JPS597498B2 - Method of reaction between powder and gaseous body and apparatus for its implementation - Google Patents

Method of reaction between powder and gaseous body and apparatus for its implementation

Info

Publication number
JPS597498B2
JPS597498B2 JP13644680A JP13644680A JPS597498B2 JP S597498 B2 JPS597498 B2 JP S597498B2 JP 13644680 A JP13644680 A JP 13644680A JP 13644680 A JP13644680 A JP 13644680A JP S597498 B2 JPS597498 B2 JP S597498B2
Authority
JP
Japan
Prior art keywords
powder
reaction
container
gas
elastic structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13644680A
Other languages
Japanese (ja)
Other versions
JPS5759631A (en
Inventor
光隆 河村
昭博 後藤
修一郎 小野
勁 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13644680A priority Critical patent/JPS597498B2/en
Publication of JPS5759631A publication Critical patent/JPS5759631A/en
Publication of JPS597498B2 publication Critical patent/JPS597498B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【発明の詳細な説明】 本発明は、反応容器内に充填された反応性粉体中に反応
性ガス体を導入して反応させるにあたり、該粉体中に圧
縮により3次元的に収縮し、その圧縮の解放により復元
する弾性構造体を挿入し、ガス体と粉体との反応により
起る粉体の体積膨張圧力を該構造体に吸収させることを
特徴とする粉体とガス体との反応方法及びその実施装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides that when a reactive gas is introduced into a reactive powder filled in a reaction container and caused to react, the powder is compressed to three-dimensionally contract, A combination of powder and gas, characterized by inserting an elastic structure that restores its original state when the compression is released, and causing the structure to absorb the volumetric expansion pressure of the powder caused by the reaction between the gas and the powder. This invention relates to a reaction method and an apparatus for carrying out the reaction.

従来、熱エネルギーを貯蔵する方法として、可逆性のよ
い固体の熱分解反応を利用し、熱エネルギーを格子エネ
ルギーの形で固体化合物中に貯蔵する方法が提案されて
いる。
Conventionally, as a method for storing thermal energy, a method has been proposed in which thermal energy is stored in a solid compound in the form of lattice energy by utilizing a highly reversible thermal decomposition reaction of a solid.

例えば、このような固体化合物の熱分解反応系としては
、次のようなものが挙げられる。
For example, examples of such thermal decomposition reaction systems for solid compounds include the following.

(り 金属水素化物 = 金属+水素ガス(2)金属炭
酸塩 = 金属酸化物+炭酸ガス(3)金属水酸化物
二 金属酸化物+水蒸気(4)アンモニア錯塩 こ 固
体塩+アンモニアそして、このようにして生成された固
体からその中に貯蔵された熱エネルギーを回収するには
、固体に対して分解ガスを反応させ、前記反応を逆向き
に行う。
(Metal hydride = metal + hydrogen gas (2) Metal carbonate = metal oxide + carbon dioxide gas (3) Metal hydroxide
2 Metal oxide + water vapor (4) Ammonia complex salt Solid salt + ammonia And in order to recover the thermal energy stored in the solid thus produced, the solid is reacted with a cracked gas. , the above reaction is carried out in the reverse direction.

即ち、この固体と熱分解ガスとの反応は発熱反応であり
、固体を熱媒体と間接接触させて行うことにより、発生
した熱量を熱媒体に蓄熱させることができる。
That is, the reaction between the solid and the pyrolysis gas is an exothermic reaction, and by bringing the solid into indirect contact with the heat medium, the generated heat can be stored in the heat medium.

前記した固体化合物のうち、金属水素化物は、水素密度
が非常に高いことから、熱貯蔵手段としてだけでな《、
水素貯蔵手段としても極めて有効であることから、近年
、この金属水素化物の応用に多《の研究が向けられてい
る。
Among the solid compounds mentioned above, metal hydrides have very high hydrogen density, so they are used not only as a means of heat storage.
In recent years, much research has focused on the application of metal hydrides, as they are extremely effective as a means of hydrogen storage.

ところで、前記した反応を逆方向に行うためには、粉体
を密封容器に充填し、これにガス体(分解ガス)を導入
し、反応させることが行われている。
By the way, in order to carry out the above-mentioned reaction in the opposite direction, the powder is filled in a sealed container, a gas body (decomposed gas) is introduced into the container, and the reaction is caused.

この場合、容器中に充填された固体は、ガス体との反応
の進行に応じて体積膨張する。
In this case, the solid filled in the container expands in volume as the reaction with the gas progresses.

もし反応容器中に粉体を密充填してこの反応を行うと、
容器内圧は数百気圧にも達し、容器はこの内圧によって
破壊されてしまう。
If this reaction is carried out by tightly packing powder in a reaction vessel,
The internal pressure of the container reaches hundreds of atmospheres, and the container is destroyed by this internal pressure.

従って、従来は、このような不都合を回避するために、
容器に対する粉体の充填率を低く抑え、しかもその粉体
允填容器を横型のものとして、容器内壁に高圧が付加さ
れないようにして反応を行う必要があった。
Therefore, conventionally, in order to avoid such inconvenience,
It was necessary to keep the powder filling rate in the container low, and to use a horizontal container to carry out the reaction so as not to apply high pressure to the inner wall of the container.

しかしながら、このような反応方式では、反応容器は必
然的に大型のものになり、また粉体充填層の有効熱伝導
度が悪くなって、反応速度が低下するなどの欠点を生じ
た。
However, such a reaction method inevitably requires a large reaction vessel, and the effective thermal conductivity of the powder-filled bed deteriorates, resulting in disadvantages such as a decrease in reaction rate.

本発明は前記のような問題を解決するためになされたも
ので、容器内に充填された粉体中に圧縮により3次元的
に収縮し、圧縮の解放により復元する弾性構造体を挿入
して、粉体を容器内壁面に押しつけるようにし、即ち、
弾性構造体を挿設した容器内における空間部分に粉体を
密充填し、そしてこのようにして密充填された粉体に所
要のガス体を導入反応させると共に、その反応により生
じる粉体の体積膨張圧を該構造体に吸収させることを特
徴とする。
The present invention was made to solve the above-mentioned problems, and involves inserting an elastic structure into the powder filled in a container, which contracts three-dimensionally when compressed and restores itself when the compression is released. , so that the powder is pressed against the inner wall surface of the container, that is,
Powder is tightly packed into the space inside the container in which the elastic structure is inserted, and the required gas is introduced into the tightly packed powder to cause a reaction, and the volume of the powder generated by the reaction is It is characterized by allowing the structure to absorb expansion pressure.

本発明で用いる弾性構造体は、圧縮により収縮し、また
その圧縮を解放することにより元の形に復元するもので
あり、このような機能を有する限り、その形状及び構造
は任意である。
The elastic structure used in the present invention contracts when compressed and returns to its original shape when the compression is released, and can have any shape and structure as long as it has such a function.

例えば、断面が正方形、長方形、円形、楕円形、星形、
などの筒状中空体などがあげられる。
For example, the cross section is square, rectangular, circular, oval, star-shaped,
Examples include cylindrical hollow bodies such as.

これらの中空構造体は、金属質あるいは耐熱性樹脂の平
板や波板を用いて製造することができる。
These hollow structures can be manufactured using flat plates or corrugated plates made of metal or heat-resistant resin.

また、反応温度が低い場合、例えば200℃以下程度で
あれば、プラスチック発泡体(スチレンフオーム、ポリ
ウレタンフォームなど)やスポンジを用いることもでき
る。
Further, when the reaction temperature is low, for example, about 200° C. or lower, a plastic foam (styrene foam, polyurethane foam, etc.) or sponge can also be used.

また、前記した構造体は、これを容器中央部に配設する
ために、支持体を付設することができる。
Furthermore, the above-described structure can be provided with a support in order to arrange it in the center of the container.

第1図にこれらの弾性構造体の具体例を示す。FIG. 1 shows specific examples of these elastic structures.

竃1図aは、2種の金属の薄板4を2枚の金属板5,5
を用いて形成した断面長方形の筒体1、第1図bは、金
属製波板を用いて形成した断面星形の筒体2、第1図C
は、中間部が円弧形で両端部が波形である金属の曲板2
枚を用いて、その両端部を溶接して形成した筒体3の斜
面図を各示す。
Figure 1 a shows two metal thin plates 4 and two metal plates 5, 5.
The cylindrical body 1 with a rectangular cross section, shown in FIG.
is a metal curved plate 2 whose middle part is arcuate and both ends are corrugated.
2A and 2B are perspective views of a cylindrical body 3 formed by welding both ends of the cylinder.

また、第1図a及びbに示された板体aは各筒体を容器
中央部に配置されるための支持体を示す。
Further, plate a shown in FIGS. 1a and 1b represents a support for placing each cylinder at the center of the container.

第2図に、反応管11に波形板で作った筒体12を、4
枚の支持体aを介して挿入固定化し、粉体Aを筒体12
の外表面と反応管11の内表面との間に形戎される空間
に充填して形成した粉体充填反応管10の斜面図を示す
In FIG. 2, a cylindrical body 12 made of a corrugated plate is attached to the reaction tube 11 with four
Powder A is inserted and fixed through two supports a, and powder A is inserted into the cylinder 12.
1 is a perspective view of a powder-filled reaction tube 10 formed by filling a space formed between the outer surface of the powder and the inner surface of the reaction tube 11.

このようにして形成された粉体充填反応管10は、中央
の筒体部分の空間bは未充填の状態となるが、他の反応
管内空間は全て粉体により密充填され、殊に、粉体Aが
反応管11の全管内表面に接触しているという特徴を有
す゛る。
In the powder-filled reaction tube 10 formed in this manner, the space b in the central cylindrical portion is unfilled, but all other spaces in the reaction tube are tightly filled with powder, especially powder. It is characterized in that the body A is in contact with the entire inner surface of the reaction tube 11.

従来の粉末充填反応管20は、内部に筒体11を有しな
いため、それに相当する空間部bは、第3図に示すよう
に反応管11の上部空間に形成される必要があり、反応
管11の上部管内表面部は直接粉体と接触することはで
きない。
Since the conventional powder-filled reaction tube 20 does not have the cylindrical body 11 inside, the corresponding space b needs to be formed in the upper space of the reaction tube 11 as shown in FIG. The inner surface of the upper tube 11 cannot directly contact the powder.

従って、このような状態で反応を行っても、反応管11
と粉体Aとの間の円滑な熱伝達は達成されず、この粉体
充填反応管20の反応効率は、本発明による粉体充填反
応管10よりも劣ったものになる。
Therefore, even if the reaction is carried out under such conditions, the reaction tube 11
Smooth heat transfer between the powder A and the powder A is not achieved, and the reaction efficiency of this powder-filled reaction tube 20 is inferior to that of the powder-filled reaction tube 10 according to the present invention.

また、従来の粉体充填反応管20は、空間部bを反応管
の長手方向上部に形成させる必要があるため、縦型にし
ては用いることができないのに対し、本発明によるもの
は、空間部bは筒体12の内部空間として固定されてい
るため、横型及び縦型のいずれの方式においても適用す
ることができる。
Further, the conventional powder-filled reaction tube 20 cannot be used vertically because it is necessary to form the space b in the upper part of the reaction tube in the longitudinal direction. Since the portion b is fixed as the internal space of the cylindrical body 12, it can be applied to either a horizontal type or a vertical type.

本発明において用いる反応性粉体は、金属、金属酸化物
、固体塩などの分解ガス放出性固体状化合物の吸熱型の
熱分解反応より形成される固体物質からなるものであり
、またこれに反応させる反応性ガス体は、固体状化合物
の熱分解により放出させる分解ガスである。
The reactive powder used in the present invention is a solid substance formed by an endothermic thermal decomposition reaction of a solid compound that releases decomposition gas such as a metal, metal oxide, or solid salt, and is a solid substance that is reactive to this. The reactive gas to be released is a cracked gas released by thermal decomposition of a solid compound.

このような反応性粉体とガス体との組合せを示すと、例
えば、金属/水素ガス、金属酸化物/炭酸ガス、金属酸
化物/水蒸気、固体塩/アンモニアなどが挙げられる。
Examples of such combinations of reactive powder and gas include metal/hydrogen gas, metal oxide/carbon dioxide, metal oxide/steam, and solid salt/ammonia.

本発明の方法は、反応容器内に示したような粉体を充填
し、これにガス体を接触させて反応を行う場合に、前記
した弾性構造体を粉体中に配設させるものである。
In the method of the present invention, when a reaction vessel is filled with powder as shown and a gas is brought into contact with the powder to carry out a reaction, the above-described elastic structure is disposed in the powder. .

このようにして反応を行うと、前記したように、粉体充
填層と反応容器内壁との接触が全容器壁にわたって密に
行われるため、反応により生じた発熱は、粉体充填層か
ら容器壁に効率よ《伝達される。
When the reaction is carried out in this way, as mentioned above, the powder packed bed and the inner wall of the reaction vessel are in close contact with each other over the entire container wall, so the heat generated by the reaction is transferred from the powder packed bed to the container wall. It is efficiently communicated.

そして、この容器壁外表面を低温熱媒体と接触させて反
応熱を熱媒体に迅速に吸収させることにより、効率のよ
い粉体とガス体との反応を達成することができる。
By bringing the outer surface of the container wall into contact with a low-temperature heat medium and causing the heat medium to quickly absorb the reaction heat, an efficient reaction between the powder and the gas can be achieved.

しかも、この場合、粉体とガス体との反応の進行に応じ
て起る粉体の体積膨張は、弾性構造体の収縮により相殺
されるので、容器破壊は防止される。
Moreover, in this case, the volumetric expansion of the powder that occurs as the reaction between the powder and the gas proceeds is offset by the contraction of the elastic structure, so that the container is prevented from breaking.

従って、本発明の場合、粉体の体積膨張による圧力上昇
を考慮する必要がないので、容器壁の厚さはガス体圧力
に応じて決めればよい。
Therefore, in the case of the present invention, there is no need to take into account the pressure increase due to the volumetric expansion of the powder, so the thickness of the container wall can be determined depending on the gas pressure.

本発明において用いる弾性構造体の体積は、容器内容積
あるいは充填する粉体の体積に応じて決められ、粉末と
ガス体とが完全に反応してしまった場合に、構造体の空
間が閉じてしまうような体積以上であればよい。
The volume of the elastic structure used in the present invention is determined depending on the internal volume of the container or the volume of the powder to be filled, and when the powder and gas completely react, the space in the structure closes. It only needs to have a volume that can be stored away.

一般的には、構造体の体積は、反応容器の内容積に対し
、5〜20チ、通常5〜15チ程度の割合になるように
すればよい。
Generally, the volume of the structure may be in a ratio of 5 to 20 inches, usually about 5 to 15 inches, to the internal volume of the reaction vessel.

また、構造体は、容器の長手方向に沿って配設し、容器
の長手方向全断面にわたって存在するのが望ましい。
Further, it is preferable that the structure is disposed along the longitudinal direction of the container and exists over the entire longitudinal cross section of the container.

もちろん、容器の形状によっては、構造体は中心部のみ
に存在させることが可能である。
Of course, depending on the shape of the container, the structure can be present only in the center.

本発明において、構造体として中空体を用いる場合、中
空体を形成する周壁面に細孔を設けてフィルターを形成
し、この細孔を通してガス体を粉体に導入することがで
きるし、また、逆に、粉体に導入されたガス体をとの細
孔を通して抜出すことも可能である。
In the present invention, when a hollow body is used as the structure, pores are provided in the peripheral wall surface forming the hollow body to form a filter, and the gas can be introduced into the powder through the pores, and Conversely, it is also possible to extract the gas introduced into the powder through the pores.

さらに、粉体中には伝熱性を改善するために、粉体より
粗大な粒径の金属質充填物を存在させることもできる。
Furthermore, in order to improve heat conductivity, a metallic filler having a particle size coarser than that of the powder may be present in the powder.

また、本発明で用いる装置は、前記したような粉体とガ
ス体とを反応させるためだけではな《、粉体とガス体と
を反応させた後に、ガス体を反応吸収した粉体を熱分解
し、粉体から分解ガスを放出させる熱分解反応のための
装置として用いることができる。
In addition, the apparatus used in the present invention is not only used to react the powder and the gas as described above, but also to heat the powder that has reacted and absorbed the gas after reacting the powder and the gas. It can be used as a device for a pyrolysis reaction that decomposes and releases decomposition gas from the powder.

この場合、粉体はその分解ガスの発生と共にその体積を
減少させるが、粉体内部に配設した弾性構造体は、その
弾性復元力により、粉体の体積減少分に応じて膨張する
In this case, the volume of the powder decreases as the decomposed gas is generated, but the elastic structure disposed inside the powder expands according to the volume reduction of the powder due to its elastic restoring force.

このようにして、構造体の外表面と容器内表面との間に
形成される空間には、粉体が常に密充填された状態が保
持される。
In this way, the space formed between the outer surface of the structure and the inner surface of the container is always kept tightly packed with powder.

次に本発明を実施例によりさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 第2図に示した構造の反応管を用いて金属の水素化反応
を行った。
Example A metal hydrogenation reaction was carried out using a reaction tube having the structure shown in FIG.

この場合、反応管11としては、内径2Crn、長さ5
0Crn、肉厚lmの両端を蓄体により密封可能とした
ステンレス製反応管(内容積:157cd)を用いた。
In this case, the reaction tube 11 has an inner diameter of 2 Crn and a length of 5 Crn.
A stainless steel reaction tube (inner volume: 157 cd) with a wall thickness of 1 m and sealable at both ends with an accumulator was used.

また、この反応管内に挿設する構造体12としては、厚
さ0.1mmのリン青銅製波板を用いて形成した内径0
.62Crn、長さ50Crrl筒体(全体積=16.
1cd)を用い、この筒体を支持する支持板aとしては
、ステンレス製の金属板を用いた。
The structure 12 inserted into this reaction tube is made of a phosphor bronze corrugated plate with a thickness of 0.1 mm and has an inner diameter of 0.
.. 62Crn, length 50Crrl cylinder (total volume = 16.
1cd), and a stainless steel metal plate was used as the support plate a for supporting this cylinder.

金属粉体Aとしては、水素貯蔵合金として知られている
LaNi5を用いた。
As the metal powder A, LaNi5, which is known as a hydrogen storage alloy, was used.

なお、この合金の水素化により生起する体積膨張割合(
L aN i 5 H6/LaNi5)は1.255
である。
Note that the volumetric expansion rate (
LaNi5H6/LaNi5) is 1.255
It is.

この金属粉体A(粒径約0. 1 4rrvn )を、
第2図に示すように、内部に挿設した筒体11の外表面
と、管内表面との間に形成される空間に密充填し、反応
管の両端を蓄体により密封した。
This metal powder A (particle size approximately 0.14rrvn) was
As shown in FIG. 2, the space formed between the outer surface of the cylindrical body 11 inserted therein and the inner surface of the tube was tightly filled, and both ends of the reaction tube were sealed with an accumulator.

次に、一方の蓄体に設けた水素導入管により、水素を圧
力10〜/cdで導入し、金属粉体の水素化反応を行っ
た。
Next, hydrogen was introduced at a pressure of 10~/cd through a hydrogen introduction pipe provided in one of the storage bodies to perform a hydrogenation reaction of the metal powder.

この反応の進行と共に、反応管の表面は反応熱により加
熱されて熱くなり、反応管表面温度はほぼ60℃にまで
上昇した。
As this reaction progressed, the surface of the reaction tube was heated by the reaction heat and became hot, and the reaction tube surface temperature rose to approximately 60°C.

反応後、一方の蓄体をはずして反応管内部に設けた筒体
11の収縮状況を観察したところ、筒体11には明らか
な収縮が見られ、その断面積は、最初に比べほぼ10分
の1になっていた。
After the reaction, one storage body was removed and the shrinkage of the cylinder 11 placed inside the reaction tube was observed, and it was found that the cylinder 11 had clearly contracted, and its cross-sectional area was approximately 10 minutes smaller than the initial size. It was number 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a − eは本発明で用いる弾性構造体の形状を
示す斜視図であり、第2図は本発明の装置の構造を示す
構造説明図であり、第3図は従来の装置の構造を示す説
明図である。 1,2,3,12・・・・・・弾性構造体、11・・・
・・・反応管、a・・・・・・支持板、b・・・・・・
空間部、A・・・・・・粉体。
1A to 1E are perspective views showing the shape of the elastic structure used in the present invention, FIG. 2 is a structural explanatory diagram showing the structure of the device of the present invention, and FIG. 3 is a structure of the conventional device FIG. 1, 2, 3, 12... elastic structure, 11...
...Reaction tube, a...Support plate, b...
Space part, A...Powder.

Claims (1)

【特許請求の範囲】 1 反応容器内に充填された反応性粉体中に反応性ガス
体を導入して両者を反応させるにあたり、該粉体中に圧
縮により3次元的に収縮し、圧縮の解放により復元する
弾性構造体を挿入し、ガス体と粉体との反応により起る
粉体の体積膨張圧力を該構造体に吸収させることを特徴
とする粉体とガス体との反応方法。 2 該弾性構造体が中空体である特許請求の範囲第1項
の方法。 3 粉体が金属であり、ガス体が水素である特許請求の
範囲第1項又は第2項の方法。 4 密封容器内に圧縮により3次元的に収縮し、圧縮の
解放により復元する弾性構造体を挿設するとともに、該
弾性構造体の外表面と容器内表面との間に形成される空
間に反応性粉体を密充填し、該容器には反応性ガス体導
入管を配設してなる粉体とガス体との反応を実施するた
めの装置。 5 該弾性体が中空体である特許請求の範囲第4項の装
置。
[Scope of Claims] 1. When a reactive gas is introduced into reactive powder filled in a reaction container and the two are reacted, the powder contracts three-dimensionally due to compression. A method for reacting powder and gas, which comprises inserting an elastic structure that restores its original shape upon release, and causing the structure to absorb volumetric expansion pressure of the powder caused by the reaction between the gas and the powder. 2. The method according to claim 1, wherein the elastic structure is a hollow body. 3. The method according to claim 1 or 2, wherein the powder is metal and the gaseous body is hydrogen. 4 An elastic structure that contracts three-dimensionally when compressed and restores itself when the compression is released is inserted into a sealed container, and a space formed between the outer surface of the elastic structure and the inner surface of the container is An apparatus for carrying out a reaction between the powder and the gas, the container being tightly packed with a reactive gas and having a reactive gas inlet tube arranged in the container. 5. The device according to claim 4, wherein the elastic body is a hollow body.
JP13644680A 1980-09-29 1980-09-29 Method of reaction between powder and gaseous body and apparatus for its implementation Expired JPS597498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13644680A JPS597498B2 (en) 1980-09-29 1980-09-29 Method of reaction between powder and gaseous body and apparatus for its implementation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13644680A JPS597498B2 (en) 1980-09-29 1980-09-29 Method of reaction between powder and gaseous body and apparatus for its implementation

Publications (2)

Publication Number Publication Date
JPS5759631A JPS5759631A (en) 1982-04-10
JPS597498B2 true JPS597498B2 (en) 1984-02-18

Family

ID=15175297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13644680A Expired JPS597498B2 (en) 1980-09-29 1980-09-29 Method of reaction between powder and gaseous body and apparatus for its implementation

Country Status (1)

Country Link
JP (1) JPS597498B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230174491A (en) * 2022-06-21 2023-12-28 주식회사 이륜코리아 fog measurement collecting method and it system using the scattering phenomenon of the laser beam in fog and color sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230174491A (en) * 2022-06-21 2023-12-28 주식회사 이륜코리아 fog measurement collecting method and it system using the scattering phenomenon of the laser beam in fog and color sensor

Also Published As

Publication number Publication date
JPS5759631A (en) 1982-04-10

Similar Documents

Publication Publication Date Title
AU2010318039B2 (en) Hydrogen storage tank having metal hydrides
US4187092A (en) Method and apparatus for providing increased thermal conductivity and heat capacity to a pressure vessel containing a hydride-forming metal material
CA1193820A (en) Method for preparing improved porous metal-hydride compacts and apparatus therefor
CA1178790A (en) Flexible means for storing and recovering hydrogen
EP2483536B1 (en) Connected heat conducting structures in solid ammonia storage systems
KR20110125206A (en) Adiabatic tank for metal hydride
US9079779B2 (en) Connected heat conducting structures in solid ammonia storage systems
JPS597498B2 (en) Method of reaction between powder and gaseous body and apparatus for its implementation
JPS6052360B2 (en) hydrogen storage device
JP2503472B2 (en) Hydrogen storage metal container
JPS591950B2 (en) Structure of heat exchanger using hydrogen storage metal
JPS593001A (en) Reactor for metallic hydride
JPS6118003Y2 (en)
JPS63225799A (en) Manufacture of reactor for hydrogen absorption alloy
JPS6126719Y2 (en)
US20240199938A1 (en) Compacted thermochemical heat storage bodies
JPH0253362B2 (en)
JPH0622774U (en) Heat storage
JPS6044699A (en) Hydrogen storing container
JPH02137701A (en) Vessel for hydrogen occlusion alloy
JPS598601A (en) Reactor for metal hydride
JPS6118004Y2 (en)
JP2004011851A (en) Hydrogen storage vessel filled with hydrogen absorbing alloy
JPH0630676U (en) Heat storage
JPS6037394B2 (en) Heat storage method and heat storage tank