JPS597552B2 - Manufacturing method of composite member for neutron shielding - Google Patents

Manufacturing method of composite member for neutron shielding

Info

Publication number
JPS597552B2
JPS597552B2 JP54045758A JP4575879A JPS597552B2 JP S597552 B2 JPS597552 B2 JP S597552B2 JP 54045758 A JP54045758 A JP 54045758A JP 4575879 A JP4575879 A JP 4575879A JP S597552 B2 JPS597552 B2 JP S597552B2
Authority
JP
Japan
Prior art keywords
stainless steel
container
neutron shielding
hip
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54045758A
Other languages
Japanese (ja)
Other versions
JPS55147487A (en
Inventor
伸泰 河合
和郎 緒方
誠矢 古田
正明 寺垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP54045758A priority Critical patent/JPS597552B2/en
Publication of JPS55147487A publication Critical patent/JPS55147487A/en
Publication of JPS597552B2 publication Critical patent/JPS597552B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は原子炉炉心部近傍に設けられる中性子遮蔽部材
、特にTa部材外周面にステンレス鋼外皮材を被覆した
耐酸化性能に優れた中性子遮蔽部材の製造法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a neutron shielding member provided near the core of a nuclear reactor, particularly a neutron shielding member with excellent oxidation resistance in which the outer peripheral surface of a Ta member is coated with a stainless steel outer skin material. be.

中性子遮蔽部材としては、従来より種々検討がなされて
おり、ステンレス鋼(SUS316)、バナジウム合金
、Ta(タンタル)等がその代表的な金属として文献等
に発表されている。
Various studies have been made for neutron shielding members, and representative metals such as stainless steel (SUS316), vanadium alloy, and Ta (tantalum) have been published in literature.

しかし乍ら、このラちステンレス鋼は炉心近傍に配置す
るにはその中性子吸収能に問題があり、バナジウム合金
及びTaは中性子吸収能が高く、特にTaは優れた遮蔽
能を有しているが、いづれも冷却媒体としての液体Na
あるいは水に含まれている微量酸素と反応して酸化物を
形成し、しかもこの酸化物は母材との密着性が悪く極め
て剥離し易い性質を有していることから容易に剥離して
冷却媒体中に移行することになる。そして移行した酸化
物は冷却系内を媒体と共に循環し、冷却系の放射能汚染
を引き起こすのみならず、冷却系内に蓄積してこれを閉
塞し重大事故を誘引するおそれすらある。そこで、この
酸化物の生成を防止するため、耐酸化性を有するNi等
を溶射する方法が一部において検討され、試みられたが
、溶射層は多孔質となり、この孔部を通つて侵入してき
た酸素によつて酸化反応が生じ、生成した酸化物が剥離
して溶射層自体をも剥離させることが判明し、更に他の
効果的な酸化防止技術の開発が要求されるに至つている
However, this stainless steel has a problem with its neutron absorption ability when placed near the reactor core, and vanadium alloys and Ta have high neutron absorption ability, and Ta in particular has excellent shielding ability. , both of which use liquid Na as a cooling medium.
Alternatively, it reacts with trace amounts of oxygen contained in water to form an oxide, and since this oxide has poor adhesion to the base material and has the property of being extremely easy to peel off, it is easily peeled off and cooled. It will migrate into the medium. The migrated oxides circulate together with the medium within the cooling system, causing not only radioactive contamination of the cooling system, but also accumulating within the cooling system and clogging it, potentially causing a serious accident. Therefore, in order to prevent the formation of this oxide, a method of thermally spraying oxidation-resistant Ni, etc. has been considered and attempted in some cases, but the thermally sprayed layer becomes porous, and it cannot penetrate through the pores. It has been found that an oxidation reaction occurs due to the oxygen, and the generated oxide peels off, causing the thermal sprayed layer itself to peel off.Therefore, there has been a demand for the development of other effective oxidation prevention techniques.

本発明はかかる現状に鑑み、特に中性子遮蔽能が大で実
用性の高いTaをベースとし、この表面に耐酸化性を有
する金属材料の外皮材就中、中性子遮蔽能を有し、かつ
酸化性があり、容易に加工可能なステンレス鋼の外皮材
を熱間静水圧プレス法(以下HIP法という)により強
固に接合して複合部材とすることにより上述の酸化によ
る問題点を解決するものである。
In view of the current situation, the present invention is based on Ta, which has a particularly high neutron shielding ability and is highly practical. This method solves the above-mentioned problems caused by oxidation by firmly joining easily processable stainless steel outer skin materials using the hot isostatic pressing method (hereinafter referred to as HIP method) to create a composite member. .

HIP法は高温高圧のガス雰囲気下で金属粉末等の被処
理体を強固に接合し、緻密な成形体を得る方法として近
年盛んにその研究がなされており、一部で既に実用化さ
れている技術であり、本発明においては、このHIP法
を利用して、中性子遮蔽部材としてのTa部材の外周面
に、その酸化を防止するステンレス鋼外皮材を強固に拡
散接合させて一体化するものである。
The HIP method has been actively researched in recent years as a method for firmly joining objects such as metal powders in a high-temperature, high-pressure gas atmosphere to obtain dense compacts, and has already been put into practical use in some cases. In the present invention, this HIP method is used to firmly diffusion bond and integrate a stainless steel outer skin material that prevents oxidation onto the outer peripheral surface of a Ta member that serves as a neutron shielding member. be.

以下本発明について具体的に説明する。The present invention will be specifically explained below.

第1図は本発明の中性子遮蔽用複合部材を製造する方法
の一例を示すもので、コンテナ2は開口部を有する極め
て単純な有底筒状形状をなしており、この中に予め所定
形状に形成してなるTa部材1を装入し、該Ta部材1
とコンテナ2との間にステンレス鋼粉末8を充填した後
、脱気管4を備えた蓋を溶接蓋止し、常法に従つて脱気
管4を真空ポンプ(図示せず)に接続し続いて脱気管4
を閉塞してコンテナ内を脱気密封し、これを高温高圧の
HIP炉に装入して900〜1200℃の温度でHIP
処理することにより、ステンレス鋼粉末8をほY真密度
の緻密な焼結体となすと共にTa部材とも拡散接合によ
り一体化させる。
FIG. 1 shows an example of the method for manufacturing the neutron shielding composite member of the present invention. The container 2 has an extremely simple bottomed cylindrical shape with an opening, and a predetermined shape is preliminarily inserted into the container 2. The formed Ta member 1 is charged, and the Ta member 1
After filling the space between the container 2 and the container 2 with stainless steel powder 8, the lid with the degassing pipe 4 is welded onto the lid, and the degassing pipe 4 is connected to a vacuum pump (not shown) according to a conventional method. Deaeration pipe 4
The inside of the container is degassed and sealed, and the container is charged into a high temperature and high pressure HIP furnace and HIPed at a temperature of 900 to 1200°C.
Through the treatment, the stainless steel powder 8 is made into a dense sintered body with a true density of approximately Y, and is also integrated with the Ta member by diffusion bonding.

そしてHIP処理が完了すると図中2点鎖線で示すよう
にTa部材1周囲の焼結体をTa部材の形状に沿つて切
削除去することにより、該部材1の外周面にステンレス
鋼外皮層9を層形成する。なおこの方法にあつては、外
皮材は粉末で形成されるから、Ta部材1の形状がいか
なる形状であつてもその外周面を容易に被覆することが
でき、またコンテナ2の形状はTa部材1の形状と無関
係であり、しかもコンテナ材がTa部材の外皮材となる
ものではないから、該コンテナ2は軟鋼等の成形容易な
材料で円筒状等単純な形状のものを使用することができ
る。従つてTa部材の形状に関係なく、単純形状のコン
テナ2とステンレス鋼粉末8とからHIP法により耐酸
化性ステンレス鋼外皮が形成されるから、この方法はた
とえ少量多品種の場合であつても中性子遮蔽部材を製造
する方法として好適な方法といえる。なおこの方法で使
用するステンレス鋼外皮材としては前述した如くステン
レス鋼粉末が使用されるが、粉末化し難い場合、若しく
は少量の粉末のみを必要とし、粉末化することが経済的
でない場合等粉末を入手し難い場合には、第1図中点線
で示しているように、コンテナ2とTa部材1との空隙
形状に一致する形状に切削形成したステンレス鋼プロツ
ク10a〜10dを粉末に代えて該空隙部に配置し、し
かる後、前述の場合と同様、脱気密封、HIP処理する
ことも可能である。
When the HIP process is completed, the sintered body around the Ta member 1 is cut and removed along the shape of the Ta member as shown by the two-dot chain line in the figure, thereby forming a stainless steel outer skin layer 9 on the outer peripheral surface of the member 1. form a layer. In addition, in this method, since the outer cover material is formed of powder, it is possible to easily cover the outer circumferential surface of the Ta member 1 no matter what shape it is, and the shape of the container 2 is different from the Ta member. Since this is unrelated to the shape of 1 and the container material does not serve as the outer skin material of the Ta member, the container 2 can be made of a material that is easy to form such as mild steel and has a simple shape such as a cylindrical shape. . Therefore, regardless of the shape of the Ta member, an oxidation-resistant stainless steel outer shell can be formed from the simple-shaped container 2 and the stainless steel powder 8 by the HIP method. This can be said to be a suitable method for manufacturing a neutron shielding member. As mentioned above, stainless steel powder is used as the stainless steel shell material used in this method, but in cases where it is difficult to powder, or when only a small amount of powder is required and it is not economical to powder, powder may be used. If it is difficult to obtain, as shown by the dotted line in FIG. 1, stainless steel blocks 10a to 10d cut into a shape matching the shape of the gap between the container 2 and the Ta member 1 can be used instead of powder to fill the gap. It is also possible to place it in a section and then perform deaeration and sealing and HIP treatment as in the case described above.

上記、外皮材となる材料としては、特に耐酸化性を有し
、かつ拡散接合し易い金属であればいかなる金属も使用
は可能であるが、使用温度ならびに900〜1200℃
に及ぶHlP温度の高温領域ではステンレス鋼が最も実
用的であり、かつ効果的である。そして、これらの外皮
は冷却媒体中の微量酸素と反応し難いのみならず、酸化
反応により生成した酸化物は母材に強固に密着した安定
な酸化皮膜を形成するため、これが剥離して冷却流体中
に移行するようなことは防止される。
As the material for the above-mentioned outer skin material, any metal can be used as long as it has particularly oxidation resistance and is easy to diffusion bond.
Stainless steel is the most practical and effective in the high temperature range of HlP temperatures up to . In addition, these outer skins are not only difficult to react with trace amounts of oxygen in the cooling medium, but also the oxides produced by oxidation reactions form a stable oxide film that firmly adheres to the base material, so this peels off and absorbs the cooling fluid. This prevents migration into the interior.

又、コンテナ材をステンレス鋼で形成しこれをTa部材
にHIP法により拡散接合させて一体化し、該コンテナ
部分をTa部材の外皮材とする方法も考えられるが、こ
れはコンテナ材自体の成形が面倒となり余り得策ではな
い。
Another possible method is to form the container material from stainless steel and integrate it with the Ta member by diffusion bonding using the HIP method, and use the container part as the outer skin material of the Ta member, but this method requires molding of the container material itself. This is troublesome and not a good idea.

次に本発明に使用するステンレス鋼材料とTaのHIP
処理の試験例について説明する。
Next, HIP of stainless steel material and Ta used in the present invention
A processing test example will be explained.

第2図は本試験に用いたコンテナとテストピースの配列
を示すもので、SUS3O4で形成したコンテナ2内に
下方よりMO板A,Ta板B,Ni板C及びSUS3O
4製プラグDを図示の如く配置し、これを脱気管4より
脱気密封し、アルゴンガス雰囲気中で1000Kf/,
D,l2OO′C,lhrの条件でHIP処理し、(イ
)〜(へ)の部分での各金属間の接合状況を観察した。
Figure 2 shows the arrangement of the container and test pieces used in this test.Inside the container 2 formed of SUS3O4, MO board A, Ta board B, Ni board C, and SUS3O board are placed from below.
A plug D manufactured by No. 4 was placed as shown in the figure, and the plug D was degassed and sealed from the degassing pipe 4, and the air was heated at 1000 Kf/, in an argon gas atmosphere.
HIP processing was performed under the conditions of D, l2OO'C, lhr, and the bonding conditions between each metal in parts (a) to (f) were observed.

その結果、(イ)部(SUS−SUS)は接合部が強固
に接合しており、(口)部(SUS−Ni),(ハ)部
(Ta−Ni)及び(ニ)部(Ta−SUS)のEPM
Aによる接合部には何れも相互拡散による合金層が形成
されていて、共にHIP法による拡散接合に何等問題の
ないことが分つた。しかし(へ)部(Ta−MO)は、
このHIP条件では温度が低いため何等合金層が形成さ
れておらず、拡散接合していないことが判明した。従つ
て、MOを外皮材とする場合n二Ta部材外面に予めS
USを溶射等により予めコーテイングしておき、その外
層にMOを位置させるようにしなければならない不利が
ある。なお外皮材として本試験例に示した如くステンレ
ス鋼を用いる場合には、HIP処理を従来より普通に行
なわれている方法即ち加熱→HlP処理→炉冷(徐冷)
という工程をとるときは、HlP処理を900℃以下の
温度で行なえばHIP処理後改めて溶体化処理を行なう
必要があるが、Pの場合は、高圧のガスが圧力媒体とし
て使用されるのでHIP終了後の除圧の過程で回収され
るガス圧力媒体がコンテナの熱をも運ぶことになり、一
般の熱処理炉に比べて大きい冷却速度となり、HIP処
理温度をステンレス鋼の溶体化処理温度(900〜12
0『C)と一致させ、しかもP処理後、プレス中でコン
テナを冷却すればHlP処理と同時に溶体化処理もそこ
で行なわれることになり、HIP処理後の溶体化処理を
改めて行なう必要がなくなるという利点がある。
As a result, the joints of part (A) (SUS-SUS) were firmly joined, part (mouth) (SUS-Ni), part (c) (Ta-Ni), and part (d) (Ta-Ni). SUS) EPM
It was found that alloy layers formed by interdiffusion were formed in all of the joints made by A, and there were no problems with diffusion joining by the HIP method in either case. However, (Ta-MO) is
It was found that under these HIP conditions, since the temperature was low, no alloy layer was formed and no diffusion bonding occurred. Therefore, when MO is used as the outer skin material, S is preliminarily applied to the outer surface of the Ta member.
There is a disadvantage that the US must be coated in advance by thermal spraying or the like, and the MO must be placed on the outer layer. In addition, when stainless steel is used as the outer skin material as shown in this test example, the HIP treatment is performed by the conventional method, that is, heating → HIP treatment → furnace cooling (slow cooling).
When using this process, if the HIP treatment is performed at a temperature below 900°C, it is necessary to perform another solution treatment after the HIP treatment, but in the case of P, high pressure gas is used as the pressure medium, so HIP is completed. The gas pressure medium recovered during the subsequent depressurization process also carries the heat of the container, resulting in a faster cooling rate than in a general heat treatment furnace, which lowers the HIP treatment temperature to the solution treatment temperature of stainless steel (900 ~ 12
0 "C), and if the container is cooled in the press after the P treatment, the solution treatment will be performed there at the same time as the HIP treatment, and there will be no need to perform the solution treatment again after the HIP treatment. There are advantages.

勿論冷却はプレス外へ取り出して冷却しても同様である
Of course, the same effect can be achieved even if the material is taken out of the press and cooled.

以下、更に本発明方法を利用した中性子遮蔽用複合材料
の具体的な製造例を掲げ、同時に本発明による中性子遮
蔽用複合材料がすぐれた酸化防止能を具有することを試
料片のNa中耐腐蝕性試験により明らかにする。
Hereinafter, a specific example of manufacturing a composite material for neutron shielding using the method of the present invention will be given, and at the same time, it will be shown that the composite material for neutron shielding according to the present invention has excellent anti-oxidation ability. This will be revealed through a sex test.

実施例 1 縦横各11ぁ、厚さ5ぁのSUS3l6からなる2枚の
厚板と、縦横各11TIIJI1厚さ1藺のTa板とを
用意し、これらを脱脂した後、SUS3l6からなる厚
板を両側にして中間にTa板を挟みサンドィツチ状に組
立てた。
Example 1 Two thick plates made of SUS3l6, each 11mm in length and width, and 5mm thick, and a Ta plate, 11mm thick in both length and width, were prepared, and after degreasing these, a thick plate made of SUS3l6 was prepared. It was assembled into a sandwich shape with a Ta plate sandwiched between both sides.

そしてこれを軟鋼製の角型コンテナ内に装人し、脱気管
を備えた上蓋を溶接蓋止した後、脱気管を真空ポンプに
接続しコンテナ内を脱気し、続いて脱気管を閉塞して脱
気密封を行ない、これを高温高圧炉内に装入し、110
0℃ 1000K9/,RAで1時間、HIP処理した
Then, this was placed in a square container made of mild steel, and the top cover with a degassing pipe was welded to the lid.The degassing pipe was connected to a vacuum pump to evacuate the inside of the container, and then the degassing pipe was closed. The product was degassed and sealed, then charged into a high-temperature and high-pressure furnace, and heated to 110
HIP treatment was carried out at 0°C and 1000K9/RA for 1 hour.

処理後、炉より取り出し、処理済の材料に機械加工を施
し、縦横各10WIJII1厚さ3V11で、両側の各
SUS3l6板と中間のTa板が共に各1藺厚のサンド
イツチ状複合材料の試料を作成した。
After the treatment, the treated material was taken out of the furnace and machined to create a sample of a sandwich-like composite material with a thickness of 10 WIJII 1 thickness 3V 11 in the vertical and horizontal directions, and each SUS3L6 plate on both sides and the Ta plate in the middle were 1 mm thick each. did.

一方、比較のため同じく縦横各10藺、厚さ1闘のTa
板の両面にモリブデン、SUS3l6を夫々プラズマ溶
射によつてコーティングし、1VI厚のコーティング層
を形成した試料を作つた。更にSUS3l6板、Ta板
も夫々比較すべく縦横各10Tf1J11厚さ3v1t
の板として用意した。次に上記各試料について第3図に
示す如き下部ホルダー11、上部ホルダー12からなる
2つ割りホルダー容器を利用し、その中心溝部13にお
いて下部ホルダー側の溝内の中央部のみに試料14を配
置し、両側を端部ストツパ15,16で夫々止め、上下
両ホルダー11,12の中心に貫通して形成される通路
17を通して液体ナトリウムを導入し、夫々の試料のN
a中耐腐蝕性試験を行つた。このときのテスト条件は次
の通りであつた。
On the other hand, for comparison, Ta is also 10 in length and width and 1 in thickness.
A sample was prepared by coating both sides of the plate with molybdenum and SUS3l6 by plasma spraying to form a coating layer of 1 VI thickness. Furthermore, in order to compare the SUS3l6 plate and the Ta plate, each length and width are 10Tf1J11 and the thickness is 3v1t.
Prepared as a board. Next, for each of the above-mentioned samples, a two-part holder container consisting of a lower holder 11 and an upper holder 12 as shown in FIG. Then, both ends are stopped with end stoppers 15 and 16, and liquid sodium is introduced through a passage 17 formed through the center of both upper and lower holders 11 and 12, and the N of each sample is
Corrosion resistance test was conducted during A. The test conditions at this time were as follows.

(イ)液体ナトリウム温度 400′C(ロ)液体ナト
リウム流速 1〜2m/8e0(ハ)液体ナトリウム中
02濃度2ppmそして上記試験の結果は次表の如くで
あつた。
(a) Temperature of liquid sodium: 400'C (b) Flow rate of liquid sodium: 1-2 m/8e0 (c) Concentration of 02 in liquid sodium: 2 ppm The results of the above test were as shown in the following table.

なお、表中、耐腐蝕性は以下により求めた。以上詳述し
た通り本発明方法によると、HIP処理の利用によりい
かなる形状の中性子遮蔽部材であつても、容易にその外
周面にステンレス鋼外皮材を被覆させることができ、し
かも得られた複合部材は900〜1200℃の高温下で
、ステンレス鋼を外皮材としてHIP処理により複合さ
れているので強固に拡散接合して形成され、従つて相互
に剥離することがなく、冷却媒体中の酸素からTa部材
は完全に保護されることとなり前述した如きTa酸化物
による種々の弊害を完全に防止し、原子炉の安全性を一
層向上させることができる。
In addition, in the table, the corrosion resistance was determined as follows. As detailed above, according to the method of the present invention, the outer circumferential surface of a neutron shielding member of any shape can be easily coated with a stainless steel sheathing material by using the HIP process, and the resulting composite member Because they are composited by HIP processing with stainless steel as the outer skin material at high temperatures of 900 to 1200°C, they are formed by strong diffusion bonding, so they do not peel off from each other, and Ta is removed from oxygen in the cooling medium. The members are completely protected, and the various adverse effects caused by Ta oxide as described above can be completely prevented, and the safety of the nuclear reactor can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法による中性子遮蔽用複合部材を製造
するためのTa部材をコンテナに装填した状態を示す断
面図、第2図は各種金属材料をHIP処理するための試
料を示す断面図である。 又、第3図はNa中耐腐蝕性試験に使用する試料ホルダ
ーを示す一部切欠斜視図である。1・・・Ta部材、2
・・・コンテナ、8・・・ステンレス鋼、9・・・外皮
層、10a〜10d・・・プロツク。
Fig. 1 is a sectional view showing a container loaded with Ta members for manufacturing a neutron shielding composite member by the method of the present invention, and Fig. 2 is a sectional view showing samples for HIP processing various metal materials. be. Further, FIG. 3 is a partially cutaway perspective view showing a sample holder used for the corrosion resistance test in Na. 1...Ta member, 2
... Container, 8... Stainless steel, 9... Outer skin layer, 10a to 10d... Block.

Claims (1)

【特許請求の範囲】[Claims] 1 中性子遮蔽部材としてのTa部材外周面にステンレ
ス鋼外皮材を被覆してなる中性子遮蔽用複合部材を製造
する方法において予め所定形状に成形されたTa部材を
、開口部を有するコンテナ内に該コンテナとTa部材と
の空隙部にステンレス鋼粉末若しくは該空隙形状に対応
した形状のステンレス鋼ブロックを装入してTa部材を
ステンレス鋼で囲繞せしめて装填し、次いで該コンテナ
内を脱気密封して900℃〜1200℃の温度で熱間静
水圧プレス処理することにより前記Ta部材とステンレ
ス鋼とを拡散接合させてこれらを一体化し、次いで、前
記コンテナを冷却し、しかる後、ステンレス鋼のうち外
皮材としての不要部を切削除去することを特徴とする中
性子遮蔽用複合部材の製造法。
1. In a method for manufacturing a neutron shielding composite member in which the outer peripheral surface of a Ta member as a neutron shielding member is coated with a stainless steel outer skin material, a Ta member previously formed into a predetermined shape is placed in a container having an opening. Stainless steel powder or a stainless steel block having a shape corresponding to the shape of the gap is charged into the gap between the container and the Ta member, and the Ta member is surrounded and loaded with stainless steel, and then the inside of the container is degassed and sealed. The Ta member and the stainless steel are integrated by diffusion bonding by hot isostatic pressing at a temperature of 900°C to 1200°C, then the container is cooled, and then the outer skin of the stainless steel is A method for manufacturing a composite member for neutron shielding, characterized by removing unnecessary parts of the material.
JP54045758A 1979-04-13 1979-04-13 Manufacturing method of composite member for neutron shielding Expired JPS597552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54045758A JPS597552B2 (en) 1979-04-13 1979-04-13 Manufacturing method of composite member for neutron shielding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54045758A JPS597552B2 (en) 1979-04-13 1979-04-13 Manufacturing method of composite member for neutron shielding

Publications (2)

Publication Number Publication Date
JPS55147487A JPS55147487A (en) 1980-11-17
JPS597552B2 true JPS597552B2 (en) 1984-02-18

Family

ID=12728189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54045758A Expired JPS597552B2 (en) 1979-04-13 1979-04-13 Manufacturing method of composite member for neutron shielding

Country Status (1)

Country Link
JP (1) JPS597552B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022115572A1 (en) 2021-06-29 2022-12-29 Suzuki Motor Corporation VARIABLE VALVE DEVICE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163342A (en) * 1974-10-10 1976-06-01 Gen Electric

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163342A (en) * 1974-10-10 1976-06-01 Gen Electric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022115572A1 (en) 2021-06-29 2022-12-29 Suzuki Motor Corporation VARIABLE VALVE DEVICE

Also Published As

Publication number Publication date
JPS55147487A (en) 1980-11-17

Similar Documents

Publication Publication Date Title
EP0174984B1 (en) Liquid phase bonded amorphous materials and process for preparation thereof
JPS6119375B2 (en)
JPH042542B2 (en)
US4115311A (en) Nuclear waste storage container with metal matrix
GB1576670A (en) Production of vacuum bottles or like containers
US4692288A (en) Method of hot isostatic pressing of a porous silicon ceramic compact
CA1220307A (en) Bonding sheets
US5121535A (en) Method for production of thin sections of reactive metals
JPS597552B2 (en) Manufacturing method of composite member for neutron shielding
US3328139A (en) Porous tungsten metal shapes
US5903813A (en) Method of forming thin dense metal sections from reactive alloy powders
GB2085032A (en) Isostatic Pressing of Chromium Sputtering Targets
CA2440130C (en) Corrosion resistant component and method for fabricating same
US3574569A (en) Metal articles
JPS6126705A (en) Formation of metallic coating surface onto metallic product by hip treatment
US5127146A (en) Method for production of thin sections of reactive metals
JPS61190007A (en) Production of hot extruded clad metallic pipe by powder metallurgical method
US3466734A (en) Metal articles and method
US3246395A (en) Methods of brazing metallic pieces together
JPH0342176A (en) Binding method by diffusion of metal alloy powder
JP3600691B2 (en) Hot isostatic pressing method with hot isostatic pressing capsule for ultra-high temperature
JPS61223106A (en) Production of high alloy clad product
JPH0216185B2 (en)
JPS5822307A (en) Method of hot hydrostatic pressure press treatment using hydraulic pressure
Mathew et al. Investment of irradiated reactor fuel in a metal matrix