JPS5974691A - Cross flow type gas laser device - Google Patents

Cross flow type gas laser device

Info

Publication number
JPS5974691A
JPS5974691A JP18494782A JP18494782A JPS5974691A JP S5974691 A JPS5974691 A JP S5974691A JP 18494782 A JP18494782 A JP 18494782A JP 18494782 A JP18494782 A JP 18494782A JP S5974691 A JPS5974691 A JP S5974691A
Authority
JP
Japan
Prior art keywords
power source
phase
discharge
electrodes
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18494782A
Other languages
Japanese (ja)
Inventor
Koichi Goto
後藤 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP18494782A priority Critical patent/JPS5974691A/en
Publication of JPS5974691A publication Critical patent/JPS5974691A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To efficiently obtain a high output laser beam at a low cost from a cross flow type laser device by using a three phase AC power source for discharge. CONSTITUTION:When the output voltage of the three phase power source 10 is impressed on electrodes 13a-13d, discharge regions 15a-15c are formed between the electrodes by gas flows 14. Laser oscillation is performed by a resonator consisting of mirrors 16-21, and the beam 22 is taken out through the mirror 21. If the discharge starting voltage is less than 40-50% of the source voltage (peak value), there is no substantialy differnce between the case of the three phase AC power source and that of a DC power source. When a gas pressure, voltages between the electrodes, and an injected power are put in the same conditions, the three phase AC power source can be miniaturized by the reduction of an electrode length. Besides, the efficiency can be increased to 97% or more, and the manufacturing and operating costs reduce.

Description

【発明の詳細な説明】 本発明は、放電方向、ガス流方向、光軸方向のうちア亘
上の方向が互いに直交するいわゆるクロスフロー型がス
レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a so-called cross-flow type laser device in which the discharge direction, gas flow direction, and optical axis direction are orthogonal to each other.

この種の従来のガスレーザ装置は、放電用電源として高
価でかつ効率の低い直流電源または高周波゛電源を使用
していたため、1鵠出カのレーザビームを安価に得るこ
とができなかった。
This type of conventional gas laser device uses an expensive and low-efficiency DC power source or high-frequency power source as a discharge power source, and therefore cannot produce a single output laser beam at a low cost.

なお上記直流電源は、第1図に示すように3相交流を電
力制御する回路1(サイリスクを使用した゛電力制御回
路)と、この制御回路1の出力を昇圧するトランス2と
、このトランス2の2次出力を順次チ流および平滑する
整流回路3および平滑回路4とからなっている。また上
記高周波電源は3相交流を直流に変換する回路5と、該
回路5の出力を平滑する回路6と、この平滑回路6の出
力を高周波′底力に変換するインバータ回路7と、この
インバータ回路7の出力を昇圧するトランス8とから構
成されている。
As shown in Fig. 1, the DC power supply described above includes a circuit 1 for power control of three-phase AC (a power control circuit using Cyrisk), a transformer 2 for boosting the output of this control circuit 1, and a transformer 2 for boosting the output of this control circuit 1. It consists of a rectifying circuit 3 and a smoothing circuit 4 which sequentially convert and smooth the secondary output of the circuit. The high-frequency power source also includes a circuit 5 for converting three-phase alternating current into direct current, a circuit 6 for smoothing the output of the circuit 5, an inverter circuit 7 for converting the output of the smoothing circuit 6 into high-frequency power, and this inverter circuit. The transformer 8 boosts the output of the transformer 7.

本発明の目的は、上記従来のレーザ装置の欠点に鑑み、
大出力のレーザ光を安価に得ることができるクロスフロ
ー型ガスレーザ装置を提供することにある。そのため本
発明においては、放′亀用電源として3相又流電源を使
用している。
In view of the above-mentioned drawbacks of the conventional laser device, an object of the present invention is to
An object of the present invention is to provide a cross-flow type gas laser device that can obtain high-output laser light at low cost. Therefore, in the present invention, a three-phase cross-current power source is used as the power source for the discharge turtle.

以下、図示する実施例を参照しながら本発明の詳細な説
明する。
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

第3図は、本発明に係るクロスフロー型ガスレーザ装置
に使用する電源を示し、この電源10は前用3相交流を
底力制御する回路11(自動′1圧調整器AVR)と、
この電力匍j御回路11の出力をKVオ〜ダまで昇圧す
るトランス12とからなっている。
FIG. 3 shows a power supply used in the cross-flow type gas laser device according to the present invention, and this power supply 10 includes a circuit 11 (automatic pressure regulator AVR) for controlling the power of the front three-phase AC,
It consists of a transformer 12 that boosts the output of this power control circuit 11 to KV order.

第4図は、上下方向に所定の間隔をおいて平行配置され
た放電電極13a、13b、13cおよび13dと上記
電源10との接続態様を示し、また第5図は上記電極1
3a、13b間の負荷インピーダンスをrabs 電極
13b、130間のそれをrbい電極13c、13d間
のそれとrcdとした場合におけるそれらの負荷インピ
ーダンスと上記電源10との等価接続図を示している。
FIG. 4 shows how the discharge electrodes 13a, 13b, 13c, and 13d arranged in parallel at predetermined intervals in the vertical direction are connected to the power source 10, and FIG.
The equivalent connection diagram of the load impedance and the above-mentioned power supply 10 is shown in the case where the load impedance between the electrodes 13b and 130 is set to be the same as that between the electrodes 13c and 13d.

なお、第5図に示すrは安定用抵抗である。Note that r shown in FIG. 5 is a stabilizing resistor.

いま、上記電源10の出力電圧が第4図に示す態様で電
極13 a −13dに印加されると、レーザ物質から
なるガス流14の影響を受けてそれらの電極間に第6図
に示す放電領域15a、15bおよび15cが形成され
る。しかしてリアミラー16、折返しミラー17,18
.19,20お諜びアウトプットミラー21からなる共
振器によってレーザ発振が行なわれ、上記アウトプット
ミラー21を介してレーザビーム22が取出される。
Now, when the output voltage of the power supply 10 is applied to the electrodes 13a-13d in the manner shown in FIG. 4, a discharge as shown in FIG. 6 occurs between the electrodes under the influence of the gas flow 14 made of the laser material. Regions 15a, 15b and 15c are formed. However, the rear mirror 16, folding mirrors 17, 18
.. Laser oscillation is performed by a resonator consisting of 19, 20 and an output mirror 21, and a laser beam 22 is extracted via the output mirror 21.

第7図および第8図は、放電電極間に純負荷を接続した
状態で該放電電極間に直流電源および単相交流電源を各
々接続した場合の瞬時消費電力を、また第9図は第5図
において負荷”@b t rbeおよびredを純負荷
とした場合の瞬時消費電力を各々示している。なお第9
図において心力が一定であるのは、上記個々の電極間に
接?rAさ、J′した負荷で消費される電力Wab −
W−およびWcaが互いに加算されるからである。
Figures 7 and 8 show the instantaneous power consumption when a DC power source and a single-phase AC power source are respectively connected between the discharge electrodes with a pure load connected between the discharge electrodes, and Figure 9 shows the instantaneous power consumption when a pure load is connected between the discharge electrodes. The figure shows the instantaneous power consumption when the loads "@b t rbe" and "red" are pure loads.
In the figure, the reason why the cardiac force is constant is because there is a connection between the individual electrodes mentioned above. The power consumed by the load rA, J′ Wab −
This is because W- and Wca are added together.

つぎに負荷が純負荷でなく放「L負性である場合を考え
ると、上記直流′、υ、係、単相交びL電源および3相
父流′亀源10を使用した場合における各放電瞬時消費
電力は各々第10図、i% 11図および第12図のよ
うに示される。ずなわち、直流4源使用のと割石′一定
でるるか、単相交υIC電源を使用した場合は放電開始
重圧以下のときに放電が停止し、そのためレーザ光が開
用周波i (50Hz−または60 Hz )の2倍の
周波数(100Hz甘たは120jlz)で断続するこ
とになる。
Next, considering the case where the load is not a pure load but a discharge "L negative," the DC', υ, and the respective discharge instants when using a single-phase AC L power source and a three-phase father current source 10 are as follows. The power consumption is shown in Figure 10, i% Figure 11, and Figure 12, respectively.In other words, when four DC sources are used, the power consumption is constant, or when a single-phase AC υIC power source is used, the discharge starts. The discharge stops when the pressure is lower than the heavy pressure, so that the laser light is intermittent at a frequency (100 Hz or 120 Hz) that is twice the operating frequency i (50 Hz or 60 Hz).

一方、上記3相交流′亀源10を使用した場合には、第
11図に示した電圧を120°づつずらして重ね合わせ
た心力が消費されることになる。か7>する場合、上記
商用周波数の6倍の周波数(300Hzまたは360H
z)でに力にリップルを伴なうが、このりッゾルは電源
電圧を放電開始電圧に比して十分高く設定することによ
シ実用上無視しえる。
On the other hand, when the three-phase alternating current source 10 is used, the mental force obtained by superimposing the voltages shown in FIG. 11 by shifting them by 120 degrees will be consumed. or 7>, use a frequency 6 times the above commercial frequency (300Hz or 360Hz).
z) Already there is a ripple in the force, but this ripple can be practically ignored by setting the power supply voltage sufficiently higher than the discharge start voltage.

すなわち、第4図に示した実施例における放電開始電圧
と放電電力リップルとの関係を計算して示した第13図
、および上記各電源を使用した場合における放電部への
注入電力の効率を各々計算して示した第14図から明ら
かなとおり、放電開始電圧が電源電圧(尖頭値)の40
〜50%以下の状態であれば、3相交流を電源を使用し
た場合と直流電源を使用した場合との実質的な差異はな
くなる。
That is, FIG. 13 shows the calculated relationship between the discharge starting voltage and the discharge power ripple in the example shown in FIG. As is clear from the calculated figure 14, the discharge starting voltage is 40% of the power supply voltage (peak value).
In a state of ~50% or less, there is no substantial difference between the case where a three-phase AC power source is used and the case where a DC power source is used.

つぎに3相交流′龜源を使用した本発明のレーザ装置が
直流′電源を使用したレーザ装置に比して放電部を小型
に構成しうる点について貌明する。
Next, it will be explained that the laser device of the present invention using a three-phase AC power source can have a smaller discharge section than the laser device using a DC power source.

小型で大出力のレーザ装置を実現するための重要ポイン
トは、放電電力密度(W/σ2)を高くすることである
が、そのために電極間電圧を上げていくとアークが生じ
て放電が停止する。したがって上記放電電力密度には限
界があり、これは電界強度とガス圧との比(E/P)で
決定される。
An important point in realizing a small, high-output laser device is to increase the discharge power density (W/σ2), but if the voltage between the electrodes is increased for this purpose, an arc will occur and the discharge will stop. . Therefore, there is a limit to the discharge power density, which is determined by the ratio of electric field strength to gas pressure (E/P).

いま3相交流d源を使用した場合と直流電源を使用した
場合の電極形状を、同一のガス圧および同一の電極間電
圧で同一の注入−力を得るという条件下で比較すると、
第15図に示すように、3相交流電源全使用した場合に
比して直流電源を使用した場合には2倍の電極長を必要
とする。したがって3相交流電源を使用ずれば、レーザ
装置の小型化を図れるという利点が得られる。
Now, if we compare the electrode shapes when using a three-phase AC d source and when using a DC power source, under the conditions that the same injection force is obtained with the same gas pressure and the same interelectrode voltage,
As shown in FIG. 15, when a DC power source is used, the electrode length is twice as long as when the three-phase AC power source is fully used. Therefore, if a three-phase AC power source is used, there is an advantage that the laser device can be made smaller.

なお、lkW級のレーザ装置の場合、第15図に示した
電極長L1電極配置間隔dは各々Lキ1yyi+d中2
〜5crn8にであり、′−1だ放電部分の層厚tは2
〜3Crn程度である。
In the case of a 1kW class laser device, the electrode length L1 and the electrode arrangement interval d shown in FIG.
~5crn8, and the layer thickness t of the discharge part is '-1' is 2.
~3Crn.

上記実施例では4本の棒状電極i3a〜14&を使用し
ているが、アーク遷移を防止するためにそれらの電極に
代えて第17図に示すような分画1型電極13a′・・
・・・・、13ト・・・・・、 13 c’・・・・・
・、 13d’・・・を使用し、それらの電極を各々安
定抵抗rをブrして上記3相交流電1源に接続するよう
にしてもよい。
In the above embodiment, four rod-shaped electrodes i3a to 14& are used, but in order to prevent arc transition, these electrodes are replaced with fraction 1 type electrodes 13a' as shown in FIG.
..., 13 t..., 13 c'...
. , 13d'... may be used, and each of these electrodes may be connected to the three-phase AC power source 1 through a stabilizing resistor r.

放′亀用電源として3相交流電源を使用した本発明に係
るクロスフロー型ガスレーザ装置は、以下のような効果
をもつ。
The cross-flow type gas laser device according to the present invention, which uses a three-phase AC power source as a power source for emission, has the following effects.

■ 第1図、第2図および第3図の対比から明らかなと
おり、放′「ヨ用電源の構成がきわめて簡単であるから
装置コスト1犬幅に低減でき、それだけ従来装置よりも
運転コストを下げることができる。なおこの種のレーザ
装置において、放電用電源は装置コストのうち大きな割
合を占める。
■ As is clear from the comparison of Figures 1, 2, and 3, the configuration of the power source for the release is extremely simple, so the equipment cost can be reduced by one inch, and the operating cost is that much lower than the conventional equipment. Note that in this type of laser device, the discharge power source occupies a large proportion of the device cost.

■ 直流電源の効率が90%程度、高周波電源のそれが
70%程度であるのに対し、3相交流電源のそれは97
%以上であシ、シたがって大出力のレーザ光を得る場合
に有利である。
■ The efficiency of a DC power supply is around 90% and that of a high frequency power supply is around 70%, while that of a 3-phase AC power supply is 97%.
% or more, therefore, it is advantageous when obtaining a high output laser beam.

■ 直流電源を使用する場合に比して放電部を小型化し
うる。
■ The discharge section can be made smaller than when using a DC power supply.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、各々直流電源および高周波電源
の構成例を示したブロック図、第3図は本発明に係るレ
ーデ装置に使用する3相交流電源の構成を示したブロッ
ク図、第4図は各放電電極および共振器を構成するミラ
ーの配置態様と該電極と3相交流電源との接続態様を各
々概念的に示した斜視図、第5図は各放電電極と3相交
流電源との等価接続図、第6図は放電の態様を示した概
念図、第7図、第8図および第9図は゛亀倹間に純負荷
を介在させた場合における直流電源使用時の瞬時消費電
力、単相交流電源使用時の瞬時消費電力および3相交流
電源使用時の瞬時消費電力を各々したグラフ、第10図
、第11図および第12図は放電負荷時における直流電
源使用時の瞬時消費室ブハ単相交流成源使用時の瞬時消
費′電力および3相交流電源使用時の瞬時消費電力を各
々示したグラフ、第13図は放電開始電圧と放′a電力
すッゾルとの関係を示すグラフ、第14図は放電部への
注入電力の効率を示したグラフ、第15図は3相交流電
源を使用した場合の電極形状と直流電源を使用した場合
の電極形状を対比して示した概念図、第16図は放電電
極の他の構成例を示した概念図。 10・・・3相交流電源、11・・・電力制御回路、1
2・・・昇圧トランス、13a〜13d・・・放電電極
、14・・・ガス流、16・・・リアミラー、17〜2
o・・・折返しミラー、22・・・レーデビーム、13
a’〜13d′・・・分割型放電電極。 第4図 第6図 第7図        第10図 第8図        第11図
1 and 2 are block diagrams showing configuration examples of a DC power source and a high frequency power source, respectively. FIG. 3 is a block diagram showing a configuration of a three-phase AC power source used in a radar device according to the present invention. Figure 4 is a perspective view conceptually showing the arrangement of each discharge electrode and the mirrors constituting the resonator, and the connection between the electrodes and a three-phase AC power supply, and Figure 5 is a diagram showing each discharge electrode and three-phase AC power supply. Fig. 6 is a conceptual diagram showing the mode of discharge, Fig. 7, Fig. 8, and Fig. 9 show the instantaneous consumption when using a DC power supply with a pure load interposed between the two. Graphs showing instantaneous power consumption when using single-phase AC power supply and instantaneous power consumption when using three-phase AC power supply, respectively. Figures 10, 11, and 12 show instantaneous power consumption when using DC power supply during discharge load. Figure 13 is a graph showing the instantaneous power consumption when using a single-phase AC power supply and the instantaneous power consumption when using a three-phase AC power supply. Figure 14 is a graph showing the efficiency of power injected into the discharge section, and Figure 15 shows a comparison of the electrode shape when using a three-phase AC power source and the electrode shape when using a DC power source. FIG. 16 is a conceptual diagram showing another example of the configuration of the discharge electrode. 10... Three-phase AC power supply, 11... Power control circuit, 1
2... Step-up transformer, 13a-13d... Discharge electrode, 14... Gas flow, 16... Rear mirror, 17-2
o... Reflection mirror, 22... Redebeam, 13
a' to 13d'...divided discharge electrodes. Figure 4 Figure 6 Figure 7 Figure 10 Figure 8 Figure 11

Claims (1)

【特許請求の範囲】[Claims] 放電用電源として3相交流電源を使用したことを特徴と
するクロスフロー型ガスレーザ装置。
A cross-flow type gas laser device characterized in that a three-phase AC power source is used as a discharge power source.
JP18494782A 1982-10-20 1982-10-20 Cross flow type gas laser device Pending JPS5974691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18494782A JPS5974691A (en) 1982-10-20 1982-10-20 Cross flow type gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18494782A JPS5974691A (en) 1982-10-20 1982-10-20 Cross flow type gas laser device

Publications (1)

Publication Number Publication Date
JPS5974691A true JPS5974691A (en) 1984-04-27

Family

ID=16162132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18494782A Pending JPS5974691A (en) 1982-10-20 1982-10-20 Cross flow type gas laser device

Country Status (1)

Country Link
JP (1) JPS5974691A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127773A (en) * 1983-12-14 1985-07-08 Mitsubishi Electric Corp Pulse oscillation laser device
JPS6120687A (en) * 1984-07-10 1986-01-29 Japan Tobacco Inc Laser drilling device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127773A (en) * 1983-12-14 1985-07-08 Mitsubishi Electric Corp Pulse oscillation laser device
JPH0131714B2 (en) * 1983-12-14 1989-06-27 Mitsubishi Electric Corp
JPS6120687A (en) * 1984-07-10 1986-01-29 Japan Tobacco Inc Laser drilling device

Similar Documents

Publication Publication Date Title
JPS6079417A (en) Power converter for solar battery
JPH0523040B2 (en)
JPS5974691A (en) Cross flow type gas laser device
JP3269010B2 (en) Inverter power supply unit for discharge lamp lighting
JPH08130870A (en) Charged capacitor power supply
JP2000241477A (en) Operation method for direct current power supply device to be tested
JPH02269426A (en) Dc uninterruptible power supply unit
JPH06284730A (en) Dc power-supply device
JPH0678535A (en) Dc power supply equipment
JP3364498B2 (en) Switching power supply
JP2000083322A (en) Inverter system dc power source
JP2000125565A (en) Power supply device
JPH08168266A (en) Method for controlling dc-ac converter
JPH0993811A (en) Step-up/step-down converter
JP2889303B2 (en) Inverter device
JPS60167683A (en) Power source
JPH0734629B2 (en) Power converter
JPH1014257A (en) Power supply unit
JPH0750633B2 (en) Discharge lamp lighting device
JPH02112881A (en) Power source for arc welding and cutting
JPS60187470A (en) Arc welding power source
JPH067749B2 (en) GTO thyristor converter
JPH01311588A (en) Converter device
JPH1141811A (en) Power-storing equipment
JPS61273168A (en) Power source