JPS5975677A - Solar battery - Google Patents

Solar battery

Info

Publication number
JPS5975677A
JPS5975677A JP57186077A JP18607782A JPS5975677A JP S5975677 A JPS5975677 A JP S5975677A JP 57186077 A JP57186077 A JP 57186077A JP 18607782 A JP18607782 A JP 18607782A JP S5975677 A JPS5975677 A JP S5975677A
Authority
JP
Japan
Prior art keywords
layer
type
irradiation
junction depth
solar battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57186077A
Other languages
Japanese (ja)
Inventor
Chikara Amano
主税 天野
Masashi Yamaguchi
真史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57186077A priority Critical patent/JPS5975677A/en
Publication of JPS5975677A publication Critical patent/JPS5975677A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain the highly efficient solar battery having excellent radioactive ray resistant characteristics by a method wherein the conductive type and the junction depth of the semiconductor of each layer in heteroface structure GaAs solar battery are brought to an optimum state. CONSTITUTION:An N type GaAs layer 2 is epitaxially grown in the thickness of 0.1-1mum on a P type GaAs single crystal substrate 1. Besides an N type layer 3, consisting of mixed semiconductor Ga1-xAlxAs of composition of x-0.7-0.95, is epitaxially grown on the N type GaAs layer 2 as a window layer. On the N type layer 3, a pectinated collection electrode 4 is arranged, a reflection-preventing film 5 is coated on the N type layer 3 covering the collection electrode 4, and a back side electrode 6 is arranged on the side reverse to the epitaxial layer 2 located on the substrate 1. The optimum values of the junction depth when no radiant ray irradiation is received and an irradiation of phi=3X10<15>cm<-2> is received, are 1.0mum and 0.1mum respectively. The solar battery having high efficiency and radioactive ray-proof characteristics can be accomplished by obtaining the N type GaAs layer 2 in the thickness in proportion to the degree of the irradiation dose of the radiant ray irradiation. To be more precise, its junction depth is made at 1-1.0mum or thereabout.

Description

【発明の詳細な説明】 本発明は、ヘテpフェイス構造GaAa太陽亀池に関し
、特に各層半導体の伝導形および接合深さの最適化を図
ることにより耐放射線特性および光電変換効率を高めた
太陽電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hetep-face structure GaAa solar cell, and more particularly to a solar cell with improved radiation resistance and photoelectric conversion efficiency by optimizing the conduction type and junction depth of each semiconductor layer. It is something.

従来、宇宙用太陽電池としては、St太陽電池が使用さ
れて来た。しかし、宇宙環境においては、各種放射線が
存在し、半導体内に格子欠陥が生成される結果、太陽電
池の出力低下を招くことになる。従来使用されて来たS
l太陽電池では、基板層の伝導形および抵抗率の最適化
、更には放射線防霞用のカバーガラスの使用等の対策を
講することにより、放射線劣化の低減を図って来たが、
宇宙環境における太陽電池の寿命はj年程度であった。
Conventionally, St solar cells have been used as space solar cells. However, in the space environment, various types of radiation exist, and lattice defects are generated in semiconductors, resulting in a decrease in the output of solar cells. Traditionally used S
In solar cells, efforts have been made to reduce radiation deterioration by optimizing the conductivity type and resistivity of the substrate layer, and by taking measures such as using cover glasses to protect against radiation haze.
The lifespan of solar cells in the space environment was about j years.

第1図は、従来のSln+p接合形太接合性太陽電池s
V電子線照射による光電変換効率の相対変化の一例を示
す。宇宙における放射線環境の下で太陽電池を使用する
場合に考慮すべき粒子線としては、/ 〜2 MeV 
i’l子線、j −X) MeV陽子線および30〜7
0MeVα線等がある。特に粒子線束の大きい1MeV
電子線について、/θ年間に換算すると、太陽電池はJ
 X 1014ctn−2程度の被曝を受けることにな
る。すなわち、Sl太陽電池を宇宙環境で/θ年程度使
用すると、効率が半分以下に低下することになり、従来
のSt太陽電池は放射線に弱い欠点があった。
Figure 1 shows a conventional Sln+p junction type thick junction solar cell.
An example of relative change in photoelectric conversion efficiency due to V electron beam irradiation is shown. Particle beams that should be considered when using solar cells in the radiation environment in space include / ~ 2 MeV
i'l proton beam, j −X) MeV proton beam and 30-7
There are 0MeVα rays, etc. 1MeV, which has a particularly large particle beam flux
Regarding the electron beam, when converted to /θ per year, the solar cell is J
They will be exposed to approximately 1014 ctn-2 of radiation. That is, if an Sl solar cell is used in a space environment for about /θ years, its efficiency will drop to less than half, and conventional St solar cells have the disadvantage of being susceptible to radiation.

本発明は、これらの欠点を除失するためになされたもの
で、その目的は、ヘテロフェイス描造GaAs太[湯屯
池において、各層半導体の伝導形および接合深さの最適
化を図ることにより、耐放射線特性に優れた高効率の太
陽電池を提供することにある。
The present invention was made to eliminate these drawbacks, and its purpose is to optimize the conduction type and junction depth of each layer of semiconductor in a heteroface-drawn GaAs thick layer. The purpose of the present invention is to provide a highly efficient solar cell with excellent radiation resistance.

以下に、図面を参照して本発明の詳細な説明する。なお
、以下に示す実施例は単なる例示に過ぎず、本発明の枠
の中で種々の改良や変形があり得ることは勿論である。
The present invention will be described in detail below with reference to the drawings. Note that the embodiments shown below are merely illustrative, and it goes without saying that various improvements and modifications can be made within the framework of the present invention.

まず、第2図に、本発明の根幹をなずG aA s、l
結晶の少数キャリア拡散長の/ MeV電子線照射効果
を示す。この実験結果において1.形GaAs単結晶の
方がn形単結晶よりも放射線照射による少数キャリア拡
散長の低下が少ないことが見い出された。
First, FIG. 2 shows that the basis of the present invention is GaA s, l
The effect of /MeV electron beam irradiation on the minority carrier diffusion length of a crystal is shown. In this experimental result, 1. It has been found that the decrease in the minority carrier diffusion length due to radiation irradiation is smaller in the GaAs single crystal than in the n-type single crystal.

すなわち、本発明は、放射線照射に伴なうGaAetl
結晶中の少数キャリア拡散長の低下の度合が単結晶の伝
導形に依存することを確認し、ががる現象を利用してな
したものであり、この現象を利用すれは、放射線に強い
GaAF3太陽電池を構成できることがわかる。
That is, the present invention is directed to the treatment of GaAetl caused by radiation irradiation.
This was done by confirming that the degree of decrease in the minority carrier diffusion length in a crystal depends on the conductivity type of the single crystal, and by utilizing the lag phenomenon. It can be seen that a solar cell can be constructed.

しかして、本発明では、耐放射線特性に優れたヘテロフ
ェイスGaAd 陽ML池を提供するべく、各層半導体
の伝導形のも・Y成および接合深さを以下に示すように
最適化する。
Therefore, in the present invention, in order to provide a heteroface GaAd positive ML cell with excellent radiation resistance characteristics, the conduction type of each layer semiconductor and the junction depth are optimized as shown below.

第3図は、本発明によるヘテロフェイスGaAs太@亀
池の構成の一例を示す。ここで/はp形GaAs単結晶
基板であり、この基板l上にn形GaAJ 2をエピタ
キシャル成長させる。更に、このn形GaAs単結晶に
混晶半導体Gat−,zA1gAsの組成x −0,7
〜0=91から成るn形層3を窓層としてエピタキシャ
ル成長させる。このn形層3上にA1等による櫛形状の
収集電極lを配置し、更に、n形層3には収集電極lを
覆って5102等から成る反射防止膜!を被着する。6
は基板/のエピタキシャル層−とは反対側に配置した裏
面電極である。太陽光は反射防止膜Sの側から入射する
FIG. 3 shows an example of the structure of a heteroface GaAs thick @Kameike according to the present invention. Here / is a p-type GaAs single crystal substrate, and n-type GaAJ 2 is epitaxially grown on this substrate l. Furthermore, this n-type GaAs single crystal has a composition x -0,7 of a mixed crystal semiconductor Gat-,zA1gAs.
The n-type layer 3 consisting of ~0=91 is epitaxially grown as a window layer. A comb-shaped collector electrode l made of A1 or the like is arranged on this n-type layer 3, and furthermore, an antireflection film made of 5102 or the like is placed on the n-type layer 3 to cover the collector electrode l! be coated with. 6
is a back electrode placed on the opposite side of the epitaxial layer of the substrate. Sunlight enters from the antireflection film S side.

第1図は本発明太11m池の他の構成例を示し、ここで
は、p形GaAs単結晶基板/の上にp形GaAsエピ
タキシャル層7をエピタキシャル成長させ、そのNJ7
の上にn形aaA s層λをエピタキシャル成長させる
。本例におけるその他の構成は第3図の例と同様であり
、省略する。
FIG. 1 shows another example of the structure of the 11-meter thick pond of the present invention. Here, a p-type GaAs epitaxial layer 7 is epitaxially grown on a p-type GaAs single crystal substrate,
An n-type aaAs layer λ is epitaxially grown thereon. The other configurations in this example are the same as those in the example shown in FIG. 3, and will therefore be omitted.

これら本発明の実施例においては、n形GaAs層λの
厚み〔接合深さxj)はo、or〜3゜!μml〕範囲
のものを検削した。なお、n形Ga1−よAlよAsJ
ll Jの厚み(窓層厚d)は00OS〜0゜λ1lr
rvD範囲とした。また、n形Ga 1−xAlxAs
J裔Jおよびn形GaAe層λのキャリア濃度はよ×/
θ儒 、p形GaAs単結晶およびp形Ga A s層
7のギヤリア濃度は/〜!×/θα 程度とした。
In these embodiments of the present invention, the thickness of the n-type GaAs layer λ (junction depth xj) is o, or~3°! [μml] range was inspected. In addition, n-type Ga1- yo Al yo AsJ
ll The thickness of J (window layer thickness d) is 00OS~0°λ1lr
rvD range. Also, n-type Ga 1-xAlxAs
The carrier concentration of J and n-type GaAe layer λ is x/
θ, the gearia concentration of the p-type GaAs single crystal and the p-type GaAs layer 7 is /~! It was set to about ×/θα.

n形Ga 1− 、lI、kl’、As層J (ffi
 −0,7〜0.91)のバンド・ギャップは約コje
Vであり、波長0.5μm以上の光を吸収しないため、
太陽光スペクトルのほとんどに対して透明である。した
がって、かがる窓層3の厚さを大きくとることができ、
直列抵抗損失を低減できる。また、太II !池の表m
j再結合損失も、バンド・ギャップがGaAsに比べて
より広く、表面付近で生成されるキャリアが少ないため
、抑制することができる。以上の理由により、n形”+
−xA1.2,18層3の導入によって太陽電池の効率
がより向上する。また、放射線により表面刊近に生じた
欠lX16の影響か減り、耐放射線性も向上する。
n-type Ga 1-, lI, kl', As layer J (ffi
-0.7 to 0.91) band gap is approximately coje
V and does not absorb light with a wavelength of 0.5 μm or more,
Transparent to most of the sunlight spectrum. Therefore, the thickness of the overcast window layer 3 can be increased,
Series resistance loss can be reduced. Also, Tai II! Pond table m
j recombination loss can also be suppressed because the band gap is wider than that of GaAs and fewer carriers are generated near the surface. For the above reasons, n-type"+
-xA1.2,18 By introducing the layer 3, the efficiency of the solar cell is further improved. In addition, the influence of defects caused by radiation near the surface is reduced, and radiation resistance is improved.

第5図は、本発明に係るヘテロフェイスGaAs太陽電
池の光電変換効率ηの接合深さrj依存性を1M5VT
4子線照射?r(φをパラメータとして検討したもので
ある。−子線照射な受けない場合には、本発明に係るヘ
テロフ1イス太陽電池は、接合深さxjがOJ〜/、0
μmの範囲で最適である。しかし、/ M@V電子線照
射の照射fkφの増加と共に、光電変換効率は低下し、
効率面で最適な接合探さは浅くなることがわかる。宇宙
環境の下で使用する場合に考慮すべき粒子線の中で主と
なる/ MeV電子線について、太陽電池が/θ年間照
射された場合の等測的な照射Jitφは3×/θ14鋼
−2程度である。第5図から明らかなように、φ=3×
/θ”fi−2堤度の11(1躬を受けた場合の、接合
深さ、JのJlよ適値はO@、2μm程度となるが、放
射線照射を受けない場合(φ−O)およびφ−3X/θ
”m””程度の照射を受けた場合の接合深さの最適値は
、それぞれ1.0μm、およびO0lμ罰あり、放射線
の照射f1の程度に応じて、n形層 aAsj’>iコ
の厚さ、すなわち接合深さxjfO0/〜/。θμ中度
とすることによって高効率でなおかつ耐放射線特性を有
する太陽電池を実現できる。
FIG. 5 shows the dependence of the photoelectric conversion efficiency η on the junction depth rj of the heteroface GaAs solar cell according to the present invention at 1M5VT.
4-beam irradiation? This study was conducted using r(φ as a parameter.) - When not subjected to coronal beam irradiation, the heterophilic one-chair solar cell according to the present invention has a junction depth xj of OJ~/, 0
It is optimal in the μm range. However, as the irradiation fkφ of /M@V electron beam irradiation increases, the photoelectric conversion efficiency decreases,
It can be seen that the optimal junction search in terms of efficiency is shallow. Regarding the /MeV electron beam, which is the main particle beam to be considered when used in the space environment, the isometric irradiation Jitφ when a solar cell is irradiated for /θ year is 3 × /θ14 steel - It is about 2. As is clear from Fig. 5, φ=3×
/θ"fi-2 When receiving 11 (1 yen), the appropriate value for Jl of J is O@, about 2 μm, but when not receiving radiation (φ-O) and φ-3X/θ
The optimal value of the junction depth when irradiated with radiation of about "m" is 1.0 μm and O0lμ, respectively, and depending on the degree of radiation irradiation f1, the thickness of the n-type layer aAsj'>i That is, the junction depth xjfO0/~/.By setting θμ to a moderate value, a solar cell with high efficiency and radiation resistance can be realized.

第を図は、本発明に係る窓層3の厚さがO60!μmp
 接合深さxjが0.2μmのへテロフェイスGaAs
太陽電池および従来のSin −p接合形太@電池につ
いて、/ MeV 宙、子線照射による効率の相対変化
を比較して示す。沁を図かられかるように、本発明に係
るヘテロフェイスGaAs太陽電池は、従来のSin”
p接合太陽′電池よりも耐放射線特性に優れ°Cいる。
In the figure, the thickness of the window layer 3 according to the present invention is O60! μmp
Heteroface GaAs with junction depth xj of 0.2 μm
A comparison of relative changes in efficiency due to /MeV space and cosonant beam irradiation is shown for a solar cell and a conventional Sin-p junction thick @ cell. As can be seen from the drawing, the heteroface GaAs solar cell according to the present invention
It has better radiation resistance than p-junction solar cells.

111j用年故を効率が照射前の7J%以上を維持ツる
期1iiどずれは、ヘテロフェイスGaAs太陽?lL
池を、宇宙環境におい′C用いた場合には、耐用年数と
し“C70年以上を期待できることがわかる。
Will the heteroface GaAs solar be able to maintain its efficiency of 7J% or more before irradiation during the aging of 111j? lL
It can be seen that if a pond is used in a space environment, it can be expected to have a useful life of more than 70 years.

本発明においては、各層半導体の伝導形の宿戒および接
合深さxjを最適化することにより、高効率で7J」5
かつ耐放射線特性に優れた太陽電池を実現できる。窓層
3の厚さdについては、O,Oj〜0゜コ/jmの範囲
では、光電変換効率の接合深さ依存性への影!Qノは少
なく、窓層厚dが薄い方が光電変換効率が高くなる傾向
は見られたものの、上記の範囲に選べは良いと言える。
In the present invention, by optimizing the conduction type of each semiconductor layer and the junction depth xj, it is possible to achieve 7J''5 with high efficiency.
In addition, a solar cell with excellent radiation resistance can be realized. Regarding the thickness d of the window layer 3, in the range of O, Oj to 0°/jm, there is no effect on the junction depth dependence of photoelectric conversion efficiency! Although there was a tendency for the photoelectric conversion efficiency to be higher when Q was smaller and the window layer thickness d was thinner, it can be said that the above range is a good choice.

さらに加えて、各層のキャリア濃度をより低くするか、
各層の結晶性を向上させることにより各層内における少
数キャリア拡散長をより長くすれは、さらに効率および
耐放射線損傷の両面でより改善を期待することができる
In addition, the carrier concentration in each layer may be lowered, or
If the minority carrier diffusion length within each layer is made longer by improving the crystallinity of each layer, further improvements can be expected in both efficiency and radiation damage resistance.

以上説明したように、本発明によれば、各層坐導体の伝
導形の構成および接合深さの最適化が図られているので
、従来の太陽電池に比べて、光電変換効率が高く、シか
も耐放射線特性に優れているなどの利点を有する太陽′
電池を得ることができる。
As explained above, according to the present invention, the conduction type structure and junction depth of each layer of seated conductors are optimized, so the photoelectric conversion efficiency is higher than that of conventional solar cells, and the The sun has advantages such as excellent radiation resistance.
You can get batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の5inp接合太陽電池の放射線劣化の一
例を示す特性曲線図、第、2図は本発明の根幹をなすG
aAs単結晶の放射線照射効果に及ぼす伝導形の影響を
示す図、第3図および第1I図は本発明によるヘテロフ
ェイスGaAs太陽電池の構造の2例を示す断面図、第
S図は本発明に係る太陽′電池の/M、V電子線照射前
後における光電変換効率の接合深さ依存性を示す図、第
6図は本発明に係る太](1問電池および従来の81太
陽電池について、/MeV電子線照射による出力の相対
変化を比較して示す図である。 l・・・p形GaAs単結晶基板・ J・・・n形GaAsエピタキシャル層、3・・・n形
Ga1−エAlよAsエピタキシャル(211、t・・
・収集電極、 j・・・反射防止膜、 6・・・裏面電極、 7・・・p形GaAsエピタキシャル層。 Q”J’ !iγ出願人IJ本電信?■を話公社契 茗
 羽 な 第2図 1 MeV電子a?X射量 (Cm−2)第3図 第4図 乙 暦 茗 羽 役
Fig. 1 is a characteristic curve diagram showing an example of radiation deterioration of a conventional 5 inp junction solar cell, and Figs.
Figures 3 and 1I are cross-sectional views showing two examples of the structure of a heteroface GaAs solar cell according to the present invention, and Figure S is a diagram showing the influence of conductivity type on the radiation irradiation effect of an aAs single crystal. Figure 6 shows the junction depth dependence of the photoelectric conversion efficiency before and after irradiation with /M and V electron beams of such a solar cell. It is a diagram showing a comparison of relative changes in output due to MeV electron beam irradiation. l: p-type GaAs single crystal substrate, J: n-type GaAs epitaxial layer, 3: n-type Ga1-air Al, etc. As epitaxial (211, t...
- Collection electrode, j... Antireflection film, 6... Back electrode, 7... P-type GaAs epitaxial layer. Q"J' ! iγ Applicant IJ Hon Telegraph? ■ Public Corporation Contract Myohana Figure 2 1 MeV electron a?X radiation amount (Cm-2) Figure 3 Figure 4 Oryoku

Claims (1)

【特許請求の範囲】[Claims] p形GaAl?単結晶基板あるいは、形GaAsエピタ
キシャル薄膜上に、厚さ03〜7μmのnY GaA4
をエピタキシャル成長させることによって形成し、さら
に前記n形a a A s#上に混晶半導体Ga 4 
xAlxA sのn形層をエピタキシャル成長させるこ
とによって形成したことを特徴とする太@電池。
p-type GaAl? nY GaA4 with a thickness of 03 to 7 μm on a single crystal substrate or GaAs epitaxial thin film.
is formed by epitaxial growth, and further a mixed crystal semiconductor Ga 4 is formed on the n-type aa As#.
A thick@ battery characterized by being formed by epitaxially growing an n-type layer of xAlxAs.
JP57186077A 1982-10-25 1982-10-25 Solar battery Pending JPS5975677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57186077A JPS5975677A (en) 1982-10-25 1982-10-25 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57186077A JPS5975677A (en) 1982-10-25 1982-10-25 Solar battery

Publications (1)

Publication Number Publication Date
JPS5975677A true JPS5975677A (en) 1984-04-28

Family

ID=16181975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57186077A Pending JPS5975677A (en) 1982-10-25 1982-10-25 Solar battery

Country Status (1)

Country Link
JP (1) JPS5975677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326996A (en) * 1992-05-20 1993-12-10 Hitachi Ltd Semiconductor device
JP2015019039A (en) * 2013-07-15 2015-01-29 エムコア ソーラー パワー インコーポレイテッド Radiation resistant inverted metamorphic multijunction solar cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137582A (en) * 1974-09-25 1976-03-29 Sharp Kk Gaassgaals heterosetsugogatataiyodenchi

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137582A (en) * 1974-09-25 1976-03-29 Sharp Kk Gaassgaals heterosetsugogatataiyodenchi

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326996A (en) * 1992-05-20 1993-12-10 Hitachi Ltd Semiconductor device
JP2015019039A (en) * 2013-07-15 2015-01-29 エムコア ソーラー パワー インコーポレイテッド Radiation resistant inverted metamorphic multijunction solar cell

Similar Documents

Publication Publication Date Title
US7217882B2 (en) Broad spectrum solar cell
US5376185A (en) Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
Dimroth et al. Metamorphic GayIn1− yP/Ga1− xInxAs tandem solar cells for space and for terrestrial concentrator applications at C> 1000 suns
TWI591838B (en) Window structure for solar cell
WO2017205100A1 (en) Exponential doping in lattice-matched dilute nitride photovoltaic cells
JPH0370183A (en) Photovoltaic element
JP2004296658A (en) Multijunction solar cell and its current matching method
JP2003218374A (en) Group iii-v solar battery
US20140090700A1 (en) High-concentration multi-junction solar cell and method for fabricating same
Takamoto et al. Multijunction solar cell technologies-high efficiency, radiation resistance, and concentrator applications
CN105355670B (en) Five-junction solar energy cells including DBR structure
Baba et al. Feasibility study of two‐terminal tandem solar cells integrated with smart stack, areal current matching, and low concentration
CN210073891U (en) Multi-junction solar cell capable of improving anti-irradiation performance
JPS63100781A (en) Semiconductor element
WO2020247691A1 (en) Dilute nitride optical absorption layers having graded doping
JPS5975677A (en) Solar battery
CN110311006A (en) A kind of multijunction solar cell and production method improving anti-radiation performance
Hoheisel et al. Investigation of radiation hardness of germanium photovoltaic cells
CN111430493B (en) Multi-junction solar cell and power supply equipment
CN101459206A (en) Manufacturing process for high-efficiency multi-junction solar cell
Olson et al. High efficiency, multijunction GaInP/GaAs solar cells
Andreev et al. GaAs and GaSb based solar cells for concentrator and thermophotovoltaic applications
CN212257428U (en) Heterogeneous PN junction space battery epitaxial wafer
KR101464086B1 (en) Solar cell structure using multiple junction compound
Kurtz et al. DESIGN OF HIGH-EFFICIENCY, RADIATION-HARD, GaInP/GaAs SOLAR CELLS¹