範囲で充分な強度、充
分な浸透時間を保持し、かつ配合液が酸性であるにも拘
わらず、地下水のPH値変化が少なく排水基準値の範囲
内に存在し、かつ恒久性を保持しうる。しかもセメント
注入後に、この本発明によるグラウトを注入してもセメ
ントの固結性を阻害しないのみならず、このグラウトが
完全にゲル化しないうちにセメントを連続的に注入して
もセメントは正常に固結しうる等、セメントの種々の併
用方式が可能になる。本発明者の研究によれば酸性珪酸
水溶液が11×10−3〉X〉5×10−2PHが2〜
5の範囲の二条件を同時に満たす場合、地盤注入に特に
すぐれた特性を有するが、PHが2よりも酸性の場合で
もXが上記の範囲にある場合は、実用しうる事が判つた
。後述のいくつかの実験例を含む本発明者による実験結
果から、これらの結果を表1に示す。表1中太線(二重
線つで囲まれた範囲はPHが5よりも酸性側で、かつ1
×10−3〉X〉75×10−6の酸性珪酸水溶液の範
囲を示している。実験 1 酸性反応剤として濃硫酸を用いて酸性液をつくり、急速
撹拌しながらn=3の水ガラス水溶液を混入して酸性珪
酸水溶液をつくる。
I... range of 1x10-3 or less, especially approximately 1x
Acidic silicic acid aqueous solutions that are between 10-3 and 5 x 10-6 and can gel themselves meet the requirements necessary for injection methods, especially the influence on the pH value of groundwater, underwater consolidation properties, and the permanence of consolidated bodies. It was found that it exhibits excellent properties in terms of sex and other characteristics. That is, as can be seen from the experimental results described later,
〉1×10-3, groundwater tends to become acidic,
In addition, it becomes inferior in terms of solidification properties in water. Moreover, the co-usability of cement becomes worse. Furthermore, in the case of X5x10-6, it becomes difficult to maintain the penetration time and the viscosity becomes high. That is, 1
×10-3> It exists within the range and can maintain permanence. Furthermore, even if the grout according to the present invention is injected after cement is injected, not only does it not impede the hardening of the cement, but even if cement is continuously injected before the grout has completely gelled, the cement will not function properly. Various combination methods of cement such as solidification are possible. According to the research of the present inventor, an acidic silicic acid aqueous solution has a pH of 11×10−3〉X〉5×10−2 from 2 to
It has been found that when the two conditions in the range of 5 are simultaneously satisfied, it has particularly excellent characteristics for ground injection, but even when the pH is more acidic than 2, it can be put to practical use if X is within the above range. Table 1 shows the results of experiments conducted by the present inventor, including several experimental examples described below. Table 1 middle thick line (the range surrounded by the double line is the range where the pH is more acidic than 5 and 1
The range of the acidic silicic acid aqueous solution is shown as x10-3>X>75x10-6. Experiment 1 An acidic solution is prepared using concentrated sulfuric acid as an acidic reactant, and an aqueous solution of n=3 water glass is mixed in with rapid stirring to produce an acidic silicic acid aqueous solution.

硫酸(98%)と、水ガラス(原液)の比率と、酸性珪
酸水溶液のPH値との関係についての実験例を示すとほ
マ以下のようになる。
An experimental example of the relationship between the ratio of sulfuric acid (98%) and water glass (undiluted solution) and the pH value of an acidic silicic acid aqueous solution is as follows.

ただし、α−1丁――≧7ー[メD、(重量比)このよう
にして、PHが2〜5の領域にある任意のPH値の酸性
珪酸水溶液をつくることが出来るが、酸性珪酸水溶液を
注入工法として実用化可能とするためには、第一過程と
して、あらかじめ強酸を用いておおよそのPH値に対応
した長いゲル化時間の配合液をつくつておいてから、第
二過程として注入ポンプに吸入する直前にアルカリ性或
は酸性を示す薬剤を用いてPHの微量調整を行ない、こ
れによつて任意のPH値を得、所定のゲル化時間を得て
注入する。
However, it is possible to make an acidic silicic acid aqueous solution with an arbitrary pH value in the range of 2 to 5 in this way, but the acidic silicic acid In order to make an aqueous solution practical as an injection method, the first step is to prepare a compounded solution with a long gelation time corresponding to the approximate pH value using a strong acid, and then the second step is injection. Immediately before inhalation into the pump, the pH is slightly adjusted using an alkaline or acidic agent to obtain a desired pH value, and a predetermined gelation time is obtained before injection.

この場合、特に弱アルカリや弱酸の使用がPHの微量調
整を容易にする。通常は酸性の高い酸性珪酸水溶液をつ
くつておき、弱アルカリ或は水ガラス水溶液でPHを適
当なPH値に調整する事が最も適切な方法である。なぜ
ならば、酸性珪酸水溶液のゲル化時間は図面から判るよ
うに、PHとよく対応するが、上記のαとPHの関係か
ら明らかなように、PHを水螢ガラスと酸性反応剤の量
によつてはじめから正確に調整する事は殆んど不可能で
、わずかの量の違いによつて、PHが大幅に変動し、従
つてゲル化時間が大巾にばらつくからである。従つて第
一過程で水ガラスと酸性反応剤の計量による配合を主体
として、お\よそのPH値を定める。一方、図面に示す
ようにXを媒介としてPHとゲル化時間の関係をうる事
が出来る事を利用して第二過程でPH調整剤或は希釈し
た水ガラス水溶液を添加しながらPH(111定器によ
るPH管理を主体としてゲル化時間を管理する。このよ
うな手法が酸性珪酸水溶液のゲル化を地盤注入に適用す
る事を具体的に可能ならしめるのである。このような方
法に従つて、以下に区分するSlO2の範囲において酸
性反応剤として硫酸を用い、第一過程としてPHがほぼ
25の配合液をつくつておいてから、第二過程として重
炭酸ナトリウムを用いてPH値を微量調整する。
In this case, the use of a weak alkali or weak acid facilitates fine adjustment of the pH. Usually, the most appropriate method is to prepare a highly acidic silicic acid aqueous solution and adjust the pH to an appropriate pH value with a weak alkali or water glass aqueous solution. This is because, as can be seen from the drawing, the gelation time of an acidic silicic acid aqueous solution corresponds well to the PH, but as is clear from the relationship between α and PH above, the PH depends on the amount of fluorophore glass and the acidic reactant. This is because it is almost impossible to accurately adjust the amount from the beginning, and a slight difference in the amount will cause the pH to fluctuate greatly and, therefore, the gelation time to vary widely. Therefore, in the first step, the approximate pH value is determined mainly by measuring and mixing the water glass and the acidic reactant. On the other hand, as shown in the drawing, taking advantage of the fact that the relationship between PH and gelation time can be obtained using X as a mediator, in the second step, the PH (111 constant The gelation time is managed mainly by controlling the pH using a container.Such a method makes it possible to concretely apply the gelation of an acidic silicic acid aqueous solution to ground injection.Following such a method, Using sulfuric acid as an acidic reactant within the SlO2 range classified below, the first step is to prepare a mixed solution with a pH of approximately 25, and the second step is to finely adjust the pH value using sodium bicarbonate. .

これによつて得た酸性珪酸水溶液を用いて山砂を固結せ
しめ、1週間後の一軸圧縮強度を測定した。SiO2濃
度(モル濃度)の区分 PH,〔SlO2〕に対応したゲル化時間と強度の範囲
を表2に示す。
The resulting acidic silicic acid aqueous solution was used to solidify the mountain sand, and the unconfined compressive strength was measured after one week. Table 2 shows the gelation time and strength range corresponding to the SiO2 concentration (molar concentration) classification PH, [SlO2].

PHが5以下の範囲では長いゲル化時間と高強度の領域
が存在している事が判る。
It can be seen that in the pH range of 5 or less, a region with a long gelation time and high strength exists.

実験 2 本発明を実施した場合、地下水のPH値がどのように変
化するかを知るために、巾30へ長さ1m1高さ30C
TILの水槽中に山砂をつめて、高さ20礪までPH7
の水で地下水層を形成し、巾10CTIL1長さ30c
TrL1厚さ20CTfLの酸性珪酸水溶液で固結した
山砂を上記水槽の山砂内部の端部に埋設し、一週間後に
他端部の水を採取してPH値を測定した。
Experiment 2 In order to find out how the pH value of groundwater changes when the present invention is implemented, the
Fill TIL's aquarium with mountain sand and keep the pH at 7 to a height of 20 meters.
Forms a groundwater layer with water, width 10 CTIL 1 length 30 cm
Mountain sand solidified with an acidic silicic acid aqueous solution having a TrL1 thickness of 20 CTfL was buried in the end of the mountain sand inside the water tank, and one week later, water from the other end was collected and the PH value was measured.

酸性珪酸水溶液は実験1に準じて調整した。表3から次
のことがわかる。すなわち、酸性珪酸水溶液を注入した
場合、地下水は多かれ少なかれ酸性側に移向するが、配
合液の値よりは中性に近く、地下水が酸性側に移向する
程度は配合液のPH値の領域によつて大きく異なり、P
H値が2以下の場合は、地下水が酸性になる程度は大き
いが配合液のPH値が2よりも大きな場合は5以上、特
に配合液のPH値が3以上の場合は6以上のPH値を呈
し、地下水の水質規制のPH値の5.8以上の値を保持
しうる。ただし、PHが2以下でも、Xが上述の範囲に
ある場合は地下水が酸性値を呈する程度が低い事も判る
The acidic silicic acid aqueous solution was prepared according to Experiment 1. The following can be seen from Table 3. In other words, when an acidic silicic acid aqueous solution is injected, the groundwater shifts more or less to the acidic side, but it is closer to neutral than the value of the mixed solution, and the extent to which the groundwater shifts to the acidic side depends on the range of the PH value of the mixed solution. varies greatly depending on P
If the H value is 2 or less, the degree of acidity of the groundwater is high, but if the PH value of the mixed liquid is greater than 2, it is 5 or more, and especially if the PH value of the mixed liquid is 3 or more, the PH value is 6 or more. It can maintain a pH value of 5.8 or higher, which is the PH value required by groundwater water quality regulations. However, it can be seen that even if the pH is 2 or less, if X is within the above range, the degree to which the groundwater exhibits an acidic value is low.

表3よりPH値が5.8以上の分布がどこにあるかがわ
かる。実験 3 実験2に用いた水槽中の地盤中に模型注入装置により配
合液200CCの注入を行つた。
From Table 3, it can be seen where the distribution of pH values of 5.8 or higher is located. Experiment 3 200 cc of the mixed solution was injected into the ground in the water tank used in Experiment 2 using a model injection device.

配合液は実験1に準じて調整した〇1週間後、固結体の
体積を測定し、地下水面下の地盤中に注入した場合、配
合液の量に対して何倍の固結土量が形成されたかを測定
しtらこの結果を表4に示す。
The mixed solution was prepared according to Experiment 1. After one week, the volume of the solidified material was measured, and when it was injected into the ground below the groundwater table, how many times the amount of compacted soil was compared to the amount of the mixed solution? The formation was measured and the results are shown in Table 4.

表4から、配合液のPH値が2〜5の範囲、望ましくは
3〜5の範囲がすぐれた固結率をうることがわかる。
Table 4 shows that an excellent consolidation rate can be obtained when the pH value of the blended liquid is in the range of 2 to 5, preferably in the range of 3 to 5.

PH値が2以下の場合は、地下水に影響されやすく、P
H値が5以上の場合は、十分な浸透時間を確保するのが
難しく、固結土量が少ないものと考えられる。ただし、
PHが1〜2の場合でも、Xが上記の範囲内ならば、固
結率が良い事が判る。
If the pH value is 2 or less, it is easily affected by groundwater, and P
When the H value is 5 or more, it is difficult to ensure sufficient penetration time, and it is considered that the amount of compacted soil is small. however,
It can be seen that even when the pH is between 1 and 2, the solidification rate is good as long as X is within the above range.

表4より地下水面下の地盤中に注入した場合、固結率α
が2.5以上の分布がどこにあるかがわかる。実験 4
実験1に示す方法に準じて酸性珪酸水溶液を調整し、モ
ールド中に山砂をつめて手押しポンプで注入して得た供
試体を用いて、固結砂の経時的な一軸圧縮強度を測定し
た。
From Table 4, when injected into the ground below the groundwater table, the consolidation rate α
You can see where the distribution where is 2.5 or more is located. Experiment 4
An acidic silicic acid aqueous solution was prepared according to the method shown in Experiment 1, and the uniaxial compressive strength of the consolidated sand was measured over time using a specimen obtained by filling a mold with mountain sand and injecting it with a hand pump. .

各供試体に用いた酸性珪酸水溶液の処方と、初期粘度と
、一軸圧縮強度を表5に示す。
Table 5 shows the formulation, initial viscosity, and unconfined compressive strength of the acidic silicic acid aqueous solution used for each specimen.

表5より、配合液の粘度が低く、かつ、経時的に強度が
増加し、恒久性がきわめてすぐれていることがわかる。
From Table 5, it can be seen that the viscosity of the compounded liquid is low, the strength increases over time, and the permanence is extremely excellent.

3.1 本発明における酸性反応剤とは無機酸(硫酸、塩酸、硝
酸、リン酸等)、有機酸(ギ酸、酢酸等)のような酸、
酸性塩(リン酸1カルシウム、リン酸1ナトリウム、硫
酸水素ナトリウム、硫酸アルミニウム、塩化アルミニウ
ム等)、アルカリの存在のもとに加水分解して酸基を生
ずる物質(エステル類例えば多価アルコール酢酸エステ
ル、エチレンカーボネート、α−ブチルラクトン等;ア
ルデヒド類例えばグリオキザール等;アミド類例えばホ
ルムアミド等)をいう。
3.1 Acidic reactants in the present invention include acids such as inorganic acids (sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, etc.), organic acids (formic acid, acetic acid, etc.),
Acidic salts (monocalcium phosphate, monosodium phosphate, sodium hydrogen sulfate, aluminum sulfate, aluminum chloride, etc.), substances that generate acid groups by hydrolysis in the presence of alkali (esters such as polyhydric alcohol acetate) , ethylene carbonate, α-butyl lactone, etc.; aldehydes such as glyoxal; amides such as formamide).

以上は例を示したものであるが、本発明はこれらの例に
よつて制限されるものではないのは勿論である。
Although the above examples are shown, it goes without saying that the present invention is not limited to these examples.

又PH調整剤、あるいはゲル化時間調整剤としては下記
の例に示すように塩(無機塩、有機塩、塩基性塩、中性
塩、酸性塩等)アルコール類、苛性ソーダのようなアル
カリ類等、を用いる事が出来、珪酸と反応したり、PH
を変動せしめたり、或は他の化学的、電気化学的作用に
より、珪酸ゲルを形成せしめたり、ゲル化時間を変動せ
しめたり、流動性を変動せしめたり、固結性を増大せし
めたりするものを言う。
In addition, as a pH adjusting agent or a gelling time adjusting agent, salts (inorganic salts, organic salts, basic salts, neutral salts, acid salts, etc.), alcohols, alkalis such as caustic soda, etc. are used as shown in the examples below. , can be used to react with silicic acid, or to
or by other chemical or electrochemical actions, those that cause the formation of silicic acid gel, vary the gelation time, vary the fluidity, or increase the caking property. To tell.

以下の例は一例を示すものであり、これらに限定される
ものではない。無機塩: 酸性塩、中性塩、塩基性塩など 塩化カルシウム、塩化ナトリウム、塩化マグネシウム、
塩化カリ、塩化アルミニウムなどの塩化物、硫酸カルシ
ウム、硫酸ナトリウム、硫酸アルミニウムなどの硫酸塩
、アルミン酸ソーダ、アルミン酸カリウムなどのアルミ
ン酸塩、塩化アンモニウム、塩化亜鉛、塩化アルミニウ
ムなどの塩酸塩、塩素酸ナトリウム、塩素酸カリウム、
過塩素酸ナトリウム、過塩素酸カリウムなどの塩素酸塩
、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、
重炭酸ナトリウム、重炭酸カリウム、重炭酸アンモニウ
ムなどの炭酸塩、重硫酸ナトリウム、重硫酸カリウム、
重硫酸アンモニウムなどの重硫酸塩、重亜硫酸ナトリウ
ム、重亜硫酸カリウム、重亜硫酸アンモニウムなどの重
亜硫酸塩、ケイフツ化ナトリウム、ケイフツ化カリウム
などのケイフツ酸塩、珪酸のアルカリ金属塩、アルカリ
土金属塩、アルミニウム塩等の珪酸塩、ホウ酸ナトリウ
ム、ホウ酸カリウム、ホウ酸アンモニウムなどのホウ酸
塩、リン酸水素ナトリウム、リン酸水素カリウム、リン
酸水素アンモニウムなどのリン酸水素塩、ピロ硫酸ナト
リウム、ピロ硫酸カリウム、ピロ硫酸アンモニウムなど
のピロ硫酸塩、ピロリン酸ナトリウム、ピロリン酸カリ
ウム、ピロリン酸アンモニウムなどのピロリン酸塩、重
クロム酸ナトリウム、重クロム酸カリウム、重クロム酸
アンモニウムなどの重クロム酸塩、過マンガン酸カリ、
過マンガン酸ナトリウムなどの過マンガン酸塩等。
The following example shows an example, and is not limited to these. Inorganic salts: acidic salts, neutral salts, basic salts such as calcium chloride, sodium chloride, magnesium chloride,
Chlorides such as potassium chloride and aluminum chloride, sulfates such as calcium sulfate, sodium sulfate and aluminum sulfate, aluminates such as sodium aluminate and potassium aluminate, hydrochlorides such as ammonium chloride, zinc chloride and aluminum chloride, chlorine acid sodium, potassium chlorate,
Chlorates such as sodium perchlorate and potassium perchlorate, sodium carbonate, potassium carbonate, ammonium carbonate,
Carbonates such as sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate, sodium bisulfate, potassium bisulfate,
Bisulfates such as ammonium bisulfate, bisulfites such as sodium bisulfite, potassium bisulfite, ammonium bisulfite, silicates such as sodium silicate, potassium silicate, alkali metal salts of silicic acid, alkaline earth metal salts, aluminum Silicates such as salts, borates such as sodium borate, potassium borate, ammonium borate, hydrogen phosphates such as sodium hydrogen phosphate, potassium hydrogen phosphate, ammonium hydrogen phosphate, sodium pyrosulfate, pyrosulfate Potassium, pyrosulfates such as ammonium pyrosulfate, pyrophosphates such as sodium pyrophosphate, potassium pyrophosphate, ammonium pyrophosphate, dichromates such as sodium dichromate, potassium dichromate, ammonium dichromate, permanganese acid potash,
Permanganates such as sodium permanganate.

有機塩: 酢酸ソーダ、コハク酸ソーダ、ギ酸カリ、ギ酸ソーダ等
Organic salts: Sodium acetate, sodium succinate, potassium formate, sodium formate, etc.

なお、これらはPH調整剤、あるいはゲル化時間調節剤
として作用するほか、強度増強剤としての効果もある。
In addition to acting as a pH adjuster or gelling time adjuster, these also have the effect of a strength enhancer.

又、前述した酸や、酸性珪酸水溶液や水ガラスもPH調
整剤として使用する事が出来る。
Furthermore, the above-mentioned acids, acidic silicic acid aqueous solution, and water glass can also be used as pH adjusters.

特に弱アルカリ性として作用する薬剤がPHの調整に有
効である。又、本発明における水ガラスとしては、モル
比n(SlO2/M2O):1.5〜5.0液状水ガラ
ス、無水水ガラス、和水水ガラス、結晶性水ガラス等を
含めた任意のモル比の珪酸のアルカリ金属塩、或は珪酸
のアルカリ金属塩と珪酸の混合物が用いられる。
In particular, agents that act as weak alkalinizers are effective in adjusting the pH. Furthermore, the water glass in the present invention may include any molar water glass having a molar ratio n (SlO2/M2O) of 1.5 to 5.0 including liquid water glass, anhydrous water glass, hydrohydrated water glass, crystalline water glass, etc. An alkali metal salt of silicic acid or a mixture of an alkali metal salt of silicic acid and silicic acid is used.

なお、本発明における酸性珪酸水溶液はPHが5以下で
かつX値が10−3以下であるので腐蝕性が低い。
In addition, since the acidic silicic acid aqueous solution in the present invention has a pH of 5 or less and an X value of 10-3 or less, it has low corrosivity.

さらに、該水溶液中に防錆剤を混入すれば、腐蝕はほと
んど起こらない。なお、上記配合液にベントナイトその
他任意の粘土を任意の割合で混合して用いる事も出来る
Furthermore, if a rust preventive agent is mixed into the aqueous solution, corrosion hardly occurs. Incidentally, bentonite or any other clay may be mixed into the above-mentioned liquid mixture in any proportion.

又、上記範囲にある酸性珪酸水溶液をA液とし、ゲル化
調整剤滅は更にセメントやスラグ等を加えたものをB液
とし、A液、B液を合流して注入したのちA液のみを連
続的に注入することも出来る。なお、本発明による注入
は、通常ミキサー中で酸性反応剤水溶液を高速回転しな
がら、水ガラス水溶液を混入し、ほぼ所定のPH値を示
すゲル化時間の長い非アルカリ性珪酸水溶液を作つた上
、PH調整剤を添加してPHが5以下でかつX値が10
−3以下の範囲内の正確な所定のPH値に調整して注入
するものであり、注入液はミキサー中で正確に配合して
1台の注入ポンプで注入出来る(1シヨツト注入方式)
のが大きな利点であるが、勿論2台のポンプを用いて、
A液として非アルカリ性珪酸水溶液あるいはそれにPH
調整剤や強度増強剤を加えた水溶液を用意し、B液とし
てPH調整剤の水溶液を用意してA−B両液合流して所
定のPH値をうるように注入する事も出来るし、又、A
液として水ガラス水溶液を、B液として酸性反応剤水溶
散、あるいはこれにPH調整剤や強度増強剤を加えた水
溶液を用意してA液、B液を合流して所定のPH値をう
るように注入する事も出来る。ただし珪酸濃度が濃い場
合はA液、B液の吐出量のばらつきにより、PHがばら
つき、全くゲル化しなかつたり、あるいは瞬結になつて
しまつたり、ゲル化時間が変動したりしやすい。
In addition, the acidic silicic acid aqueous solution within the above range is used as the A liquid, and without the gelling modifier, cement, slag, etc. are added as the B liquid, and after combining and injecting the A and B liquids, only the A liquid is added. Continuous injection is also possible. In the injection according to the present invention, an aqueous solution of water glass is mixed into an aqueous solution of an acidic reactant in a mixer while it is rotated at high speed to create a non-alkaline silicic acid aqueous solution having a long gelation time and having an approximately predetermined pH value. Add a PH adjuster so that the pH is 5 or less and the X value is 10
It is injected after adjusting to an accurate predetermined pH value within the range of -3 or less, and the injection solution is accurately mixed in a mixer and can be injected with one injection pump (single shot injection method).
This is a big advantage, but of course using two pumps,
Non-alkaline silicic acid aqueous solution or its pH as liquid A
It is also possible to prepare an aqueous solution to which a regulator or strength enhancer has been added, prepare an aqueous solution of a PH regulator as the B solution, and then inject both A and B so that they meet the desired pH value. ,A
Prepare a water glass aqueous solution as the liquid and an acidic reactant dissolved in water as the B liquid, or an aqueous solution to which a PH adjuster or strength enhancer is added, and combine the A and B liquids to obtain a predetermined pH value. It can also be injected into. However, if the silicic acid concentration is high, the pH will vary due to variations in the discharge amounts of liquids A and B, resulting in no gelation at all, instant setting, or variation in gelation time.

しかるに珪酸濃度がうすい場合は水ガラス水溶液と酸性
液を管系統で合流する方法を用いる事が出来る。水ガラ
ス水溶液に酸を加えてPHを低下せしめる方法は最初の
出発点が水ガラスが過剰の状態から酸を加える事から始
まるのに対し、管系統で水ガラス水溶液と酸性液をPH
が5以下の酸性領域になるように合流混合する方法では
過剰の酸性液と過少の水ガラスが合流するため酸の中に
水ガラスが加えられた状態となりはじめから酸性領域で
中和作用が行われるためPHが8付近の不安定な領域を
通らないですむので合流操作さえ正確に行えば、安定し
た酸性珪酸水溶液をうる事ができる。それに対し、まず
PHが5以下のおおよそのPH領域でゲル化しうる酸性
珪酸水溶液をA液として用意し、B液としてPH調整剤
の水溶液を用意し、A液、B液を合流させてPHが5以
下でかつX値が10−3以下の範囲内の所定のPH値に
なるように注入する方法は、A液のみでも固結しうるた
めA液、B液の吐出量が変動しても確実な固結が期待で
きる。又、以上の合流注入方式と1シヨツト注入方式を
連続注入したりして、ゲル化時間や固結性のちがうグラ
ウトを連続的に注入して複合地盤をつくつたりする事も
出来る。最も正確にPH値を設定し得、ゲル化時間を正
確に保持しうる方法はゲル化時間の長い配合でミキサー
中で正確に所定のPH値になるように調整する方法であ
り、本発明はこのような方法を可能にするものである。
However, if the silicic acid concentration is low, it is possible to use a method in which the water glass aqueous solution and the acidic liquid are combined through a pipe system. The method of adding acid to a water glass aqueous solution to lower the pH starts with adding acid to an excess of water glass.
In the method of merging and mixing so that the acidic region is 5 or less, an excess of acidic liquid and an insufficient amount of water glass merge, resulting in a state in which water glass is added to the acid, and a neutralizing effect takes place in the acidic region from the beginning. Therefore, as long as the merging operation is performed accurately, a stable acidic silicic acid aqueous solution can be obtained. On the other hand, first prepare an acidic silicic acid aqueous solution that can gel in the approximate pH range of 5 or less as solution A, prepare an aqueous solution of a pH adjuster as solution B, and combine solutions A and B to adjust the pH. The method of injecting to a predetermined PH value within the range of 5 or less and the Reliable solidification can be expected. Furthermore, it is also possible to create a composite ground by continuously injecting grouts with different gelling times and setting properties by continuously injecting the combined injection method and the one-shot injection method described above. The method that can most accurately set the pH value and accurately maintain the gelation time is to use a formulation that requires a long gelation time and adjust the pH value accurately in a mixer to a predetermined pH value. This makes such a method possible.

又、注入管はストレーナ一管、二重管、ロツド等任意の
注入管を用いる事が出来、A液、B液を合流させて注入
する場合は注入管の先端部でも末端部でも申間部でも、
又注入ポンプに流入する前のミキサーも含む管系統で合
流させてもよいし、又地盤内の土を攪拌混合しながら注
入してもよいのは勿論である。
In addition, any injection tube can be used, such as a single strainer tube, a double strainer tube, or a rod.When injecting liquids A and B together, there is no need to use a strainer at either the tip or the end of the injection tube. but,
It goes without saying that the soil may be joined through a pipe system including a mixer before flowing into the injection pump, or that the soil may be injected while stirring and mixing the soil in the ground.

又、注入圧は常圧で注入しても数+K9/CTil〜数
千1<g/dの高圧で噴射注入を行つても、又、注入管
を固定したまま注入しても、上下に移動させながら注入
しても、又、回転させながら注入してもよい。実施例
1 東京部内の細砂地盤の地下水面下の土層において試験注
入を行つた。
In addition, the injection pressure will move up and down even if it is injected at normal pressure, even if it is injected at a high pressure of several + K9/CTil to several thousand 1 < g/d, and even if it is injected with the injection tube fixed. The injection may be carried out while rotating or may be carried out while rotating. Example
1 Test injection was conducted in a soil layer below the groundwater table in fine sandy ground in the Tokyo area.

注入液は実験1における方法に準じて調整し、酸性反応
剤として髄酸を用い、〔SlO2〕=2.04とし、ま
ず、PH+2.4(α=0.16)の酸性珪酸水溶液を
つくつてから、PH調整剤として重炭酸ソーダを用いて
PH=3.2(ゲル化時間約60分)になるように、ミ
キサー中にて正確に調整してこの配合液を3,0001
注入した。注入前、中、後において注入地点から5m離
れた検査孔から地下水を採取してPHを測定した。PH
測定結果は以下の通りであつtら現場透水試験結果は注
入前にk=6.8×10′″3CT!L/Secであつ
たものが、注入後はk=8.3×10−6CTrL/S
ecを示した。又、注入完了後1週間経たのち掘削した
ところ、注入管を中心に直径2.5m固結し、かつほぼ
10m3の固結土量が得られた。又、固結採取試料の供
試体はQu=12.5Uの一軸圧縮強度を示しム実施例
2 微細な亀裂を有する岩盤の止水工事においてシングルハ
ッカーによる注入方式で試験注入を行つた。
The injection solution was prepared according to the method in Experiment 1, using marrow acid as the acidic reactant and setting [SlO2] = 2.04. First, an acidic silicic acid aqueous solution with pH + 2.4 (α = 0.16) was prepared. Then, using sodium bicarbonate as a pH adjuster, the pH was adjusted accurately in a mixer to 3.2 (gelation time approximately 60 minutes), and this mixed solution was mixed with 3,000 ml of sodium bicarbonate.
Injected. Before, during, and after the injection, groundwater was sampled from a test hole 5 m away from the injection point and the pH was measured. P.H.
The measurement results are as follows. The on-site permeability test results were k = 6.8 x 10'''3CT!L/Sec before injection, but k = 8.3 x 10-6CTrL after injection. /S
ec was shown. Furthermore, when excavation was carried out one week after the completion of the injection, the soil was consolidated with a diameter of 2.5 m around the injection pipe, and an amount of consolidated soil of approximately 10 m3 was obtained. In addition, the consolidated sample specimen exhibited an unconfined compressive strength of Qu = 12.5 U.Example 2 Test injection was performed using a single hacker injection method in water stoppage work on rock with minute cracks.

A液の調整は実験1における方法に準じて行ない、酸性
反応剤として硫酸を用い、〔SiO2〕一1.36とし
、まずPH+3.0(α=0.157)の酸性珪酸水溶
液をつくつてからPH調整剤として重炭酸ソーダを用い
て、PHを3.5(ゲル化時間:30分)とした。A液
を所定量注入後、連続して同一注入管よりB液としてセ
メントミルク(M3当りの高炉セメント300kg、ベ
ントナイト301<g、消石灰50kg)を注入した。
Solution A was prepared according to the method in Experiment 1, using sulfuric acid as the acidic reactant, [SiO2] -1.36, and first preparing an acidic silicic acid aqueous solution with pH + 3.0 (α = 0.157). Using sodium bicarbonate as a pH adjuster, the pH was adjusted to 3.5 (gelation time: 30 minutes). After injecting a predetermined amount of liquid A, cement milk (300 kg of blast furnace cement, 301<g of bentonite, and 50 kg of slaked lime per M3) was continuously injected as liquid B from the same injection pipe.

一孔当りの酸性珪酸水溶液とセメントミルクの注入量の
比率(容量比率)はほぼ前者が2、後者が1の割合であ
つた。注入前後の透水試験結果では、注入前にk一2.
5X10−3CTrL/Secであつたものがk=4,
1×10−Jャ鰍`ecを示した。
The ratio (volume ratio) of the amounts of acidic silicic acid aqueous solution and cement milk injected per hole was approximately 2 for the former and 1 for the latter. The water permeability test results before and after injection showed that k-2.
5X10-3CTrL/Sec, k=4,
It showed 1×10-J gill `ec.

掘削して浸透状況を調査したところ、微細な割目にはゲ
ルが浸透し、粗い割目にはセメントミルクが浸透し、強
固に固結していた。又、掘削中の排水のPH値を測定し
たところ、PH値はほぼ6.5を示し注入前に比してP
H値の変化は殆んどみられなかつた。
When we excavated and investigated the infiltration situation, we found that the gel had penetrated into the fine cracks, and the cement milk had penetrated into the coarse cracks, solidifying it firmly. In addition, when we measured the pH value of the drainage water during excavation, the pH value was approximately 6.5, which was lower than before injection.
Almost no change in H value was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明における酸性珪酸水溶液のゲル化(11ノ
一時間と?の関係を示すグラフである。
The drawing is a graph showing the relationship between gelation (11 hours and ?) of an acidic silicic acid aqueous solution in the present invention.

Claims (1)

【特許請求の範囲】 1 酸性反応剤水溶液に水ガラスを添加して得られる非
アルカリ性珪酸水溶液を軟弱あるいは漏水地盤に注入し
て前記地盤を固結する地盤注入工法において、前記非ア
ルカリ性珪酸水溶液は次の〔A〕および〔B〕の両方の
条件を満たすように調整された酸性珪酸水溶液であるこ
とを特徴とする地盤注入工法。 〔A〕PH値が約5以下であること。 〔B〕〔H^+〕/〔SiO_2〕^nの値が約1×1
0^−^3以下であること。 ただし、〔H^+〕は水素イオンのモル濃度であり、〔
SiO_2〕は二酸化珪素のモル濃度であり、nは水ガ
ラスのモル比である。 2 特許請求の範囲第1項に記載の地盤注入工法におい
て、前記酸性珪酸水溶液はまずPH値が5以下のおおよ
その値に調整さえ、次いでこの水溶液にPH調整剤を添
加して前記〔A〕および〔B〕の条件を満たす所定の値
に微調整される方法。 3 特許請求の範囲第1項または第2項に記載の地盤注
入工法において、前記酸性珪酸水溶液はPH調整剤と合
流して注入される方法。 4 特許請求の範囲第1項に記載の地盤注入工法におい
て、前記酸性珪酸水溶液は水ガラス水溶液と過剰の酸性
反応剤とを合流して得られる方法。
[Scope of Claims] 1. In a ground injection method in which a non-alkaline silicic acid aqueous solution obtained by adding water glass to an acidic reactant aqueous solution is injected into soft or leaking ground to solidify the ground, the non-alkaline silicic acid aqueous solution is A ground injection method characterized by using an acidic silicic acid aqueous solution adjusted to satisfy both the following conditions [A] and [B]. [A] The PH value is approximately 5 or less. [B] [H^+]/[SiO_2]^n value is approximately 1×1
Must be 0^-^3 or less. However, [H^+] is the molar concentration of hydrogen ions, and [H^+] is the molar concentration of hydrogen ions.
SiO_2] is the molar concentration of silicon dioxide, and n is the molar ratio of water glass. 2. In the ground injection method according to claim 1, the pH value of the acidic silicic acid aqueous solution is first adjusted to an approximate value of 5 or less, and then a PH adjuster is added to the aqueous solution to form the above [A]. and a method of fine adjustment to a predetermined value that satisfies the conditions [B]. 3. The ground injection method according to claim 1 or 2, in which the acidic silicic acid aqueous solution is mixed with a pH adjuster and then injected. 4. In the ground injection method according to claim 1, the acidic silicic acid aqueous solution is obtained by combining a water glass aqueous solution and an excess acidic reactant.
JP52051395A 1977-05-04 1977-05-04 Ground injection method Expired JPS597750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52051395A JPS597750B2 (en) 1977-05-04 1977-05-04 Ground injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52051395A JPS597750B2 (en) 1977-05-04 1977-05-04 Ground injection method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP5688880A Division JPS55147589A (en) 1980-04-28 1980-04-28 Injection grouting method
JP5688780A Division JPS55147588A (en) 1980-04-28 1980-04-28 Injection grouting method

Publications (2)

Publication Number Publication Date
JPS53136309A JPS53136309A (en) 1978-11-28
JPS597750B2 true JPS597750B2 (en) 1984-02-20

Family

ID=12885742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52051395A Expired JPS597750B2 (en) 1977-05-04 1977-05-04 Ground injection method

Country Status (1)

Country Link
JP (1) JPS597750B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060072A (en) * 2018-10-12 2020-04-16 富士化学株式会社 Hardening material for grouting and manufacturing method for the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124985A (en) * 1982-12-31 1984-07-19 Kyokado Eng Co Ltd Pouring grout into ground
JPS59124986A (en) * 1982-12-31 1984-07-19 Kyokado Eng Co Ltd Solidification of ground
JPS60120325U (en) * 1984-01-24 1985-08-14 高岡 直弘 Simple measuring device for granular contents of boxed products

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265917A (en) * 1975-11-29 1977-05-31 Kazuo Shimoda Method of executing subsoil improvement with water glass and cement as main material and

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265917A (en) * 1975-11-29 1977-05-31 Kazuo Shimoda Method of executing subsoil improvement with water glass and cement as main material and

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020060072A (en) * 2018-10-12 2020-04-16 富士化学株式会社 Hardening material for grouting and manufacturing method for the same

Also Published As

Publication number Publication date
JPS53136309A (en) 1978-11-28

Similar Documents

Publication Publication Date Title
JPH0428759B2 (en)
JPS597750B2 (en) Ground injection method
JP2024005042A (en) Grouting method and grouting device
JP6712828B1 (en) Ground injection material and ground injection method
JPS5939007B2 (en) Composite grouting method
JPS6057476B2 (en) Ground injection method
JP2023006556A (en) Silica grout and ground injection method using the same
JPS60233192A (en) Grouting method
JPS5815519B2 (en) Chemical injection method
JPS6338390B2 (en)
JPH024634B2 (en)
JPS5993788A (en) Grauting method into ground
KR840000996B1 (en) Injection process for solidifying a ground
JP2008057191A (en) Soil improving method
JPH0232307B2 (en)
JPS59131690A (en) Process for injecting into ground
JP2000239661A (en) Grouting material for grouting ground and method for grouting ground using same
JPS60231786A (en) Pouring grout into ground
JPH0363597B2 (en)
JPS62172088A (en) Ground grouting process
JPH0525272B2 (en)
KR840000997B1 (en) Injection apparatus for solidifying a ground
JPS59124986A (en) Solidification of ground
JPS59152986A (en) Impregnation method for ground
JPS61162623A (en) Ground impregnation method