JPS5975684A - Thermo-electric generating element - Google Patents

Thermo-electric generating element

Info

Publication number
JPS5975684A
JPS5975684A JP57186291A JP18629182A JPS5975684A JP S5975684 A JPS5975684 A JP S5975684A JP 57186291 A JP57186291 A JP 57186291A JP 18629182 A JP18629182 A JP 18629182A JP S5975684 A JPS5975684 A JP S5975684A
Authority
JP
Japan
Prior art keywords
heat
temperature
junction
pipe
generating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57186291A
Other languages
Japanese (ja)
Inventor
Takashi Nakajima
隆 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP57186291A priority Critical patent/JPS5975684A/en
Publication of JPS5975684A publication Critical patent/JPS5975684A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Abstract

PURPOSE:To enable a high performance thermo-electric generating element to be constructed by a method wherein heat-pipe or the like is employed to cool the lower-temperature end of the main body of the titled element. CONSTITUTION:A P type semiconductor 10A and N type semiconductor 10B are combined constructing the main body of a thermo-electric generating element 10 with a P- N junction 10C located at the higher temperature junction side. A multiplicity of the main bodies 10 are electrically, serially combined. The end of a lower temperature side is thermally connected to a heat-pipe 20 with the intermediary of a layer of heat-resisting, insulating, adhesive agent. Enclosed in the heat-pipe 20 made of metal is a liquid to vaporize at a certain temperature. Thermal radiation is effected due to heat of evaporation. When heat is applied to the PN junction 10C on the higher temperature junction side, due to the difference in temperatures between the higher temperature junction and lower temperature junction, electricity is thermally generated in the multiplicity of main bodies 10, and the total power is lead out. The heat-pipe 20 is capable of keeping the temperature drop to virtual zero when transporting heat in the vicinity of 50W. This means that it is possible to lower the temperature at the lower-temperature side of the main body 10 as low as the temperature of the cooling side, provided with a radiating fin 21 of the heat-pipe 20, thereby thermally generating an adequate quantity of electric power.

Description

【発明の詳細な説明】 本発明は、低温側端部をヒートパイプで冷却するように
した熱発電素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermoelectric generating element whose low temperature side end is cooled by a heat pipe.

熱発電素子は、高温接合と低温接合間の温度差により物
質のゼーベック効果(熱電効果)で発電する熱電直接変
換素子である。この場合、鉄硅化物箸の半導体をその累
月に利用すると大きな熱電変換電圧係数(ゼーベック係
数二単位μV/K)が得られ、その適度な導電率と熱伝
導率とから天外な熱電変換電力が[られることがわかっ
ている。
A thermoelectric power generation element is a thermoelectric direct conversion element that generates electricity using the Seebeck effect (thermoelectric effect) of a substance due to the temperature difference between a high temperature junction and a low temperature junction. In this case, if the semiconductor of iron silicide chopsticks is used for that period of time, a large thermoelectric conversion voltage coefficient (Seebeck coefficient 2 units μV/K) can be obtained, and its moderate electrical conductivity and thermal conductivity result in an extraordinary thermoelectric conversion. It is known that electricity can be consumed.

このような熱発電素子の形状は、一般的には第1図に示
すごとくP型半導体1及びN型半導体2を脚としてそれ
らの一方の端部を導体3で連結し、他端部をリード4を
介して出力端子として取り出す構成と成っている。そし
て、一般に両脚の連結端を高温接合、開放端を低温接合
と言ってν・る。
Generally, the shape of such a thermoelectric generating element is as shown in Fig. 1, with a P-type semiconductor 1 and an N-type semiconductor 2 as legs, one end of which is connected by a conductor 3, and the other end is a lead. 4 as an output terminal. In general, the connected end of both legs is called high-temperature bonding, and the open end is called low-temperature bonding.

第1図の構成において、リード4間すなわち両出力端子
口旧こ発生する電圧は、P型半導体1については、その
高温接合温度T b iと低温接合温度Tcとの温度差
(ΔT = Tbi −Tc)にそノir4料定数であ
るゼーベック係数α1)を掛は算した値であり、次式の
ごとく表わされる。
In the configuration shown in FIG. 1, the voltage generated between the leads 4, that is, between both output terminals, is determined by the temperature difference (ΔT = Tbi − The value obtained by multiplying Tc) by the Seebeck coefficient α1) which is a constant of ir4 is expressed as the following equation.

V l)= Q p ・ΔT・・・(1)同様にN型半
導体2についてもゼーベ・ンク係数を勉 とすると、次
式の関係が成り立つ。
Vl)=Qp・ΔT... (1) Similarly, when studying the Seebe-Nck coefficient for N-type semiconductor 2, the following relationship holds true.

v、 =勉・八T       ・・・(2)P型半導
体1とN型半導体2とは導体3で接続されているので電
池が2個直列に接続されてり)るのと同様に出力電圧V
。=Vp+VHとなる。電力は、はぼこの出力電圧の2
乗に比例するので出力電圧V。を最大にすることが極め
て重要であることかわかり、これは温度第八Tを大きく
することにより実現で終ることとなる。換言すれば、熱
発電素子は熱流としてのエネルギー流から熱電変換係数
に応じた電気エネルギーを取り出すものであるといえる
v, = Tsutomu・HachiT...(2) P-type semiconductor 1 and N-type semiconductor 2 are connected by conductor 3, so the output voltage is the same as if two batteries were connected in series. V
. =Vp+VH. The power is 2 of Haboko's output voltage.
Since it is proportional to the power of the output voltage V. It turns out that it is extremely important to maximize the temperature, and this can be achieved by increasing the temperature T. In other words, it can be said that a thermoelectric generating element extracts electrical energy according to a thermoelectric conversion coefficient from an energy flow as a heat flow.

なお第1MではP型半導体1とN型半導体2とを導体3
で接続した構成を示したが、導体3を省略して直接P型
半導体1とN型21′導木2とを接合する構造を採用す
ることも行なわれている。
Note that in the first M, the P-type semiconductor 1 and the N-type semiconductor 2 are connected to a conductor 3.
Although a configuration in which the conductor 3 is connected is shown, it is also possible to omit the conductor 3 and adopt a structure in which the P-type semiconductor 1 and the N-type 21' guide tree 2 are directly connected.

−に記の熱発電素子の特性を考慮すると、熱発電素子を
最大効率で働かせるには、熱発電素子中にいかに有効に
熱流を生じさせる事ができるかということになる。素子
内に熱流Qを最大に発生させるには次式 %式%(3) からΔi’ (= i’ 、〜T2)を最大にすること
が有効であるということになる。ただし、Kは第2図の
ごとト素子の熱伝導率であり、Sは断面積、lは長さ、
T 、 、 i” 2は両端の温度、ΔT +、t T
 、とT2の温度差である。高温接合となる高温側端部
の温度1’ b iをいかに高くするかは、1に熱源の
温度、2に熱電材料の耐熱性、3にその熱電材料の集熱
効果による。一方、低温接合となる低温側端部の温度T
cをいかに代くするかは1に低温側端部から低温側端部
に通常設けられる放熱体表面までの熱輸送量の拡大、2
に放熱本表面がら空×あるいは水までの熱伝導の最大化
にある。2については放熱体の熱伝導冷却であるから放
熱体の設計で決まり、その有効面積と実効熱f大導量と
で定まっている。重要なのは1の低温側端部から放熱本
表面までの熱(云導(熱輸送)の最大1ヒである。この
1の点については従来よりアルミニウム等の金属を用い
た放熱フィンを有する放熱体を用いた構造か一般的であ
った。
Considering the characteristics of the thermoelectric generating element described in - above, in order to make the thermoelectric generating element work at maximum efficiency, it becomes a matter of how effectively heat flow can be generated within the thermoelectric generating element. In order to maximize the heat flow Q within the element, it is effective to maximize Δi'(=i', ~T2) from the following equation (3). However, K is the thermal conductivity of the element as shown in Figure 2, S is the cross-sectional area, l is the length,
T , , i” 2 is the temperature at both ends, ΔT +, t T
, and T2. How high the temperature 1' b i of the high-temperature side end, which is a high-temperature bond, is determined depends on (1) the temperature of the heat source, (2) the heat resistance of the thermoelectric material, and (3) the heat collection effect of the thermoelectric material. On the other hand, the temperature T of the low-temperature side end where low-temperature bonding occurs
How to replace c is determined by 1) increasing the amount of heat transport from the low-temperature side end to the surface of the radiator normally provided at the low-temperature side end; and 2)
Heat dissipation is to maximize heat conduction from the book surface to the air or water. 2 is determined by the design of the heat radiator because it is a heat conduction cooling of the heat radiator, and is determined by its effective area and effective heat f large conductivity. What is important is the maximum amount of heat (heat transport) from the low-temperature side end of 1 to the surface of the heat dissipation book. Regarding this point, conventional heat dissipation bodies with heat dissipation fins made of metal such as aluminum It was common to have a structure using

第3図は従来の熱発電素子の一例を示す。この場合、熱
発電素子本体10は−・般にトランジスタ等の放熱に使
われているアルミ押し出しフィンを有する放熱体11上
に耐熱絶縁性接着剤を介してその低温側端部が固着され
ている。ここで、熱発電素子本体10として鉄珪化物焼
結体でP型及びN型半導体をそれぞれ構成したものを用
い、例えば高温接合温度Tbiを730°Cとなるよう
tこ加熱し、低温接合温度Tcを50℃に冷却しようと
すると、低温接合側となる低温側端部から約5Wの熱量
を放熱してやる必要がある。この条件では、熱発電素子
本体10は約50mWの電力を発電するので、仮に10
素子を直列に接続し出力電圧3゜5■、最大取り出し可
能電力500mWの熱発電素子のユニットを考えた場合
、合計50Wの放熱を図らなければならない。このとき
、第3図の放熱体11の有効本積、(高さD)×(幅W
)×(長さL)= 6 (1+n+nX 1. i l
)++uoX 50u+mとすると、熱抵抗は2.38
°C/Wであり、5(IW放熱の場合、熱発電素子取り
刊は面において約120 ’C位に温度」二n+てしよ
う。
FIG. 3 shows an example of a conventional thermoelectric generator. In this case, the thermoelectric power generation element body 10 has its low-temperature side end fixed onto a heat sink 11 having extruded aluminum fins, which is generally used for heat dissipation in transistors, etc., via a heat-resistant insulating adhesive. . Here, an iron silicide sintered body composed of a P-type semiconductor and an N-type semiconductor is used as the thermoelectric power generation element body 10, and the high-temperature bonding temperature Tbi is heated to 730° C., and the low-temperature bonding temperature In order to cool Tc to 50° C., it is necessary to dissipate approximately 5 W of heat from the low-temperature side end, which is the low-temperature bonding side. Under these conditions, the thermoelectric generator main body 10 generates approximately 50 mW of power, so if 10 mW of power is generated,
When considering a unit of thermoelectric power generation elements with elements connected in series and an output voltage of 3.5 mm and a maximum extractable power of 500 mW, a total of 50 W of heat must be dissipated. At this time, the effective volume of the heat sink 11 in FIG. 3 is (height D) x (width W
) x (length L) = 6 (1+n+nX 1. i l
)++uoX 50u+m, thermal resistance is 2.38
°C/W, and 5 (in the case of IW heat dissipation, the temperature of the thermoelectric power generating element is about 120'C on the surface).

このように第3図のごとき従来の金属放熱体を用いた構
造であると、次のような欠点を生しる事か゛わかる。
It can be seen that the structure using the conventional metal heat sink as shown in FIG. 3 has the following drawbacks.

(])熱熱発電素子取の低温側端部の温度が放熱体の!
、iI4の熱伝導で決よってしよい、熱輸送量は小さい
。従って、低温端部が冷却されにくい。
(]) The temperature of the low temperature side end of the thermothermal power generation element is the temperature of the heat sink!
, iI4, and the amount of heat transport is small. Therefore, the low temperature end portion is not easily cooled.

(2)熱輸送が悪いので、必然的に放熱体が大面積とな
る。このため、全体として大形化し、コスト高となり、
さらに放熱体の途中を熱輻射などで加熱されやすくなる
(2) Since heat transport is poor, the heat radiator inevitably has a large area. As a result, the overall size becomes larger and the cost becomes higher.
Furthermore, the middle of the heat radiator becomes more likely to be heated by heat radiation.

(3)放熱本形状が天外くなるため、装置設計」二の制
約条件となってしまう。
(3) Since the shape of the heat dissipation book is unusual, it becomes a constraint on device design.

本発明は上記の点に鑑み、熱発電素子本体の低温側端部
の冷却にヒートパイプを用いることにより、低温側端部
の温度を有効に下げて、小形で、熱起電力の大きな高性
能の熱発電素子を提供しようとするものである。
In view of the above points, the present invention uses a heat pipe to cool the low-temperature side end of the thermoelectric power generation element body, thereby effectively lowering the temperature of the low-temperature side end, and achieving a small size and high performance with large thermoelectromotive force. The present invention aims to provide a thermoelectric power generating element.

以下、本発明に係る熱発電素子の実施例を図面に従って
説明する。
Embodiments of the thermoelectric generating element according to the present invention will be described below with reference to the drawings.

第4図は、本発明の熱発電素子の第1実施例を示す。こ
の図において、ヒートパイプ20は、片側冷却タイプで
あ1)、片側端部外周には放熱フィン21が多数設けら
れている。また、反対側の端部には、熱発電素子本木1
07!1tJ熱絶縁性接着剤でヒートパイプ20外周に
複数個固着されている。
FIG. 4 shows a first embodiment of the thermoelectric generating element of the present invention. In this figure, the heat pipe 20 is a one-side cooling type 1), and a large number of heat radiation fins 21 are provided on the outer periphery of one end. In addition, at the opposite end, there is a thermoelectric generator main tree 1.
07!1tJ A plurality of heat pipes are fixed to the outer periphery of the heat pipe 20 with a heat insulating adhesive.

ここで、熱発電素子本体10はたとえば鉄珪化物焼結体
のP型半導体1.OAと、N型半導体10Bとを接合し
、F’N接合10Cを高温接合側に有するものであり、
開放端である低温接合側には銅等のリード線(図示省略
)が接続され、各熱発電素子本体10は電気的に直列に
接続される。また、各熱発電素子本体10の低温接合と
なる低温側端部は耐熱絶縁性接着剤の層を介してヒート
パイプ20に熱的に結合されている。ヒートパイプ20
は密閉した金属パイプ内に所定温度で気化する液体が封
入してあり、内部の液体の気化熱の作用により放熱(熱
輸送)を行なうものである。
Here, the thermoelectric power generating element main body 10 is, for example, a P-type semiconductor 1. The OA and the N-type semiconductor 10B are bonded, and the F'N junction 10C is on the high temperature bonding side.
A lead wire (not shown) made of copper or the like is connected to the open end, which is the low-temperature bonding side, and each thermoelectric power generation element body 10 is electrically connected in series. Further, the low-temperature side end portion of each thermoelectric generating element main body 10 that is to be joined at a low temperature is thermally coupled to the heat pipe 20 via a layer of heat-resistant insulating adhesive. heat pipe 20
A liquid that vaporizes at a predetermined temperature is sealed in a sealed metal pipe, and heat is radiated (heat transported) by the action of the heat of vaporization of the liquid inside.

」1記第1実施例の構成において、高温接合側の1−)
N接合10Cをガスバーナー箸の熱源により加熱すれば
、高温接合温度T I+ iと低温接合温度′1゛cと
の温度差により各素子本体10に熱起電力が発生し、そ
れらの総和が外部に取り出される。このときヒートパイ
プ20は50W程度の熱輸送においては温度ドロップを
実質的に零にすることが可能であり、素子本体10の低
温側端部を実質的にヒートパイプ20の放熱フィン21
を設けた冷却側の温度まで冷却することが可能となる。
In the configuration of the first embodiment, 1-) on the high-temperature bonding side.
When the N-junction 10C is heated by the heat source of a gas burner chopstick, a thermoelectromotive force is generated in each element body 10 due to the temperature difference between the high temperature junction temperature T I + i and the low temperature junction temperature '1゛c, and the sum of these is the external It is taken out. At this time, the heat pipe 20 can make the temperature drop substantially zero in heat transport of about 50 W, and the low temperature side end of the element body 10 is substantially connected to the radiation fins 21 of the heat pipe 20.
It becomes possible to cool down to the temperature of the cooling side provided with.

従って、充分な熱起電力を得ることができる。Therefore, sufficient thermoelectromotive force can be obtained.

上記第1実施例によhば、次のような効果を上げること
ができる。
According to the first embodiment, the following effects can be achieved.

(1) ヒートパイプ20を用いたので、熱輸送が効果
的で熱発電素子10の低温側端部の温度を容易に下げる
ことがで外る。従って、熱起電力を大きくできる。
(1) Since the heat pipe 20 is used, heat transport is effective and the temperature at the low temperature side end of the thermoelectric generating element 10 can be easily lowered. Therefore, thermoelectromotive force can be increased.

(2) ヒートパイプ20の使用により熱輸送パスをパ
イプ状に局地化できる。このため、小形化を図り、加工
性、取[1性の面でも有利である。
(2) By using the heat pipe 20, the heat transport path can be localized in a pipe shape. Therefore, it is possible to reduce the size and is advantageous in terms of workability and ease of removal.

(3) ヒートパイプの形状は直線状のみならず、曲げ
、屈曲梓の自在性があるため、設計上有利であり、熱を
通路化しやすい。
(3) The shape of the heat pipe is not only linear, but also has flexibility in bending and bending, which is advantageous in terms of design and makes it easy to channelize heat.

ff15図は本発明の第2実施例を示す。この場合、ヒ
ートパイプ30は、両端冷却タイプであり、両端に放熱
フィン21が設けられ、中間部に熱発電素子本体10が
設けられる。この場合、ヒートパイプ3 +、)の両端
を冷却する点以外は第4図の作用効果と実質的に同じで
ある6 第6図は本発明の熱発電素子を利用した応用例であって
、石油ストーブに熱発電素子を装着した場合を示す。こ
の図において、石油スト−ブの本体フレーム40の前面
には半球面状の反射板41が設けられ、該反則板41の
中央部に灯芯部42が配置されている。また反射板41
の背後には石油タンク43が配置される。熱発電素子5
0はM字状ヒートパイプ30Aの両端部に放熱フィン2
1を設け、該M字状ヒートパイプ30Aの中間部に熱発
電素子本体10を複数個配列したものである。そして、
各熱発電素子本体1oの高温接合となる高温側端部が灯
芯部42に生ずる炎により加熱されるようになっている
。また、ヒートパイプ3()ノ\の放熱フィン21を冷
却するために送風ファン・44が配置され、この送風フ
ァン44は熱発電素子50の熱起電力により作動される
Figure ff15 shows a second embodiment of the present invention. In this case, the heat pipe 30 is of a both-end cooling type, and the heat radiation fins 21 are provided at both ends, and the thermoelectric power generation element main body 10 is provided in the middle part. In this case, the effect is substantially the same as that shown in FIG. 4 except that both ends of the heat pipe 3 +, ) are cooled.6 FIG. 6 shows an application example using the thermoelectric generating element of the invention, This shows a case where a thermoelectric generator is attached to a kerosene stove. In this figure, a hemispherical reflecting plate 41 is provided on the front side of a main body frame 40 of the oil stove, and a lamp wick 42 is disposed in the center of the reflecting plate 41. Also, the reflective plate 41
An oil tank 43 is arranged behind. Thermoelectric power generation element 5
0 has radiation fins 2 at both ends of the M-shaped heat pipe 30A.
1, and a plurality of thermoelectric power generating element bodies 10 are arranged in the middle part of the M-shaped heat pipe 30A. and,
The high-temperature end portion of each thermoelectric power generating element main body 1o, which is a high-temperature joint, is heated by the flame generated in the lamp wick portion 42. Further, a blower fan 44 is arranged to cool the radiation fins 21 of the heat pipe 3 ( ), and this blower fan 44 is operated by the thermoelectromotive force of the thermoelectric generator 50 .

第6図の石油ストーブの構成においては、熱発電素子5
()の熱起電力により送風ファン44を作動させ、矢印
Xのごとく各放熱フィン21を冷却し暖まった空気を本
体フレーム4oの前方に送り出すことができ、送風ファ
ン44がヒートパイプ30 Aの冷却と温風の送り出し
との両方の機能を果たすことができる。
In the configuration of the kerosene stove shown in FIG.
The blower fan 44 is actuated by the thermoelectromotive force in parentheses, cooling each radiation fin 21 as shown by arrow X, and sending the warmed air forward of the main body frame 4o, and the blower fan 44 cools the heat pipe 30A. It can perform both the functions of blowing out hot air and blowing out hot air.

第7図は本発明の池の応用例であって、風呂釜を構成し
た場合を示す。この場合において、熱発電素子60は、
ヒートパイプ20に放熱フィン21を設け、ヒートパイ
プ2oの池端に熱発電素子本体10を複数個設けた第4
図のごと外構成のものであり、ヒートパイプ2oの放熱
フィン21を設けた側は浴槽61内に突出しており、他
端の熱発電素子本体10の高温側端部はバーナー62に
より加熱されるようになっている。
FIG. 7 shows an example of the application of the pond of the present invention, in which a bath pot is constructed. In this case, the thermoelectric generating element 60 is
A fourth heat generating element is provided with heat dissipation fins 21 on the heat pipe 20, and a plurality of thermoelectric power generation element bodies 10 are provided on the end of the heat pipe 2o.
As shown in the figure, the side of the heat pipe 2o provided with the radiation fins 21 protrudes into the bathtub 61, and the other end, the high temperature side end of the thermoelectric power generation element body 10, is heated by the burner 62. It looks like this.

第°7図の風呂釜においては、バーナー62の熱は熱発
電素子本体1oの高温側端部、低温側端部、ヒートパイ
プ20、放熱フィン21の経路で浴槽61内の液体に輸
送され、浴槽61内が加温されることになる。また、ヒ
ートパイプ2oの一端は常に浴槽61内にあるため、浴
槽の湯の温度(4()°C前後)に保持され、この結果
、熱発電素子本1本10の低温側端部を40°C前後に
保持で参ることとなる。この結果、熱発電素子60の全
体の熱起電力を充分大きく取ることかで外、この熱起電
力を利用して、攪はん装置63を作動させたり、浴槽の
湯の温度検出を行なう温度検出器64を作動させたり、
バーナー62の加熱時間を規定するタイマー65を作動
させたりすることがで終る。
In the bathtub shown in FIG. 7, the heat from the burner 62 is transported to the liquid in the bathtub 61 through the high-temperature end, the low-temperature end, the heat pipe 20, and the radiation fins 21 of the thermoelectric generating element main body 1o. The inside of the bathtub 61 will be heated. In addition, since one end of the heat pipe 2o is always inside the bathtub 61, it is maintained at the temperature of the hot water in the bathtub (around 4()°C), and as a result, the low-temperature side end of each thermoelectric generating element 10 is The temperature will be kept at around °C. As a result, by making the overall thermoelectromotive force of the thermoelectric generating element 60 sufficiently large, this thermoelectromotive force can be used to operate the stirring device 63 or to detect the temperature of hot water in the bathtub. Activate the detector 64,
The process ends by activating a timer 65 that defines the heating time of the burner 62.

尚、」1記応用例以外にもガス、石油固体燃料の燃焼器
具に対して種々の応用が可能である。
In addition to the application example described in 1., various other applications are possible for gas and petroleum solid fuel combustion appliances.

以上説明したように、本発明によれば、熱発電素子本体
の低温側端部の冷却をヒートパイプで行なうことにより
、小形で充分な熱起電力を得ることが可能で、高性能の
熱発電素子を構成することか可能であり、その実用上の
効果は極めて大きい。
As explained above, according to the present invention, by cooling the low-temperature side end of the thermoelectric power generation element body using a heat pipe, it is possible to obtain sufficient thermoelectromotive force with a small size, and it is possible to achieve high performance thermoelectric power generation. It is possible to construct an element, and its practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱発電素子の構造の一例を示す正面図、第2図
は素子の熱輸送を説明するための説明図、第3図は従来
の熱発電素子を示す斜・視図、第4図は本発明に係る熱
発電素子の第1実施例を示す正面図、第5図は本発明の
第2実施例を示す正面図、第6図は本発明の応用例であ
って石油ストーブを構成した場合の該略平面図、第7図
は本発明の他の応用例であって風呂釜を構成した場合の
該略側面図である。 1()・・・熱発電素子本体、2.1) 、 30 、
30 A・・・ヒートパイプ、21・・・放熱フィン。 特II出願人 東京電気化学工業株式会社 代理人 弁理士 村 井  隆 第5図
Fig. 1 is a front view showing an example of the structure of a thermoelectric power generating element, Fig. 2 is an explanatory diagram for explaining heat transport of the element, Fig. 3 is a perspective view showing a conventional thermoelectric generating element, and Fig. 4 is a front view showing an example of the structure of a thermoelectric generating element. The figure is a front view showing the first embodiment of the thermoelectric generating element according to the present invention, FIG. 5 is a front view showing the second embodiment of the present invention, and FIG. FIG. 7 is a schematic plan view of the constructed bathtub, and FIG. 7 is a schematic side view of the bathtub, which is another application example of the present invention. 1()...thermal power generation element body, 2.1), 30,
30 A... Heat pipe, 21... Radiation fin. Special II applicant Tokyo Denki Kagaku Kogyo Co., Ltd. Representative Patent attorney Takashi Murai Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)熱発電素子本体の低温側端部をヒートパイプに熱
的に結合して構成したことを特徴とする熱発電素子。
(1) A thermoelectric power generation element characterized in that the low temperature side end of the thermoelectric power generation element main body is thermally coupled to a heat pipe.
(2)前記ヒートパイプが冷却フィンを外周に有してい
る特許請求の範囲第1項記載の熱発電素子。
(2) The thermoelectric power generating element according to claim 1, wherein the heat pipe has cooling fins on its outer periphery.
JP57186291A 1982-10-23 1982-10-23 Thermo-electric generating element Pending JPS5975684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57186291A JPS5975684A (en) 1982-10-23 1982-10-23 Thermo-electric generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57186291A JPS5975684A (en) 1982-10-23 1982-10-23 Thermo-electric generating element

Publications (1)

Publication Number Publication Date
JPS5975684A true JPS5975684A (en) 1984-04-28

Family

ID=16185738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57186291A Pending JPS5975684A (en) 1982-10-23 1982-10-23 Thermo-electric generating element

Country Status (1)

Country Link
JP (1) JPS5975684A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008042077A2 (en) * 2006-09-28 2008-04-10 Rosemount Inc. Thermoelectric generator assembly for field process devices
WO2008076208A3 (en) * 2006-12-14 2009-01-29 Cooper Union Thermoelectric power generation device
WO2013092394A3 (en) * 2011-12-22 2013-08-22 Wind Plus Sonne Gmbh Device for directly generating electrical energy from thermal energy
WO2015101408A1 (en) 2013-12-31 2015-07-09 Ortwin Gerrit Siebelder Device and method for directly converting thermal energy into electrical energy
US9921120B2 (en) 2008-04-22 2018-03-20 Rosemount Inc. Industrial process device utilizing piezoelectric transducer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008042077A2 (en) * 2006-09-28 2008-04-10 Rosemount Inc. Thermoelectric generator assembly for field process devices
WO2008042077A3 (en) * 2006-09-28 2008-11-20 Rosemount Inc Thermoelectric generator assembly for field process devices
WO2008076208A3 (en) * 2006-12-14 2009-01-29 Cooper Union Thermoelectric power generation device
US8829326B2 (en) 2006-12-14 2014-09-09 Cooper Union For The Advancement Of Science Thermoelectric power generation device
US9590160B2 (en) 2006-12-14 2017-03-07 Cooper Union For The Advancement Of Science Thermoelectric power generation device
US9921120B2 (en) 2008-04-22 2018-03-20 Rosemount Inc. Industrial process device utilizing piezoelectric transducer
WO2013092394A3 (en) * 2011-12-22 2013-08-22 Wind Plus Sonne Gmbh Device for directly generating electrical energy from thermal energy
WO2015101408A1 (en) 2013-12-31 2015-07-09 Ortwin Gerrit Siebelder Device and method for directly converting thermal energy into electrical energy

Similar Documents

Publication Publication Date Title
US6307142B1 (en) Combustion heat powered portable electronic device
Omer et al. Design optimization of thermoelectric devices for solar power generation
US4125122A (en) Direct energy conversion device
Maduabuchi et al. Performance optimization and thermodynamic analysis of irreversibility in a contemporary solar thermoelectric generator
US4292579A (en) Thermoelectric generator
JP5298138B2 (en) Thermoelectric generator
US20140230869A1 (en) Self-Powered Boiler Using Thermoelectric Generator
Maduabuchi et al. Solar power generation using a two‐stage X‐leg thermoelectric generator with high‐temperature materials
CN101882898A (en) Low temperature smoke temperature difference generator
WO1980001438A1 (en) Energy production and storage apparatus
JPH05219765A (en) Thermo electric generator
JPS5975684A (en) Thermo-electric generating element
JP3442862B2 (en) Thermoelectric generation unit
JP4800727B2 (en) Thermoelectric converter with semiconductor pin junction
JPH0430586A (en) Thermoelectric device
JPH06159953A (en) Latent-heat storage device
JPH05315657A (en) Thermoelectric converting element and thermoelectric converter
CN212113700U (en) Heat radiation structure and radiator
CN112164746B (en) Thermoelectric power generation device
CN208579332U (en) Gas source automatic identification control device
JP2000009361A (en) Thermoelectric conversion system
CN208675126U (en) A kind of temperature difference electricity generation device
JPH0485973A (en) Thermoelectric generator
JPH04280482A (en) Cooling device utilizing solar light
JP4114528B2 (en) Thermoelectric generator