JPS5975601A - Method of producing porous moisture sensitive resistor - Google Patents

Method of producing porous moisture sensitive resistor

Info

Publication number
JPS5975601A
JPS5975601A JP57185500A JP18550082A JPS5975601A JP S5975601 A JPS5975601 A JP S5975601A JP 57185500 A JP57185500 A JP 57185500A JP 18550082 A JP18550082 A JP 18550082A JP S5975601 A JPS5975601 A JP S5975601A
Authority
JP
Japan
Prior art keywords
humidity
moisture
resistor
sensitive resistor
shows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57185500A
Other languages
Japanese (ja)
Inventor
軍司俊彦
高松誠
山本達夫
清水洋美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Cathode Laboratory Co Ltd
Original Assignee
Tokyo Cathode Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Cathode Laboratory Co Ltd filed Critical Tokyo Cathode Laboratory Co Ltd
Priority to JP57185500A priority Critical patent/JPS5975601A/en
Publication of JPS5975601A publication Critical patent/JPS5975601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は感湿素子の構成に用いる感湿抵抗体、特にTi
O2−8nO2系セラミック多孔体を用いた多孔質感湿
抵抗体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a humidity-sensitive resistor used in the construction of a humidity-sensitive element, particularly a Ti
The present invention relates to a method of manufacturing a porous textured moisture resistor using an O2-8nO2 ceramic porous body.

湿度によつで電気抵抗が変化する性質を利用した感湿抵
抗体としては、従来よりF’e 2Q8 、 p’e 
sQ4 。
As humidity-sensitive resistors that utilize the property that electrical resistance changes depending on humidity, F'e 2Q8 and p'e
sQ4.

TielI、ZnO,ZnO−Cr108−VBOII
−Ll 110+Tio!−V2O3゜MgCr204
−TiO2,A720B薄膜、 AtP(M等を用いた
ものが知られている。これらの金属酸化物等は化学的お
よび熱的に安定な性質を有するものの、大部分は固有抵
抗が比較的高く、ヒステリシス特性を有するとともに、
湿分の吸脱着の繰返しにより吸湿特性が経時的に劣化す
るため、加熱クリーニングを施さなければならないもの
が大部分である。
TielI, ZnO, ZnO-Cr108-VBOII
-Ll 110+Tio! -V2O3゜MgCr204
-TiO2, A720B thin films, AtP(M, etc.) are known.Although these metal oxides have chemically and thermally stable properties, most of them have relatively high specific resistance; In addition to having hysteresis characteristics,
Most of them require heating cleaning because their moisture absorption properties deteriorate over time due to repeated absorption and desorption of moisture.

また、先に出願人が提案した(%願昭56−66638
参照)TalI05等を添加したTiO2−8nOz系
感湿抵抗体磁器組成物は、特定の使用条件においては加
熱クリーニングを必要とせず、上述した金属酸化物等に
比較してきわめて良好な特性を有するものの、相対湿度
20%における抵抗値が数十MΩと比較的高いこととタ
バコ等の過酷な雰囲気において若干の経時変化が見られ
るという難点を残している。なお、加熱クリーニングを
必要としない非加熱形の感湿抵抗体は他にも提案されて
いるが、例えば特開昭52−26293.56−420
1.57−36813等、あるいは[日経エレクトロニ
クスJ 1981年7月6日号第270頁に記載される
ように一般に経時変化は比較的小さいものの使用湿度範
囲が30〜90%(相対湿度、以下同じ)と狭く、抵抗
値質イし率も1.7〜・20 桁程度である。
In addition, the applicant had previously proposed (%Application No. 56-66638
Reference) Although the TiO2-8nOz humidity-sensitive resistor ceramic composition containing TalI05 etc. does not require heating cleaning under specific usage conditions and has extremely good properties compared to the metal oxides etc. mentioned above. However, the disadvantages are that the resistance value at a relative humidity of 20% is relatively high, several tens of MΩ, and that some changes over time are observed in harsh atmospheres such as tobacco. In addition, other non-heating type moisture sensitive resistors that do not require heating cleaning have been proposed, for example, Japanese Patent Application Laid-Open No. 52-26293.56-420.
1.57-36813, etc., or [as described in Nikkei Electronics J July 6, 1981 issue, p. ), and the resistance value quality ratio is about 1.7 to 20 digits.

したがって、本発明の目的は、広い湿度範囲できわめて
安定した湿度−抵抗特性を示す非加熱形の多孔質感温抵
抗体を容易に製造することが可能な多孔質感湿抵抗体の
製造方法を提供することにある。
Therefore, an object of the present invention is to provide a method for manufacturing a porous textured moisture resistor that can easily produce a non-heated porous textured temperature resistor that exhibits extremely stable humidity-resistance characteristics over a wide humidity range. There is a particular thing.

このような目的を達成するだめに、本発明は、0.1〜
25チ含浸させて熱処理するものである。
In order to achieve such an objective, the present invention provides
25 pieces are impregnated and heat treated.

具体的には、先ず、5nOx(1<x≦2)1−99m
o1%およびT’10x(1<x≦2 ) 99−1.
mol %を主成分とし、これにTa2O3,5b20
LI、Nb2O5、woa 、In2O3,リン酸塩、
ランタン系希土類酸化物の少なくとも1種を添加し、こ
れに粘結剤としてPVA、ニトロセルロース等を0〜5
wt%の範囲で加えて混合した後、0.2−5 t/c
iの圧力で成形し、1000−1500℃の温度で05
〜5時間焼結する。このようにして得られだ細孔半径分
布200〜6000A、気孔率35〜55チの多孔性焼
結体の開気孔表面に、アルカリ金属、例えばナトリウム
、カリウムもしくはリチウム、またはリン、イオウの少
なくとも1(重を0.1〜25係含浸付着させた後(こ
の含浸量は通常の元素分析により求めることができる)
、さらに90[)〜1200℃において0.1〜2時間
の熱処理を施す。次に、この焼結体に少なくとも1対の
電極を例えばpt 。
Specifically, first, 5nOx (1<x≦2)1-99m
o1% and T'10x (1<x≦2) 99-1.
The main component is Ta2O3,5b20
LI, Nb2O5, woa, In2O3, phosphate,
At least one kind of lanthanum-based rare earth oxide is added, and PVA, nitrocellulose, etc. are added as a binder at 0 to 5%.
After adding and mixing in the wt% range, 0.2-5 t/c
Molding at a pressure of i and a temperature of 1000-1500℃
Sinter for ~5 hours. The open pore surface of the thus obtained porous sintered body with a pore radius distribution of 200 to 6000 A and a porosity of 35 to 55 cm is coated with at least one of an alkali metal, such as sodium, potassium or lithium, or phosphorus or sulfur. (After applying a weight of 0.1 to 25% impregnated (the amount of impregnation can be determined by ordinary elemental analysis)
, and further subjected to heat treatment at 90°C to 1200°C for 0.1 to 2 hours. Next, at least one pair of electrodes, such as PT, are attached to this sintered body.

Au 、 RuO2等により形成付与することによって
、非加熱形の多孔質感湿抵抗体が形成できる。
By forming and applying Au, RuO2, etc., a non-heated porous textured moisture resistor can be formed.

このようにTiO2−8nQz 系セラミック材料を用
いたことにより、他のセラミック材料を用いた場合に比
べて所望の細孔半径分布の多孔体を形成するだめの焼結
温度2時間ならびに成形圧力等の製造条件の制約が緩和
され、幅広い製造条件で200〜6.oooXの細孔半
径分布を有する多孔体を製造することができる。この様
子を第1図に示す。
By using the TiO2-8nQz ceramic material in this way, it is possible to reduce the sintering temperature for 2 hours and the molding pressure to form a porous body with the desired pore radius distribution compared to when using other ceramic materials. Restrictions on manufacturing conditions have been relaxed, allowing production of 200 to 6. A porous body having a pore radius distribution of oooX can be manufactured. This situation is shown in FIG.

すなわち第1図(イ)、(ロ)、(ハ)、に)はそれぞ
れ焼結温度2時間を1050℃X2hr、1150’c
x2hr、1250℃×2hr 、 1350℃×2h
rとした場合の細孔半径分布を示す。
In other words, Fig. 1 (a), (b), (c), and (b) show sintering temperatures of 1050°C for 2 hours, 1150°C for 2 hours, and 1150°C for 2 hours, respectively.
x2hr, 1250℃×2hr, 1350℃×2h
The pore radius distribution is shown when r is taken as r.

さらにこのようなTi0i+−8r+02.系多孔体は
アルカリ金属、リンもしくはイオウイオンと反応してそ
の開気孔表面が改質し、安定な感湿物質が形成される1
、この改質の様子を第2図に示す。同図(、)が改質前
、同図(b)が改質後を示す例であり、いずれも図中に
示しだ白線が1μmに相肖する。
Furthermore, such Ti0i+-8r+02. The open pore surface of the porous material reacts with alkali metal, phosphorus, or sulfur ions, resulting in the formation of a stable moisture-sensitive material.
, this modification is shown in Figure 2. The figure (,) shows an example before modification, and the figure (b) shows an example after modification, and in both figures, the white line shown corresponds to 1 μm.

なお、焼結温度9時間ならびに成形圧力に上述したよう
な範囲を設けたのは、これらの条件を組合せることによ
り、200〜6000Aの細孔半径分布を治し、かつ気
孔率が35〜55q6の多孔体を得ることができるたl
である。
The reason for setting the above-mentioned ranges for the sintering temperature of 9 hours and the molding pressure is that by combining these conditions, the pore radius distribution of 200 to 6000A can be corrected, and the porosity can be adjusted to 35 to 55q6. It is possible to obtain a porous body.
It is.

まプこ、アルカリ金属等の付着量を0.1〜2.5wt
チどし7だのは0.1wt%未満では後述する参考例1
に見られるように(第4図(イ)参照)感湿特性が十分
でなく、長期にわたって経時変化する。址だ25w を
係を越えるとヒステリシスが大きくなるためである。
Mapco, the amount of adhesion of alkali metals, etc. is 0.1 to 2.5wt.
Chidoshi 7 is less than 0.1wt% in Reference Example 1 described later.
As can be seen in Figure 4 (a), the moisture sensitivity is insufficient and changes over time over a long period of time. This is because the hysteresis increases when the value exceeds 25w.

きらにアルカリ金属等付着後の熱処理温度を9oo〜1
2FlfJ℃としだのは、安定な感湿物質を形成するた
めで、900℃未満ではその後の1し極の焼付は温度が
800〜91J (J ℃であるだめ膜形成にばらつき
を生じ、逆に1200℃を越えると感湿特性は有するも
のの(後述する参考例2(第4図(1力)参照)、アル
カリ金属等がTlO2−8n02系セラミック素体と激
しく反応して素体が変形し、電極を付与することが困難
となる。
The heat treatment temperature after adhering alkali metal etc. to the glass is 9oo~1
The reason for this is to form a stable moisture-sensitive substance.If the temperature is lower than 900℃, the subsequent one-pole baking will occur at a temperature of 800 to 91J (J℃). When the temperature exceeds 1,200°C, although it has moisture-sensitive characteristics (see Reference Example 2 (see Figure 4 (1)) described later), alkali metals etc. react violently with the TlO2-8n02 ceramic body, causing the body to deform. It becomes difficult to apply electrodes.

以下、実施例を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using Examples.

先ず、主成分としてTiO2と5n02とを用い、これ
らをモル比で1:1の割合で精秤して混合する。次に、
この主成分に添加物として’pa2Q5を3.85 w
 t%添加し、メノウ捕潰機を用いて乾式混合を行なう
。次いでこの混合粉末にポリビニルアル、コールを粘結
剤として2wt%加え、2t/Cm2の圧力で圧縮して
直径7 rtrm 、厚さ0.5mmのディスク状に成
形した後、引続きアルミナボートにのせてシリコニット
発熱体を用いた電気炉に入れ、空気中f1250℃、2
時間の焼成を行なう。このようにして形成した焼結体を
厚さ0.35m+nまで研摩した後、20wt%の濃度
のNaOH溶液中に5分間浸漬してナトリウムイオンを
含浸させる。この後、900℃で30分間の熱処理を行
なって感湿抵抗体磁器組成物を得だ。このディスク状の
熔桔億の両面iptペーストをスクリーン印刷した後8
80℃において10分間焼付けることにより電極を形成
して多孔質感湿抵抗体を形成した。これをさらにマウン
ト用ステムに数句けて感湿素子としたものを第3図に示
す。同図(a)は正面図、同図(b)は平面図を示す。
First, TiO2 and 5n02 are used as main components, and these are accurately weighed and mixed at a molar ratio of 1:1. next,
Add 3.85 w of 'pa2Q5 to this main component as an additive.
t% is added and dry mixing is performed using an agate crusher. Next, 2 wt% of polyvinyl alcohol and coal were added as a binder to this mixed powder, and the mixture was compressed at a pressure of 2 t/cm2 to form a disk shape with a diameter of 7 rtrm and a thickness of 0.5 mm, and then placed on an alumina boat. Placed in an electric furnace using a siliconite heating element at f1250℃, 2
Perform baking time. After polishing the sintered body thus formed to a thickness of 0.35 m+n, it is immersed in a 20 wt % NaOH solution for 5 minutes to impregnate it with sodium ions. Thereafter, heat treatment was performed at 900° C. for 30 minutes to obtain a moisture-sensitive resistor ceramic composition. After screen printing this disk-shaped double-sided IPT paste, 8
Electrodes were formed by baking at 80° C. for 10 minutes to form a porous textured moisture resistor. This is further added to a mounting stem to form a moisture sensing element, as shown in FIG. Figure (a) shows a front view, and figure (b) shows a plan view.

同図において、1がpt電極2を付した感湿抵抗体、3
がアルミナ基板からなるマウントステムであり、4が外
部引出し用端子としてのリード線、5はpt  リード
線である。
In the figure, 1 is a moisture-sensitive resistor with a PT electrode 2 attached, 3
is a mount stem made of an alumina substrate, 4 is a lead wire as a terminal for external extraction, and 5 is a PT lead wire.

この感湿素子を恒温恒湿槽に入れ、雰囲気の相対湿度を
変えて電極間の抵抗値を測定したところ第4図の<0に
示すような湿度−抵抗特性が得られた。またその温度依
存性を第5図に示す。第5図において、(イ)、(ロ)
、(ハ)、に)はそれぞれ温度が16゜30.411.
50℃の時の湿度−抵抗特性を示す。温度係数は0.8
SR[/’Cと小さい。まだ、第6図は30℃における
本素子のヒステリシス特性を示し、十分満足の行く特性
を有していることが分る。この場合測定回路としてはI
KHz、IVの電源に素子とIOKΩの抵抗を直列に接
続した回路を用い、この抵抗の両端の電圧を測定してそ
の値から素子の抵抗値を算出した。
When this humidity sensing element was placed in a constant temperature and humidity chamber and the resistance value between the electrodes was measured while changing the relative humidity of the atmosphere, a humidity-resistance characteristic as shown by <0 in FIG. 4 was obtained. Further, its temperature dependence is shown in FIG. In Figure 5, (a), (b)
, (c) and ni) each have a temperature of 16°30.411.
The humidity-resistance characteristics at 50°C are shown. Temperature coefficient is 0.8
SR[/'C is small. Still, FIG. 6 shows the hysteresis characteristics of this device at 30° C., and it can be seen that the device has sufficiently satisfactory characteristics. In this case, the measurement circuit is I
Using a circuit in which the element and an IOKΩ resistor were connected in series to a KHz, IV power source, the voltage across the resistor was measured, and the resistance value of the element was calculated from that value.

またこの素子の50Hz〜IKHzにおける周波数特性
は第7図に示すように30〜90係の相対湿度領域で5
チ以下とすぐれている。なお、同図において(イ)、 
(0) 、(ハ)、に)、f旬はそれぞれ周波数が10
Hz 、 50Hz、100Hz、1KHz、10KH
zの場合の特性を示す。さらに、第8図に応答特性を示
す。同図において(イ)は相対湿度60チから90チへ
の吸湿過程、(口Jは90%から60%への脱湿過程の
特性を示し、それぞれ120秒、180秒と十分に満足
の行くものであるが、この特性は装置の時定数を考慮に
入れておらず、実際はさらに早い、。
In addition, the frequency characteristics of this element in the range of 50 Hz to IKHz are 5 in the relative humidity range of 30 to 90, as shown in Figure 7.
Excellent, less than 1. In addition, in the same figure (a),
(0), (c), ni), and f have a frequency of 10.
Hz, 50Hz, 100Hz, 1KHz, 10KH
The characteristics in the case of z are shown. Furthermore, FIG. 8 shows the response characteristics. In the same figure, (A) shows the characteristics of the moisture absorption process from 60 degrees to 90 degrees, and (J) shows the characteristics of the dehumidification process from 90% to 60%, which are fully satisfactory at 120 seconds and 180 seconds, respectively. However, this characteristic does not take into account the time constant of the device, and it is actually much faster.

さらに、40℃、80チの雰囲気下で2300hr放置
し、抵抗−湿度特性の経時変化を求めたところ、第9図
に示すような結果が得られ、非常に安定した感湿素子で
あることが分る。なお、同図中(イ)、′(ロ)、(ハ
)、に)はそれぞれ相対湿度が20.40,60゜80
%の場合の特性を示す。
Furthermore, when it was left in an atmosphere of 40°C and 80cm for 2300 hours and the change in resistance-humidity characteristics over time was determined, the results shown in Figure 9 were obtained, indicating that it is a very stable humidity sensing element. I understand. Note that (a), '(b), (c), and ni) in the same figure have relative humidity of 20.40, 60°80, respectively.
The characteristics in case of % are shown.

以上説明した実施例を実施例1とし、アルカリ金属の含
浸条件およびその後の熱処理条件のみ変えて同様に製造
した他の実施例(実施例2〜8)およびアルカリ金属の
含浸量の少ない参考例1カらびに熱処理温度を高くした
参考例2について相対湿度が20チおよび90%におけ
る抵抗値を測定した結果を実施例1の結果と併せて下の
衣に記晶する。また、湿度−抵抗特性を第4図に示す。
The example described above is referred to as Example 1, and other examples (Examples 2 to 8) were similarly produced by changing only the alkali metal impregnation conditions and subsequent heat treatment conditions, and Reference Example 1 with a small amount of alkali metal impregnation. The results of measuring the resistance values at a relative humidity of 20 degrees and 90% for Reference Example 2 in which the heat treatment temperature was increased are recorded on the lower coat together with the results of Example 1. Moreover, the humidity-resistance characteristics are shown in FIG.

図中(イ)は前述したように実施例1の場合を示すが実
施例2もこれとほとんど変わらな、い0.また(口)〜
(トはそれぞれ実施例3〜8、(イ)、(す)は参考例
1,2についての結果を示す。
As mentioned above, (A) in the figure shows the case of Example 1, but Example 2 is also almost the same. Again (mouth) ~
(G shows the results for Examples 3 to 8, respectively, and (A) and (S) show the results for Reference Examples 1 and 2.

)1 「 ン このように相対湿度20%においても抵抗値は数MOな
いし十数とΩ以下である。
)1 ``In this way, even at a relative humidity of 20%, the resistance value is several MOs to several tens of ohms or less.

なお、上述した実施例においてはセラミック多孔体の表
面改質用としてNa もしくはKを用いた場合について
のみ説明したが、本発明はこれに限定されるものではな
く、他のアルカリ金属、またはリン、イオウを用いても
よいことは先に述べた通りである。
In addition, in the above-mentioned example, only the case where Na or K was used for surface modification of the ceramic porous body was explained, but the present invention is not limited to this, and other alkali metals, phosphorus, As mentioned above, sulfur may be used.

以上説明したように、本発明によれば、素体としてTi
O2−8n02 系セラミックを用いているため非常に
幅広い製造条件で感湿抵抗体にするだめの細孔半径分布
を有する多孔体素子を容易につくることができるととも
に、従来の大部分の素子のように細孔分布径が300O
A以下でなくても、アルカリ金属、もしくはリン、イオ
ウにより表面を改質して感湿点をもつ表面を形成するこ
とによりセラミンク多孔体自体はかなり大きな細孔分布
半径を有していても容易に湿度に感する感湿抵抗体を形
成することができ、低湿度での抵抗値も高すぎない13
寸だ、本発明により得られる多孔質感湿抵抗体は従来の
アルカリ金属を含む感湿抵抗体に比べて相対湿度に対す
る抵抗の変化比も大きく、かつヒステリシスも小さい。
As explained above, according to the present invention, Ti is used as the element body.
Because O2-8n02 ceramic is used, porous elements with a pore radius distribution suitable for use as moisture-sensitive resistors can be easily produced under a wide range of manufacturing conditions, and they can be made easily, unlike most conventional elements. The pore distribution diameter is 300O
Even if it is not less than A, the ceramic porous material itself can be easily modified even if it has a considerably large pore distribution radius by modifying the surface with alkali metals, phosphorus, or sulfur to form a surface with moisture-sensitive points. It is possible to form a humidity-sensitive resistor that is sensitive to humidity, and the resistance value is not too high at low humidity13
In fact, the porous textured moisture resistor obtained by the present invention has a larger resistance change ratio with respect to relative humidity and smaller hysteresis than a conventional moisture sensitive resistor containing an alkali metal.

さらに経時変化をほとんど示さないだめ多くの従来品の
ように加熱による経時変化防止機構を必要とせず、その
だめ湿度の連続測定が可能である。もちろん、加熱装置
を付加することにより、油、塵埃等の悪環境による経時
変化も容易に解消してさらに安定した湿度測定が可能に
なることは言うまでもない。
Furthermore, since it shows almost no change over time, it does not require a mechanism to prevent changes over time due to heating, unlike many conventional products, and thus allows continuous measurement of humidity. Of course, it goes without saying that by adding a heating device, changes over time due to adverse environments such as oil and dust can be easily eliminated, making it possible to perform more stable humidity measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はセラミンク多孔体の細孔半径分布の焼結条件依
存性を示す図、第2図(−)および(b)はセラミック
多孔体の改質前および後の開気孔表面を示す図、第3図
(&)および(b)は本発明を適用して製造した多孔質
感湿抵抗体を用いた感湿素子を示す正面図および平面図
、第4図は上記感湿素子の湿度−抵抗特性を示す図、第
5図は湿度−抵抗特性の温度依存性を示す図、第6図は
同じくヒステリシス特性を示す図、第7図は同じく周波
数依存性を示す図、第8図は応答特性を示す図、第9図
は経時変化を示す図である。 1・・・・感湿抵抗体、2・・・・電極。 特許出願人  株式会社東京カソード研究所代理人 山
川数構((紛)1名) 第1図 井IB%Lイアjx+00f入) 第2図(α) t−’o> TO文f唱りしく6ム) 第5図 亦す失丁シLハ[(01・) 第6図 才1弓 史1゛シ!・乃〔(01o) 第7図 利灯道度(@/、”)
Fig. 1 is a diagram showing the dependence of the pore radius distribution of the ceramic porous body on sintering conditions, Fig. 2 (-) and (b) are diagrams showing the open pore surface of the ceramic porous body before and after modification, 3(&) and (b) are a front view and a plan view showing a humidity sensing element using a porous moisture resistor manufactured by applying the present invention, and FIG. 4 is a humidity-resistance of the humidity sensing element. Figure 5 shows the temperature dependence of humidity-resistance characteristics, Figure 6 shows the hysteresis characteristics, Figure 7 shows the frequency dependence, and Figure 8 shows the response characteristics. FIG. 9 is a diagram showing changes over time. 1... Moisture sensitive resistor, 2... Electrode. Patent Applicant: Tokyo Cathode Laboratory Co., Ltd. Agent: Kazuki Yamakawa (1 person) Fig. 1 IIB%Lia jx+00f) Fig. 2 (α) t-'o> TO sentence f chant 6 (01) Figure 6: 1 bow history 1゛shi!・No [(01o) Figure 7 Rito Dodo (@/,”)

Claims (1)

【特許請求の範囲】[Claims] 細孔半径分布が200〜100Aであり35〜55チの
気孔率を有するTiO2−8nQ2 系セラミック多孔
体の開気孔表面に、アルカリ金属、リンもしくはイオウ
の少なくとも1種を0.1〜2.5係含浸させた後、9
00〜1200℃で0,1〜2時間熱処理を行ない、得
られた多孔体の表面に少なくとも1対の電極を形成して
なる多孔質感湿抵抗体の製造方法。
At least one of an alkali metal, phosphorus, or sulfur is added to the open pore surface of a TiO2-8nQ2 ceramic porous body having a pore radius distribution of 200 to 100 A and a porosity of 35 to 55 cm. After impregnation, 9
A method for producing a porous textured moisture resistor, which comprises performing heat treatment at 00 to 1200°C for 0.1 to 2 hours, and forming at least one pair of electrodes on the surface of the obtained porous body.
JP57185500A 1982-10-22 1982-10-22 Method of producing porous moisture sensitive resistor Pending JPS5975601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57185500A JPS5975601A (en) 1982-10-22 1982-10-22 Method of producing porous moisture sensitive resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57185500A JPS5975601A (en) 1982-10-22 1982-10-22 Method of producing porous moisture sensitive resistor

Publications (1)

Publication Number Publication Date
JPS5975601A true JPS5975601A (en) 1984-04-28

Family

ID=16171855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57185500A Pending JPS5975601A (en) 1982-10-22 1982-10-22 Method of producing porous moisture sensitive resistor

Country Status (1)

Country Link
JP (1) JPS5975601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280555A (en) * 1985-06-06 1986-12-11 Toshiba Corp Humidity-sensitive element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280555A (en) * 1985-06-06 1986-12-11 Toshiba Corp Humidity-sensitive element

Similar Documents

Publication Publication Date Title
CA1045249A (en) Humidity sensitive ceramic resistor
US4183798A (en) Stabilized zirconium dioxide compositions and oxygen sensors utilizing said compositions
US3715702A (en) Relative humidity sensor
US3703697A (en) Relative humidity sensor
US4280115A (en) Humidity sensor
JPS5975601A (en) Method of producing porous moisture sensitive resistor
US3916367A (en) Relative humidity sensor
US4666628A (en) Moisture sensitive material and process for its production
US4509035A (en) Humidity-sensitive element and process for producing the same
JPH0244390B2 (en) KANSHITSUZAIRYO
JP3770456B2 (en) Measuring method of gas concentration
EP0242834A2 (en) Humidity-sensing component composition
JPS6214921B2 (en)
RU2064700C1 (en) Thermistor manufacturing process
JPS6139502A (en) Moisture sensitive element
JPS58212101A (en) Moisture sensor
JPS5965404A (en) Moisture sensitive resistor and method of producing same
JPH02252202A (en) Humidity sensor element
JPH052098B2 (en)
JPS59102149A (en) Moisture sensitive material
JPS6139614B2 (en)
JP2000065787A (en) Solid electrolyte type carbon dioxide sensor element
JPS5945964A (en) Ceramic resistor material
JPH0122963B2 (en)
JPS5871446A (en) Gas sensor for oxygen and carbon monoxide