JPS5976834A - Recovering method of noble metal - Google Patents

Recovering method of noble metal

Info

Publication number
JPS5976834A
JPS5976834A JP57188544A JP18854482A JPS5976834A JP S5976834 A JPS5976834 A JP S5976834A JP 57188544 A JP57188544 A JP 57188544A JP 18854482 A JP18854482 A JP 18854482A JP S5976834 A JPS5976834 A JP S5976834A
Authority
JP
Japan
Prior art keywords
noble metal
solvent
soln
iodine
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57188544A
Other languages
Japanese (ja)
Other versions
JPH021896B2 (en
Inventor
Shingo Takayama
高山 新吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP57188544A priority Critical patent/JPS5976834A/en
Publication of JPS5976834A publication Critical patent/JPS5976834A/en
Publication of JPH021896B2 publication Critical patent/JPH021896B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To enable recovery of a noble metal in high purity and a high yield by treating metallic parts having the noble metal with an aq. mixed soln. of iodine and an iodine compd. to dissolve selectively the noble metal, and extracting the same into an org. solvent then extracting reversely the noble metal in an aq. alkali soln. CONSTITUTION:The sepn. and recovery of a noble metal from the state that the noble metal coexists with other metals as a result of plating, cladding, backing, etc. or being coated on ceramics, is accomplished by dipping the parts contg. the noble metal into an aq. soln. contg. iodine and an iodide such as sodium iodide or potassium iodide as a dissolving liquid to dissolve and extract selectively the noble metal alone. An org. solvent such as methyl isobutyl ketone, ethyl ether or the like is added to the solution of such noble metal under stirring to extract the noble metal into the org. solvent. The noble metal is extracted reversely by separating the org. solvent and adding an aq. soln. of KOH, then the noble metal ions in the KOH soln. are reduced by hydrazine or the like, whereby the noble metal having extremely high purity is separated and recovered in a high yield.

Description

【発明の詳細な説明】 木発明は貴金属を溶媒抽出法で回収する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to a method for recovering precious metals by solvent extraction.

従来、貴金属の溶解方法としては、王水や塩酸などの強
酸やシアン化アルカリ溶液で溶解することが知られてい
た。しかしながら、従来法は、貴金属や貴金属合金がメ
ッキ、クラッド、焼付は等により銅合金、ニッケル合金
等の金属、プリント基板、セラミックスなどの材料に被
覆されている場合や卑金属を含んでいる場合には適当で
ない。
Conventionally, it has been known that noble metals are dissolved using strong acids such as aqua regia or hydrochloric acid, or alkaline cyanide solutions. However, the conventional method does not work when precious metals or precious metal alloys are coated with metals such as copper alloys, nickel alloys, printed circuit boards, ceramics, etc. by plating, cladding, baking, etc., or when they contain base metals. It's not appropriate.

たとえば、硝酸や王水などの強酸でこの材料を溶解しよ
うとすると、馬食性が強いため台材金属や卑金属材料ま
で溶解してしまいNOxや塩素ガスを発生させて設備や
装置を早く腐朽させたり、貴金属イオンを溶媒抽出する
際に塩素イオンや卑金属塩化物イオンなどが妨害因子と
して働き著しく回収効率を低ドさせたりする。また、シ
アン化アルカリ溶液で溶解した場合には、同様に合材金
属まで溶解することがあり還元が困難で、かつ使用済み
シアン化アルカリ溶液の廃水処理費用が^価で経済的で
ない。
For example, if you try to dissolve this material with a strong acid such as nitric acid or aqua regia, it is highly erodible and will dissolve base metals and base metals, generating NOx and chlorine gas, causing equipment and equipment to deteriorate quickly. When extracting noble metal ions with a solvent, chlorine ions and base metal chloride ions act as interfering factors, significantly reducing recovery efficiency. Furthermore, when dissolved in an alkaline cyanide solution, the composite metal may also be dissolved, making reduction difficult and the cost of wastewater treatment of the used alkaline cyanide solution being expensive and uneconomical.

本発明は上記欠点に鑑みなされたもので、貴金属又は貴
金属合金を選択的に溶解し、かつ、取扱いが容易でリサ
イクルできる^能率の貴金属の溶媒抽出法を提供するこ
とを目的とするものである。
The present invention has been made in view of the above-mentioned drawbacks, and it is an object of the present invention to provide an efficient solvent extraction method for noble metals that selectively dissolves noble metals or noble metal alloys, is easy to handle, and can be recycled. .

本発明は、よう素とよう化物とを含む混合水溶液中に浸
漬して貴金属又は貴金属合金を選択的に溶解した後、こ
の溶解溶液に有機溶媒(抽出剤と希釈剤)を添加して貴
金属イオンを有機溶媒中に抽出した後、−アルカリ水溶
液中に貴金属イオンを逆抽出して貴金属単体または貴金
属化合物を沈殿させることを特徴と−4る貴金属の回収
方法である。
The present invention involves selectively dissolving noble metals or noble metal alloys by immersing them in a mixed aqueous solution containing iodine and iodide, and then adding an organic solvent (extractant and diluent) to this dissolved solution to obtain noble metal ions. This is a method for recovering noble metals, which is characterized in that the noble metal ions are extracted into an organic solvent and then the noble metal ions are back-extracted into an alkaline aqueous solution to precipitate the noble metal alone or the noble metal compound.

本発明において、より化物とよう素とを含む混合溶液を
用いるのは、よう化物水溶液単独では反応中に貴金属表
向によう化膜ないしは酸化膜が形成され著しく回収効率
が低下するので、このよう化膜ないしは酸化膜の形成を
防止するためである。
In the present invention, a mixed solution containing more oxides and iodine is used because if an iodide aqueous solution is used alone, an iodide film or oxide film will be formed on the surface of the precious metal during the reaction, which will significantly reduce the recovery efficiency. This is to prevent the formation of a chemical film or an oxide film.

したがって、貴金属又は貴金属合金の被覆層の厚さが0
.1龍以上でも溶解できる。ここで、より化物とは水溶
液中でよう素イオンを遊離するよう化物からなる水溶液
をいい、よう化カリウム、よつ化ナトリウムなどのよう
化物がある。また、よう素は、よう化物水溶液と一緒に
パラジウムなどの貴金属のよう化膜ないし酸化膜の形成
を防止する役割を果たす。
Therefore, the thickness of the noble metal or noble metal alloy coating layer is 0.
.. Even 1 dragon or more can be dissolved. Here, the compound refers to an aqueous solution consisting of a compound that liberates iodine ions in an aqueous solution, and includes iodides such as potassium iodide and sodium iodine. Further, iodine, together with the iodide aqueous solution, plays a role in preventing the formation of an iodide film or an oxide film of noble metals such as palladium.

この混合溶液中に金、&1.パラジウムなどの貴金属や
銀−パラジウム合金、金−パラジウム合金。
In this mixed solution, gold &1. Noble metals such as palladium, silver-palladium alloys, and gold-palladium alloys.

金−銀合金、銀−パラジウム−銅合金などの貴金属合金
の単体や被覆した材料を浸漬すると、選択的に貴金属又
は貴金属合金が溶解される。したがって、混合溶液中に
貴金属元素以外の他の元素が溶解するのを防ぐことがで
きる。混合溶液中のよう化物とよう素の濃度は溶解した
い貴金属等の量で定まり、室温でも反応する。反応を促
進させるときは攪拌や40℃〜80℃の温度で加熱など
すればよい。  次いで、この貴金属溶解溶液にMIB
K、エチルエーテル等の有機溶媒を加えて全体を振とう
器などにかけ′C振とうし溶媒抽出を行う。
When a single noble metal alloy such as a gold-silver alloy or a silver-palladium-copper alloy or a coated material is immersed, the noble metal or noble metal alloy is selectively melted. Therefore, it is possible to prevent elements other than the noble metal elements from dissolving in the mixed solution. The concentration of iodide and iodine in the mixed solution is determined by the amount of noble metals etc. to be dissolved, and they react even at room temperature. To accelerate the reaction, stirring or heating at a temperature of 40°C to 80°C may be performed. Next, MIB is added to this noble metal solution.
An organic solvent such as K, ethyl ether, etc. is added, and the whole is shaken using a shaker to perform solvent extraction.

このとき、貴金属元素以外の他の元素が王水溶液の場合
と異なり溶解しにくいので、貴金属が鳥効率で抽出でき
る。また、よう素イオンは塩素イオンより化学反応性が
低く^価な有機溶媒の老化を防ぐことができる。貴金属
のよう素錯体はそのよう素基の一部が置換され溶媒に抽
出されると考えられるので、貴金属の種類により用いる
有機溶媒の種類は異なる。たとえば金にはM113K 
(メタイソブチルケトン)、MIBKとイソアミルアセ
テートの混合剤、エーテル類(R’−0−R)。
At this time, other elements than the noble metal elements are difficult to dissolve unlike in the aqua regia solution, so the noble metals can be extracted with high efficiency. In addition, iodine ions have lower chemical reactivity than chloride ions and can prevent aging of valent organic solvents. Since it is thought that in the iodine complex of a noble metal, some of the iodine groups are substituted and extracted into a solvent, the type of organic solvent used differs depending on the type of noble metal. For example, M113K for gold
(meta-isobutyl ketone), a mixture of MIBK and isoamyl acetate, ethers (R'-0-R).

チオエーテル類(R′−3−R)、  アンパライト−
LAlなと、パラジウムにはチオエーテル類(R’−5
−10,Xl−8A(オキシムソルヘント)なと、白金
にLJ:MIL(K、  ローオクチルアニリンなど、
オスミウムにはM113に、 アンパライト−LA 1
.’I”OPO(酸化トリオクチルスルフィン)など、
イリジウムにはM113に、トリブチホスフェイl−、
n−オクチルアニリンなどである。以上の溶剤を希釈剤
で薄めて使用する。希釈剤としては非水性のキシレン、
トルエン、オクタン、メチルシフIj ’\キサン、ケ
ロシン、灯油、四塩化炭素、トリクレン等の単品又は混
合溶剤を用いる。
Thioethers (R'-3-R), amparite-
In LAl, palladium contains thioethers (R'-5
-10,
For osmium, use M113, amparite-LA 1
.. 'I'OPO (trioctylsulfine oxide), etc.
Iridium has M113, tributyphosphate l-,
n-octylaniline and the like. Use the above solvents by diluting them with a diluent. Non-aqueous xylene as a diluent;
Single or mixed solvents such as toluene, octane, methylschiff Ij'\xane, kerosene, kerosene, carbon tetrachloride, trichlene, etc. are used.

なお、必要に応じE D T A 、酢酸、酒石酸、ク
エン酸等のマスキンク剤を併せて用いることができる。
Incidentally, a masking agent such as EDT A, acetic acid, tartaric acid, citric acid, etc. can be used in combination, if necessary.

このマスキング剤は抽出したい貴金属元素以外の卑金属
元素や貴金属ノC#の親水性を^め11機溶媒中に移行
しないようにする。−回で完全に抽出されないので通常
は3〜6−くり返され、自機溶媒中に必要な貴金属元素
だけが抽出濃縮される。
This masking agent prevents the hydrophilicity of base metal elements other than the noble metal elements to be extracted and the precious metal C# from transferring into the solvent. Since the extraction is not complete in 3 to 6 times, the process is usually repeated 3 to 6 times to extract and concentrate only the precious metal elements necessary in the organic solvent.

ごのようにして抽出が完rした後有機溶媒は分離され、
アルカリ水溶液中に逆抽出される。このとき貴金属のよ
う化物イオンはそのままアルカリ化合物として逆抽出さ
れるので、有機溶媒中にはよう素イオンが蓄積すること
がなく再使用できる。
After the extraction is completed, the organic solvent is separated as shown below.
Back-extracted into aqueous alkaline solution. At this time, the iodide ions of the noble metal are directly extracted as an alkali compound, so that the iodine ions do not accumulate in the organic solvent and can be reused.

逆抽出された貴金属元素イオンは通常の還元方法で所望
の貴金属単体または貴金属化合物を沈殿さセる。
The back-extracted noble metal element ions are subjected to a conventional reduction method to precipitate the desired noble metal element or noble metal compound.

最初に使用したよう素とよう化物を含む混合溶液を再生
する場合、酸化剤を添加してPHを酸性にすればもとの
混合溶液として使用でき薬品が節約できる。
When regenerating the initially used mixed solution containing iodine and iodide, by adding an oxidizing agent to make the pH acidic, it can be used as the original mixed solution and chemicals can be saved.

酸化剤としては、たとえば過酸化水素、オゾン。Examples of oxidizing agents include hydrogen peroxide and ozone.

過酸化マンガン、重クロム酸、過酸化ナトリウム。Manganese peroxide, dichromic acid, sodium peroxide.

塩素、臭素などがある。塩が生じたときは、塩を別11
Mに結晶化させ回収すればよい。また、貴金属単体や貴
金属化合物を沈殿させるための還元剤としては、たとえ
ばヒドラジン、二塩化ヒドラジン。
These include chlorine and bromine. If salt occurs, remove the salt separately.
What is necessary is to crystallize it into M and collect it. In addition, examples of reducing agents for precipitating noble metals or noble metal compounds include hydrazine and hydrazine dichloride.

ヒドロキシルアミン、二酸化イオウ、重亜硫酸ナトリウ
ム、チオ硫酸ナトリウム、ハイドロサルファイト、次!
lI!1ノン酸す1リウム、水素化ホウ素すトリウムt
、Yどがある。
Hydroxylamine, sulfur dioxide, sodium bisulfite, sodium thiosulfate, hydrosulfite, next!
lI! Sodium monoxide, Sodium borohydride
, Y etc.

以1・実施例わよひ従来例について説明する。Hereinafter, a conventional example will be described.

〔実施例1〕 よう素2部、よう化カリウム9部、水22部の混合溶液
5βに鉄−ニソヶル合金に金を2ミクしIンクラソドし
た材料(金4.4%含有)lkirを浸漬したところ、
25℃、  20分で金が溶解でき鉄−ニノヶル台材は
ほとんど溶解しなかった。この溶解溶液を5%MIBK
2β×5回で溶媒抽出し40%K OH水溶液0.1 
/で逆抽出した。
[Example 1] A lkir material (containing 4.4% gold) prepared by adding 2 parts of gold to an iron-nisogal alloy and adding 2 parts of gold to it was immersed in 5β of a mixed solution of 2 parts of iodine, 9 parts of potassium iodide, and 22 parts of water. However,
Gold was melted in 20 minutes at 25°C, and the iron-Ninogal base material was hardly melted. Add this solution to 5% MIBK.
Solvent extraction with 2β x 5 times and 40% KOH aqueous solution 0.1
/ was back-extracted.

この溶液をヒドラジンで還元したところ純度99.98
%の金が43.6g沈殿し回収率99.9%で回収でき
た。また、回収後のよう化カリウム水溶液は最初の混合
溶液中に戻して使用した。以上の工程を10回くり返し
てスクラップ材料合計でl0kgから金を回収したが、
最終工程でも金の回収率は99.9%であった。
When this solution was reduced with hydrazine, the purity was 99.98.
% gold was precipitated and recovered with a recovery rate of 99.9%. In addition, the recovered aqueous potassium iodide solution was returned to the initial mixed solution for use. The above process was repeated 10 times and gold was recovered from a total of 10 kg of scrap material.
Even in the final step, the gold recovery rate was 99.9%.

〔実施例2〕 実施例1と同様の混合溶液71に20%のエチルアルコ
ールを加えた混合溶液71に銀・パラジウムペーストを
焼付けたセラミックス材料を’&?Aしたところ60分
で銀とパラジウムともに溶解(銀3g/L パラジウム
0.8g/β)できた。
[Example 2] A ceramic material made by baking a silver/palladium paste into a mixed solution 71 similar to that of Example 1 with 20% ethyl alcohol added was made into a '&? As a result of A, both silver and palladium were dissolved (3 g/L of silver, 0.8 g/β of palladium) in 60 minutes.

この溶解溶液を5%K OH岐でよう素を中和した後オ
クチルサルファイドソルベント21×7回でパラジウム
を抽出し、15%NH40)(水溶液500weで逆抽
出した。
After neutralizing iodine in this dissolved solution with 5% KOH, palladium was extracted with octyl sulfide solvent 21×7 times, and back-extracted with 15% NH40) (aqueous solution 500we).

この溶液を二塩酸ヒドラジンで還元したところ、純度9
9.80のパラジウムが5.4g還元した。銀は抽残液
に残り、パラジウムと分離する。これをヒドラジンヒト
ラードで還元して純度99.0%の銀20.1gを得た
。なお、有機溶媒中にはよう素イオンは存在せず、また
抽残液(よう化カリウム)は再使用する。
When this solution was reduced with hydrazine dihydrochloride, the purity was 9.
9.80% palladium was reduced by 5.4g. The silver remains in the raffinate and is separated from the palladium. This was reduced with hydrazine Hitlerde to obtain 20.1 g of silver with a purity of 99.0%. Note that there are no iodine ions in the organic solvent, and the raffinate (potassium iodide) is reused.

〔実施例3〕 よう素1部、よう化ナトリウム4部、水10部エチルア
ルコール3部の混合fa液lOβに銀−パラジウム合金
を20ミクロンクラッドした鉄−ニソケル合金テープ材
料2.5 kg (パラジウム12.5%含有)を浸漬
したところ、120分でパラジウムが選択的に溶解でき
た。この溶液をMIBK1部と希釈剤9部21×5回で
抽出し、20%KOH水溶液で逆抽出し、水素化ホウ素
ナトリウムで還元したところ、純度99.80のパラジ
ウム303 gが沈殿し回収できた。
[Example 3] 2.5 kg of iron-Nisokel alloy tape material made by cladding 20 microns of silver-palladium alloy in a mixed fa solution lOβ of 1 part of iodine, 4 parts of sodium iodide, 10 parts of water, and 3 parts of ethyl alcohol. 12.5% content), palladium was selectively dissolved in 120 minutes. This solution was extracted with 1 part of MIBK and 9 parts of diluent 21 times 5 times, back-extracted with 20% KOH aqueous solution, and reduced with sodium borohydride. As a result, 303 g of palladium with a purity of 99.80 was precipitated and recovered. .

〔従来例〕[Conventional example]

実施例1と同様の材!4を土水で台材ごと溶°解し塩化
金rlIi液4.3A(HCI濃度7 %) ヲM I
 HK1部と希釈剤9部21×5回で抽出し4部%Na
OH水溶液で逆抽出した。この溶液をヒドラジンで還元
したところ純度99.97%の金が43.4g沈殿し回
収率98.7%で回収てきた。しがし、回収後の塩化カ
リウム溶液は最初の土水や塩化金酸溶液に再使用できな
かった。
Same material as Example 1! 4 along with the base material in soil water and mixed with gold chloride rlIi solution 4.3A (HCI concentration 7%).
Extracted with 1 part HK and 9 parts diluent 21 times 5 times, 4 parts% Na
Back extraction was performed with an OH aqueous solution. When this solution was reduced with hydrazine, 43.4 g of gold with a purity of 99.97% was precipitated and recovered with a recovery rate of 98.7%. However, the recovered potassium chloride solution could not be reused as the original soil water or chloroauric acid solution.

以上詳述したように本発明による貴金属の回収方法によ
れば台材を溶かずことなく必要な貴金属又は貴金属合金
を溶解することができる効果があり、また再生すればく
り返し使用できるなどの効果がある。なお、必要に応じ
て本発明の反応を阻害しない範囲で緩衝剤等添加しても
良いことはもちろんである。
As detailed above, the method for recovering precious metals according to the present invention has the effect of being able to melt the necessary precious metal or precious metal alloy without melting the base material, and also has the effect of being able to be used repeatedly if recycled. be. It goes without saying that a buffer or the like may be added, if necessary, within a range that does not inhibit the reaction of the present invention.

出願人  田中貴金属工業株式会社Applicant: Tanaka Kikinzoku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] よう素とよう化物とを含む混合水溶液中に浸漬して貴金
属又は貴金属合金を選択的に溶解した後、この溶解溶液
に有R溶媒(抽出剤と希釈剤)を添加して貴金属イオン
を有機溶媒中に抽出した後、アルカリ水溶液中に貴金属
イオンを逆抽出して貴金属単体またはνI金属化合物を
沈殿させることを特徴とする貴金属の回収方法。
After selectively dissolving noble metals or noble metal alloys by immersing them in a mixed aqueous solution containing iodine and iodide, an R solvent (extractant and diluent) is added to this dissolved solution to remove noble metal ions in an organic solvent. 1. A method for recovering precious metals, which comprises extracting the precious metals into an alkaline aqueous solution, and then back-extracting the precious metal ions into an alkaline aqueous solution to precipitate the noble metals or νI metal compounds.
JP57188544A 1982-10-27 1982-10-27 Recovering method of noble metal Granted JPS5976834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57188544A JPS5976834A (en) 1982-10-27 1982-10-27 Recovering method of noble metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57188544A JPS5976834A (en) 1982-10-27 1982-10-27 Recovering method of noble metal

Publications (2)

Publication Number Publication Date
JPS5976834A true JPS5976834A (en) 1984-05-02
JPH021896B2 JPH021896B2 (en) 1990-01-16

Family

ID=16225555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57188544A Granted JPS5976834A (en) 1982-10-27 1982-10-27 Recovering method of noble metal

Country Status (1)

Country Link
JP (1) JPS5976834A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417827A (en) * 1987-07-14 1989-01-20 Tanaka Precious Metal Ind Refining device for gold and refining method for gold using said device
JPS6417826A (en) * 1987-07-14 1989-01-20 Tanaka Precious Metal Ind Refining method for gold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417827A (en) * 1987-07-14 1989-01-20 Tanaka Precious Metal Ind Refining device for gold and refining method for gold using said device
JPS6417826A (en) * 1987-07-14 1989-01-20 Tanaka Precious Metal Ind Refining method for gold

Also Published As

Publication number Publication date
JPH021896B2 (en) 1990-01-16

Similar Documents

Publication Publication Date Title
EP2684622B1 (en) Burning-free and non-cyanide method for recycling waste printed circuit board
US4397689A (en) Process for the extraction of precious metals from concentrates thereof
TWI568859B (en) Method for recycling of obsolete printed circuit boards
GB1601450A (en) Extraction of precious metals
GB9901586D0 (en) Process for the recovery of lead and/or tin or alloys thereof from substrate surfaces
US4997532A (en) Process for extracting noble metals
US4188362A (en) Process for the treatment of platinum group metals and gold
WO2005023716A1 (en) Method of separation/purification for high-purity silver chloride and process for producing high-purity silver by the same
Kulandaisamy et al. The aqueous recovery of gold from electronic scrap
JP2007016259A (en) System for collecting gold while recycling iodine ion in gold-removing liquid
CA1068116A (en) Process for the treatment of platinum group metals and gold
JPS5976834A (en) Recovering method of noble metal
JPH0122330B2 (en)
CN1043787C (en) Technical process for extracting valuable metal from gold slime
JPH11293357A (en) Selective recovery of cobalt compound
JPS6293319A (en) Method for selectively recovering sn from sn coated material
JP2003105456A (en) Method for manufacturing silver
CN1197485A (en) Method of purifying gold
TWI585238B (en) Method for recovering metal from printed circuit boards by using hydrochloride acid
JP2003089827A (en) Method for refining silver
US20230374625A1 (en) Environmentally friendly process to optimize copper dissolution and recover copper and gold from electronic waste
US20220136080A1 (en) Method for recovering gold and copper from electronic components
US20230416873A1 (en) Environmentally friendly process to optimize copper dissolution and recover copper and gold from electronic waste
US20230374380A1 (en) Environmentally friendly process to optimize copper dissolution and recover copper and gold from electronic waste
JP7135023B2 (en) Method for dissolving residue and method for recovering valuable metals