JPS5976507A - Prevention of stagnation of foam - Google Patents
Prevention of stagnation of foamInfo
- Publication number
- JPS5976507A JPS5976507A JP18523382A JP18523382A JPS5976507A JP S5976507 A JPS5976507 A JP S5976507A JP 18523382 A JP18523382 A JP 18523382A JP 18523382 A JP18523382 A JP 18523382A JP S5976507 A JPS5976507 A JP S5976507A
- Authority
- JP
- Japan
- Prior art keywords
- surfactant
- immobilized
- microorganisms
- reaction
- complex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Degasification And Air Bubble Elimination (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、固定化微生物複合体を用いた反応における気
泡滞留防止方法に関し、詳しくは、固定化微生物複合体
の周辺で気泡が滞留するのを防止するために反応に用い
る固定化微生物複合体中に界面活性剤を含有せしめ反応
中これを雅
y放させることから成る気泡滞留防止方法に関するn
微生物は各種の有用物質を生産する手段として食品工業
や医薬品工業などの分野で利用されている。従来の微生
物反応は回分式で行なわれて来た。ところが反応液に懸
濁している微生物はおまりにも微小であり、これを回収
して再使用1−るには高性能の分離器を必要とし、又、
雑菌汚染なしに回収することが難かしいなどの問題点が
あるため、反応終了後は通常廃棄せられている。このよ
うな利用効率の低い使い方を改善するために、微生物を
生きたまま水不溶性の担体に固定化することにより、と
り扱かい易い大きさや形状に成型したのち反応に用いる
技術σつ開発が盛んに行なわれるようになった。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing air bubbles from accumulating in a reaction using an immobilized microbial complex, and more specifically, the present invention relates to a method for preventing air bubbles from accumulating in a reaction using an immobilized microbial complex. Concerning a method for preventing air bubble retention, which comprises incorporating a surfactant into the immobilized microbial complex to be used and allowing it to be released during the reaction.Microorganisms are used in fields such as the food industry and pharmaceutical industry as a means of producing various useful substances. It is used in Conventional microbial reactions have been carried out batchwise. However, the microorganisms suspended in the reaction solution are extremely small, and recovering and reusing them requires a high-performance separator.
Because it is difficult to recover without contaminating bacteria, it is usually discarded after the reaction is completed. In order to improve this method of use with low utilization efficiency, there is active development of technology that immobilizes living microorganisms on water-insoluble carriers, molds them into a size and shape that is easy to handle, and then uses them for reactions. It began to be carried out in
固定化された微生物は、反応液中の栄養分を取り込み生
育する。反応終了後は、容易に回収できるため、再度こ
の微生物を反応に用いることができる。また担体に固定
化された微生物を反応器に充填して固定床の連続反応を
行うことも可能である。The immobilized microorganisms take in nutrients in the reaction solution and grow. After the reaction is completed, the microorganism can be easily recovered and used again in the reaction. It is also possible to carry out a continuous fixed bed reaction by filling a reactor with microorganisms immobilized on a carrier.
このような利点に着目して各種各様σつ固定化法が開発
されている。Focusing on such advantages, various σ immobilization methods have been developed.
本発明者らも微生物をセルローストリアセテートなどの
水不溶性高分子で安定に包括せしめることからなる新規
な固定化法を提案してし)る(特開昭jj−/ J3!
99 / )。The present inventors have also proposed a novel immobilization method that involves stably enclosing microorganisms in water-insoluble polymers such as cellulose triacetate (Japanese Patent Application Laid-open No. Shojj-/J3!).
99/).
従来、こσ〕固定化微生物複合体を用いる反応は、反応
器内に懸濁するか、あるいは固定床として充填するかし
て行なわれている。ところがこの反応を通気下で行なっ
たり、あるいはアルコール発酵の如く反応の産物として
多量の炭酸ガスが生成するような場合には、(ロ)走化
微生物複合体の内部や周辺に気泡が滞留し、そのために
微生物の生育に必要な栄養分の供給が妨げられたり、あ
るいは生育に不適な老廃物が蓄A、tit L。Conventionally, reactions using immobilized microbial complexes have been carried out either by suspending them in a reactor or filling them as a fixed bed. However, when this reaction is carried out under aeration, or when a large amount of carbon dioxide gas is produced as a product of the reaction, such as in alcoholic fermentation, (b) air bubbles remain inside and around the chemotactic microbial complex. This prevents the supply of nutrients necessary for the growth of microorganisms, or accumulates waste products that are unsuitable for growth.
たりして、所望の代謝物の産生能力が低下するといった
ことが多々おこる。例えば、好気的条件下で反応を行な
う時には空気やe累が供給されるが、供給さrl、たガ
スが固定化微生物複合体の表面に付層する。又、二酸化
炭素の如く、微生物自身がガス化しやすい物質を産生ず
るときは微生物を固定している担体の表面だけでなく微
生物近傍でもガスの滞留がみられる。特に固定床充填式
の反応においては、固定化微生物複合体の周辺に滞留し
た気泡がお互いにくっつきあい、更に大きな気泡をつく
るために反応液が均一に流れないとか、極端な場合は充
填層内が空洞化するなどのトラブルが頻発する。このよ
うなトラブルが生じると、固定化微生物と反応液との接
触効率が著しく低下し、その結果微生物の生育阻害が起
ったり、代謝物の産生能力が低下する。As a result, the ability to produce desired metabolites often decreases. For example, when the reaction is carried out under aerobic conditions, air and gas are supplied, and the supplied gas forms a layer on the surface of the immobilized microbial complex. Furthermore, when microorganisms themselves produce substances that are easily gasified, such as carbon dioxide, gas retention is observed not only on the surface of the carrier on which the microorganisms are immobilized, but also near the microorganisms. In particular, in fixed-bed packed reactions, the air bubbles that stay around the immobilized microbial complex stick together and create even larger bubbles, which may prevent the reaction liquid from flowing uniformly or, in extreme cases, cause the reaction solution to flow inside the packed bed. Problems such as hollowing out frequently occur. When such a trouble occurs, the contact efficiency between the immobilized microorganism and the reaction solution is significantly reduced, and as a result, the growth of the microorganism is inhibited and the ability to produce metabolites is reduced.
従来、微生物を反応液に懸濁した状態で反応する場合、
主に反応液の発泡対策として界面活性剤を添加すること
が行なわれている。ところが固定化微生物俵合体を用い
る反応においては単に反応液中に界面活性剤を添加する
だけでは反応液そのものの発泡Gま防げるが固定化微生
物周辺で生じる気泡σ〕滞留防止に対してはその効果は
不充分である。特に固定床での反応においては気泡は固
定化物の周辺に付着したままで容易に陥れない0
本発明者らは、固定化微生物の担体表面と反応液との界
面で生ずるガス滞留現象を詳細に観察し、次いで担体表
面に付着したガスを容易に離脱せしめる方法に関して鋭
意研究した結果、驚くべきことに微生物を固定□化して
いる担体中周辺でのガス滞留はなくなり、安定した反応
が継続できることを見い出し本発明に至った。Conventionally, when reacting with microorganisms suspended in a reaction solution,
Addition of a surfactant is mainly used to prevent foaming of the reaction solution. However, in reactions using aggregates of immobilized microorganisms, simply adding a surfactant to the reaction solution can prevent foaming of the reaction solution itself; is insufficient. In particular, in a reaction in a fixed bed, bubbles remain attached to the periphery of the immobilized material and do not easily collapse. As a result of this observation and intensive research into a method to easily release the gas adhering to the surface of the carrier, it was surprisingly discovered that the gas retention around the carrier where microorganisms were immobilized disappeared, allowing a stable reaction to continue. Heading This invention has led to this invention.
即ち、本発明は、固定化微生物複合体を用いる反応にお
いて固定化微生物複合体中に含有せしめられた界面活性
剤を徐放させることを特徴とする気泡滞留防止方法であ
る。That is, the present invention is a method for preventing bubble retention, which is characterized by slow release of a surfactant contained in an immobilized microbial complex in a reaction using an immobilized microbial complex.
本発明において固定化微生物複合体とは・固定化された
微生物のみを指すものではなく、微生物と固定化に用い
た担体あるいは微生物を水等に懸濁した懸濁液を担体で
包括する場合はざらに担体に包括されているものすべて
をも含むものである。In the present invention, the immobilized microorganism complex does not only refer to immobilized microorganisms, but also refers to microorganisms and a carrier used for immobilization, or when a suspension of microorganisms in water etc. is enclosed in a carrier. It also includes everything contained in the carrier.
本発明において使用される界面活性剤としては、陽イオ
ン性あるいは陰イオン性のものでも使用できるが、特に
非イオン性のものが微生物への生育阻害作用が低いので
好ましく用いられる。この非イオン性の界面活性剤とし
ては、ポリオキシエチレンアルキルエーテル類、ケリオ
キシエチレンアルキルフエ/−ルエーテル類、ポリエチ
レングリコ・−ル脂肪酸エステル類、ポリオキシエチレ
ンソルビタン脂肪酸エステル類、ソルビタン脂肪酸エス
テル類、グリセリン脂肪酸エステル類、シュガー脂肪酸
エステル類、あるいはポリエチレンオキサイド、ポリプ
ロピレンオキサイドなど′fi:成分とするブロックポ
リマーなどが例示されるが、充分な気泡滞留防止効果を
発揮せしめるためには、疎水基と親水基の割合を示すH
LB値が7からIOの範囲を有するものを用いるのが特
に好ましい。これらのものは混合して用いてもよい。As the surfactant used in the present invention, cationic or anionic surfactants can be used, but nonionic surfactants are particularly preferably used because they have a low growth inhibiting effect on microorganisms. Examples of the nonionic surfactants include polyoxyethylene alkyl ethers, keroxyethylene alkyl ethers, polyethylene glycol fatty acid esters, polyoxyethylene sorbitan fatty acid esters, sorbitan fatty acid esters, Examples include glycerin fatty acid esters, sugar fatty acid esters, and block polymers such as polyethylene oxide and polypropylene oxide. H indicating the ratio of
It is particularly preferable to use a material having an LB value in the range of 7 to IO. These materials may be used in combination.
これらの界面活性剤は1固定化微生物複合体に含有せし
められる。この微生物は生きた状態で担体に保持され、
生きた状態で、あるいは増殖f:行なわしめながら利用
できるものであればいずれでもよく特に限定されない。These surfactants are contained in one immobilized microbial complex. This microorganism is kept alive on a carrier,
There are no particular limitations, as long as it can be used in a living state or while being propagated.
微生物を担体に担持するには、例えばイオン交換樹脂の
担体の表面にイオン結合で担持させてもよく、あるいは
寒天、カラギーナン、コラーゲン、ポリアクリルアミド
、種々の光硬化性ポリマー、セルローストリアセテート
、ポリアクリロニトリル、ポリメタクリル酸などに例示
される各種の水不溶性高分子の中に包括せしめてもよい
。例えば担体の表面に微生物を固定化する場合には、あ
らかじめ界面活性剤を含有せしめた担体を調製したのち
微生物の担持を行なえばよい。又、水不溶性の高分子で
微生物を包括して固定化する場合には、固定化操作の過
程で界面活性剤を含有せしめることができる。即ち、寒
天やカラギーナンなどに包括する時には、これを温水に
溶解せしめ、ついで微生物と界面活性剤を混合したのち
、この混合液を冷却しゲル化させることで達せられる。To support microorganisms on a carrier, for example, they may be supported on the surface of an ion exchange resin carrier by ionic bonding, or agar, carrageenan, collagen, polyacrylamide, various photocurable polymers, cellulose triacetate, polyacrylonitrile, It may also be incorporated into various water-insoluble polymers such as polymethacrylic acid. For example, when microorganisms are to be immobilized on the surface of a carrier, the microorganisms may be supported after preparing a carrier containing a surfactant in advance. Furthermore, when microorganisms are encased and immobilized using a water-insoluble polymer, a surfactant can be added during the immobilization process. That is, when enclosing it in agar, carrageenan, etc., it can be achieved by dissolving it in warm water, then mixing microorganisms and a surfactant, and then cooling this mixture to gel it.
コラーゲンを用いる時も同様で可溶化したコラーゲン溶
液に界面活性剤を添加したのち、これを風乾し、次いで
グルタルアルデヒド等で架橋することで達せられる。又
、ポリアクリルアミドなどの重合性モノマーやウレタン
化プレポリポリマー(平均分子量約s、ooo)の如く
の光硬化性+f IJママ−用いる場合には、これらの
化合物と微生物との混合液に界面活性剤を添加したのち
、ホ合及び架橋反応を行なえばよい。When using collagen, this can be achieved in the same manner by adding a surfactant to a solubilized collagen solution, air-drying this, and then crosslinking with glutaraldehyde or the like. In addition, when using photocurable +f IJ polymers such as polymerizable monomers such as polyacrylamide and urethanized prepolypolymers (average molecular weight approximately s, ooo), surfactant may be added to the mixture of these compounds and microorganisms. After adding the agent, the polymerization and crosslinking reactions may be carried out.
又、セルローストリアセテートなどの水不溶性篩分子に
包括する場合には、例えば特開昭5s−i3ssqiに
記載されている固定化法と同様な操作で達せられる。即
ち、セルローストリアセテートなどを溶解している有機
溶媒中に界面活性剤を分散させ、ついで微生物を包含し
ている氷粒と混合せしめ、最軽的には有機溶媒を除去す
ることで、界面活性剤と微生物を含む固定化物が得られ
る。Furthermore, when it is to be incorporated into a water-insoluble sieve molecule such as cellulose triacetate, it can be achieved by the same immobilization method as described in, for example, JP-A-5S-I3SSQI. That is, a surfactant is dispersed in an organic solvent in which cellulose triacetate, etc. is dissolved, and then mixed with ice grains containing microorganisms. An immobilized product containing microorganisms and microorganisms is obtained.
反応中においては界面活性剤は固定化物から徐々に放出
される。界面活性剤が徐放されている間は、気泡の滞留
防止の効果が持続する。この界面活性剤は、微生物の生
育や所望の代謝物の産生に阻害を及ぼさない程度にでき
るだけ多量含有せしめた方が気泡の滞留を長期間防止す
る上で好ましく、一般的には固定化微生物に対してθQ
/−10重量%が好ましい。又本発明においては、気泡
滞留防止効果を一層高めるため反応液中にも界面活性剤
を添加せしめてもよい。その添加社は実質的にその効果
が増強される濃度になるだけの鑞を添加すれはよいが、
一般的には0.007 Nl O重量%が好ましい範囲
である。反応液に界面活性剤を添加することは反応液そ
のものの消泡効果も期待でき、この場合もHLB値が7
〜IOの範囲のものが好ましく用いられる。During the reaction, the surfactant is gradually released from the immobilized product. While the surfactant is being released in a sustained manner, the effect of preventing bubble retention continues. It is preferable to contain this surfactant in as large a quantity as possible without interfering with the growth of microorganisms or the production of desired metabolites, in order to prevent the retention of air bubbles for a long period of time. For θQ
/-10% by weight is preferred. In the present invention, a surfactant may also be added to the reaction solution in order to further enhance the effect of preventing bubble retention. The additive company may add enough solder to reach a concentration that substantially enhances the effect, but
Generally, 0.007 Nl 2 O weight percent is a preferred range. Adding a surfactant to the reaction solution can also be expected to have a defoaming effect on the reaction solution itself, and in this case as well, the HLB value is 7.
-IO is preferably used.
反応においては、固定化微生物を反応器内に懸濁しても
よく、あるいは固定床として充填してもよい。いずれの
場合においても従来問題となっていた気泡の滞留による
種々のトラブルは解11jシ、微生物の生育も良好であ
り、長期間に亘って代謝物の生成能力を維持せしめるこ
とができる。特に固定床充填式の連続反応においては、
固定化微生物複合体周辺には気泡の付着はほとんどみら
れず、生成した気泡は順次充填層内を上方に移動してい
く。その結果、固定化微生物と反応液との接触効率が改
善されることで微生物の能力を充分発揮せしめることが
でき、長期間安定した反応が継続でき、従来の問題はほ
とんど解決できる。In the reaction, the immobilized microorganisms may be suspended in the reactor or may be packed as a fixed bed. In either case, the various troubles caused by the accumulation of bubbles, which have been problems in the past, are solved, the microorganisms grow well, and the ability to produce metabolites can be maintained for a long period of time. Especially in fixed-bed packed continuous reactions,
Almost no air bubbles are observed around the immobilized microbial complex, and the generated air bubbles sequentially move upward within the packed bed. As a result, the efficiency of contact between the immobilized microorganisms and the reaction solution is improved, allowing the microorganisms to fully demonstrate their capabilities, allowing stable reactions to continue for a long period of time, and most of the conventional problems can be solved.
以下実bIji例により具体的に説明する。This will be explained in detail below using an actual example.
実施例
酵母サツカロマイセス・フォルモセンシス(3acch
aromyoes formoseneis )をYM
培地(グルコースIO本蹴%、ペプトンθS爪量%、酵
母エキス03重量%、マルトエキス03重量%、PHA
)に植菌しJ(17Cで2弘時間培養した。増殖した酵
母を遠心分離して集菌したのちその、2gをSO京磁%
のグリセリンを含んだYM培地、2ooccに懸濁し芋
。Example yeast Saccharomyces formocensis (3acch
aromyoes formoseneis) to YM
Medium (glucose IO book ratio, peptone θS nail amount%, yeast extract 03% by weight, malt extract 03% by weight, PHA
) and cultured at 17C for 2 hours.The grown yeast was centrifuged to collect the bacteria, and 2g of it was inoculated with SO Kyomai%.
Suspend the potatoes in 2 oocc of YM medium containing glycerin.
ユ!fXXM%リセルローストリアセテートを溶解した
二塩化メチ12900g中に表1に示す界面活性剤1.
ニアこ二)赦せしめたのち・−5OCに冷却した。次に
この二塩化メチレン中に上記の酵母懸濁液/!r09を
スプレーで微小水滴化して吹き込んで急速凍結せしめた
。この間、二塩化メチレンは−SOCに維持した6つい
でこの二塩化メチレン溶液を−SOCに冷却されたn−
ヘキサン131中に滴下して粒状に凝固させた。この凝
固物に含まれている有機溶媒を減用下で除去することに
より凍結状態゛の粒状の固定化物を得た。この固定化物
の粒径はコル3龍であった。Yu! The surfactant shown in Table 1 was added to 12,900 g of methi dichloride in which fXXM% recellulose triacetate was dissolved.
After being forgiven, it was cooled to -5OC. Next, in this methylene dichloride, the above yeast suspension /! R09 was sprayed into minute water droplets and quickly frozen. During this time, the methylene dichloride was maintained at -SOC 6 This methylene dichloride solution was then cooled to -SOC n-
It was dropped into hexane 131 and coagulated into particles. By removing the organic solvent contained in this coagulated product under reduced pressure, a granular immobilized product in a frozen state was obtained. The particle size of this immobilized product was Col 3 Dragon.
この固定化物を室温で融解したのち、直径ユ0crn、
長さ3gcmのガラス反応器に充填した。After melting this immobilized material at room temperature,
A glass reactor with a length of 3 gcm was filled.
充填層@は100m1とした。The packed bed was 100 m1.
この反応器の下端から糖蜜培地(糖濃度、20wt/y
%)を連続的に供給して反応温度約30C。From the bottom of this reactor, molasses medium (sugar concentration, 20wt/y)
%) was continuously fed at a reaction temperature of about 30C.
Pi−11A3〜ふ01接触時間約7時間で連続アルコ
ール発酵を行なった。通液開始後毎日固定化酵母充填層
の気泡の滞留状況を観察した。約3日目ごろからアルコ
ール発酵が盛んに行なわれ始めたが、生成した炭酸ガス
は固定化物周辺に付層することなく、また充填層内に滞
留することなく順次充填層上方に移動した。約3カ月間
の試験期間中、気泡滞留によるトラブルは起らなかった
。Continuous alcoholic fermentation was carried out for about 7 hours in contact with Pi-11A3 to Fu01. The accumulation of air bubbles in the immobilized yeast packed bed was observed every day after the start of liquid passage. Alcohol fermentation began to take place actively from about the third day, but the generated carbon dioxide gas gradually moved above the packed bed without forming a layer around the immobilized material or staying within the packed bed. During the test period of approximately 3 months, no troubles due to air bubble retention occurred.
比較C1,)ために固定化微生物中及び精密中に界由1
枯性剤を含有せしめない場合についても検討した。固定
化物の調製条件、発酵条件は同一である。この場合、固
定化物の周辺に二酸化炭素の気泡が付層し、これが互い
にくっつきあい、最終的には充填層内でかなりの大きさ
の空AI号を形成するとか、時には1?;Y留したガス
が一気に充填層内を上昇したり、あるい(ユこのガスの
移動に伴って粘合がチャネリングして上方へ移動すると
いった現象がみられた。comparison C1,) in immobilized microorganisms and in precision
A case in which no killing agent was included was also studied. The preparation conditions for the immobilized product and the fermentation conditions are the same. In this case, carbon dioxide bubbles form a layer around the immobilized material, and these bubbles stick together, eventually forming a fairly large empty AI number within the packed bed, or sometimes 1? There was a phenomenon in which the Y-distilled gas rose all at once in the packed bed, or (as the gas moved, the viscosity channeled and moved upward.
発酵試験の結果は表/の通りであった0又、実旋例1と
比較例のアルコール発酵の経時変化は図7の通りであっ
た0この結果からも判るように、界面活性剤を含有した
固定化物を用いることは、反応器の運転上のトラブルが
解消されその結果長期間安定して発酵生産物を産生せし
めるのに効果がある。The results of the fermentation test were as shown in Table 0.Also, the time-course changes in alcoholic fermentation for Example 1 and Comparative Example were as shown in Figure 7. The use of such immobilized substances is effective in eliminating troubles in operating the reactor and, as a result, producing fermentation products stably over a long period of time.
表 l
/) ポリオキシエチレン(POE ) 9モル、ポリ
オキシ−ブロヒ。Table l/) Polyoxyethylene (POE) 9 mol, polyoxy-brohy.
レン(POP)、28モル含む
u3POE9モル、ポリオキシブチレン(POD)/?
モル含む
3) 肉眼判定(発酵日数308目)
実施例A
実施例/と同様にして調製した固定化酵母を用いて連続
アルコール発M、を行なった。糖蜜培地に002 wt
% OJディスホームBC−1/Y(日本油脂に、に、
品)を含有セしめた他は・実施例1と同一の発酵条件で
あった。約6カ月の試験期間中、気泡滞留によるトラブ
ルは起こらず、濃度約/ Ovol/vo1%のエタノ
ールが安定に生産できたOpolyoxybutylene (POD)/?
3) Visual judgment (fermentation days 308) Example A Continuous alcohol production was performed using the immobilized yeast prepared in the same manner as in Example. 002 wt in molasses medium
% OJ Dishome BC-1/Y (NOF, Ni,
The fermentation conditions were the same as in Example 1, except that the fermentation conditions were the same as in Example 1. During the test period of approximately 6 months, there were no troubles due to bubble retention, and ethanol with a concentration of approximately 1%/Ovol/vol could be stably produced.
図は発酵日数と生成アルコール濃度との関係を示したも
のである。The figure shows the relationship between the number of fermentation days and the alcohol concentration produced.
Claims (1)
生物複合体中に含有せしめられた界面活性剤を徐放させ
ることを特徴とする気泡滞留防止方法。 ユ 界面活性剤のHLB値が7からlθであり、かつ非
イオン性であることを特徴とする特許1i74求の範囲
第1項記載の気泡滞留防止方法。 3、 固定化微生物複合体が水不溶性高分子で微生物を
包括した包括体であることを特徴とする特#′l:BI
V求の範囲第1項又は第一項記載の気泡滞留防止方法。 ゲ 固定化微生物複合体中に0.0/−10重量%の界
面活性剤が含有されていることを特徴とする特許請求の
範囲第1項又は第2項又は第3項記載の気泡滞留防止方
法。 よ 反応液中にθ00 / Nl O重嵐%の界面活性
剤を添加することを特徴とする特許請求σつ範囲第1項
又は第2項又は第3項又は第を項記載の気泡滞留防止方
法。 A 固定化微生物複合体が反応器内に固定床として充填
されていることを特徴とする特許請求の範囲第1項又は
第2項又は第3項又は第q項又は第S項記載の気泡滞留
防止方法〇り 固定化微生物複合体用に用いる微生物が
エタノール、生成能を有する微生物であることを特徴と
する特許請求の範囲第7項又は第2項又は第3項又は第
9項又は第5項又は第6項記載σつ気泡ff1k留防止
方法。[Claims] / A method for preventing bubble retention, which comprises slow release of a surfactant contained in an immobilized microbial complex in a reaction using the immobilized microbial complex. U. The method for preventing bubble retention according to item 1 of the scope of Patent No. 1i74, characterized in that the surfactant has an HLB value of 7 to lθ and is nonionic. 3. Special feature #'l: BI, characterized in that the immobilized microorganism complex is a water-insoluble polymer containing microorganisms.
The method for preventing air bubble retention according to item 1 or item 1 of the scope of V requirements. The method for preventing air bubble retention according to claim 1, 2, or 3, characterized in that the immobilized microorganism complex contains 0.0/-10% by weight of a surfactant. Method. A method for preventing bubble retention according to claim 1 or 2 or 3 or 3, characterized in that a surfactant of θ00/NlO heavy storm% is added to the reaction solution. . A. The bubble retention according to claim 1, 2, 3, q, or s, characterized in that the immobilized microbial complex is packed in a reactor as a fixed bed. Prevention method: Claims 7 or 2 or 3 or 9 or 5, characterized in that the microorganism used for the immobilized microorganism complex is a microorganism capable of producing ethanol. The method for preventing σ bubbles ff1k retention described in item 6 or item 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18523382A JPS5976507A (en) | 1982-10-21 | 1982-10-21 | Prevention of stagnation of foam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18523382A JPS5976507A (en) | 1982-10-21 | 1982-10-21 | Prevention of stagnation of foam |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5976507A true JPS5976507A (en) | 1984-05-01 |
Family
ID=16167201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18523382A Pending JPS5976507A (en) | 1982-10-21 | 1982-10-21 | Prevention of stagnation of foam |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5976507A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008138382A1 (en) * | 2007-05-16 | 2008-11-20 | Dr. W. Kolb Ag | Defoaming agent for aqueous fluid systems and method |
-
1982
- 1982-10-21 JP JP18523382A patent/JPS5976507A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008138382A1 (en) * | 2007-05-16 | 2008-11-20 | Dr. W. Kolb Ag | Defoaming agent for aqueous fluid systems and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Atkinson et al. | Biological particles of given size, shape, and density for use in biological reactors | |
TWI259203B (en) | Cell-cultivating device | |
US5175093A (en) | Bioactive cells immobilized in alginate beads containing voids formed with polyethylene glycol | |
FI68078C (en) | FOERFARANDE FOER FRAMSTAELLNING AV BIOLOGISKT AKTIVA MICROORGANISMMYCELIEPELLETS | |
US4778749A (en) | Tissue culture and production in permeable gels | |
GB2192171A (en) | Production of polymetric beads having alginate shells | |
CN103492563A (en) | Apparatus and method for production of an encapsulated cell product | |
US4203801A (en) | Cell and virus culture systems | |
JPS6215198B2 (en) | ||
JP2001269699A (en) | Direct cleaning method for ground water contaminated with nitric acid | |
WO1989010397A1 (en) | Process for culturing animal cells on a large scale and process for preparing supporting substrate for that process | |
JPS5976507A (en) | Prevention of stagnation of foam | |
Su et al. | Production of rosmarinic acid in high density perfusion cultures of Anchusa officinalis using a high sugar medium | |
CA2133789A1 (en) | Immobilized-cell carrageenan bead production and a brewing process utilizing carrageenan bead immobilized yeast cells | |
CN101298603B (en) | Highly effective flocculating concentration technology for microbial cell | |
Hsu et al. | Poly (ethylenimine)‐reinforced liquid‐core capsules for the cultivation of hybridoma cells | |
Yamaji et al. | Long-term cultivation of anchorage-independent animal cells immobilized within reticulated biomass support particles in a circulating bed fermentor | |
FR2583059A1 (en) | PROCESS FOR PRODUCTION OF FILAMENTOUS MUSHROOM SPORES AND DEVICE USED | |
JPS6178374A (en) | Continuous fermentation system using immobilized proliferated microorganism | |
CA1191098A (en) | Process for manufacturing alcohol by fermentation | |
US4562154A (en) | Continuous alcohol manufacturing process using yeast | |
JPS5974993A (en) | Method for continuous fermentation using immobilized microorganism | |
WO1987004458A1 (en) | Process for cultivating animal cells on a large scale | |
JPH0375154B2 (en) | ||
JPS62118878A (en) | Cell culture unit |