JP2000241477A - Operation method for direct current power supply device to be tested - Google Patents

Operation method for direct current power supply device to be tested

Info

Publication number
JP2000241477A
JP2000241477A JP11040152A JP4015299A JP2000241477A JP 2000241477 A JP2000241477 A JP 2000241477A JP 11040152 A JP11040152 A JP 11040152A JP 4015299 A JP4015299 A JP 4015299A JP 2000241477 A JP2000241477 A JP 2000241477A
Authority
JP
Japan
Prior art keywords
direct current
power supply
output
power
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11040152A
Other languages
Japanese (ja)
Inventor
Mamoru Horiguchi
守 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP11040152A priority Critical patent/JP2000241477A/en
Publication of JP2000241477A publication Critical patent/JP2000241477A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce power consumption in a test operation to allow the operation high in energy saving effect, by ON/OFF controlling a switching element based on a synthesized signal of a detection signal of a current detection element and a detection signal of a direct current output voltage. SOLUTION: A PRC is a power return circuit constituting an important part of this device, and constitutes a DC-DC converter having direct current input terminals (f), (g) and direct current output terminals J, K, the direct current input terminals (f), (g) are directly connected between direct current output terminals (d), (e) of a device TPS to be tested, and a direct current output is connected with a direct current input portion of an inverter INV through a diode DR for preventing reverse flow. A primary winding n1 and a secondary winding n2 of an output conversion transformer T2, a switching element S, a current detection element SH forms the direct current output portion. A control circuit CON ON/OFF controls the switching element S based on synthesized signals of input current detection signals and output voltage detection signals from a diode D3, a choke coil L3, a capacitor C3, and the switching element S, and supplies direct current with a constant voltage and a constant current to the direct current output portion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は定電圧整流器、DC−D
Cコンバータ等の直流電源装置の負荷試験運転方法に関
するものである。
The present invention relates to a constant voltage rectifier, DC-D
The present invention relates to a load test operation method for a DC power supply such as a C converter.

【0002】[0002]

【従来技術】定電圧整流器或いはDC−DCコンバータ
等の直流出力をもつ、電子機器においては、一般に工場
等からの出荷前にエージング、温度上昇試験或いは各種
の性能チェックのための負荷試験を行い、性能確認をし
た上で顧客等への引渡しがなされている。係る負荷試験
は一般に被試験装置の直流出力端に負荷抵抗を接続して
実施されている。
2. Description of the Related Art An electronic device having a DC output such as a constant voltage rectifier or a DC-DC converter generally performs an aging test, a temperature rise test, or a load test for various performance checks before shipment from a factory or the like. After confirming the performance, it is delivered to the customer. Such a load test is generally performed by connecting a load resistor to the DC output terminal of the device under test.

【0003】図3は、この種の従来方法を説明する回路
構成図で、図中TPSは被試験用直流電源装置で交流入
力端子a,b,cと直流出力端子d,eをもつコンバー
タの例を示し、該交流入力端子a,b,cにより商用等
の三相交流電源ACより交流を受電し、ブレーカーB,
三相整流器REC、入力コンデンサC1を介して、出力
変換トランスTの1次巻線n1に直流電圧を与える。こ
の1次巻線n1にはスイッチング素子Sが接続され、制
御回路CONの信号によりオン、オフ制御され、該トラ
ンスTの2次巻線n2側に逆変換された交流を生じせし
め、更に該交流出力を直流出力部を形成するダイオード
D1,D2平滑用チョークコイルL及びコンデンサC2
を介して該直流出力端子d,eに所要の直流電力を供給
するように構成されている。Rは該装置TPSの試験運
転を行うため、該装置TPSの直流出力端子d,e間に
接続される負荷抵抗である。
FIG. 3 is a circuit diagram illustrating this type of conventional method. In the figure, TPS is a DC power supply under test, which is a converter having AC input terminals a, b, c and DC output terminals d, e. An example is shown, in which the AC input terminals a, b, and c receive AC from a three-phase AC power supply AC such as a commercial one, and the breakers B,
A DC voltage is applied to the primary winding n1 of the output conversion transformer T via the three-phase rectifier REC and the input capacitor C1. The switching element S is connected to the primary winding n1, and is turned on and off by a signal of the control circuit CON, so that an inverted AC is generated on the secondary winding n2 side of the transformer T, and the AC is further converted. Diodes D1 and D2 forming a DC output section, and choke coil L for smoothing and capacitor C2
The DC output terminals d and e are supplied with required DC power via the DC output terminals d and e. R is a load resistance connected between the DC output terminals d and e of the device TPS for performing a test operation of the device TPS.

【0004】係る直流電源装置は一般に入力条件及び最
大出力定格等が設定されており、負荷状態等を想定し、
負荷抵抗Rを可変し、軽負荷から全負荷において、出力
電力(出力電圧×出力電流)を供給し、該装置の温度上
昇テスト、出力定電圧性能等の試験を行う。この間、供
給される出力電力は該負荷抵抗Rで全て熱として消費さ
れる。係る試験運転は数10台及至数100台の装置を
同時、或いは個別に実施されるために工場等における使
用電力量が増し、省エネ上の問題がある。
In general, input conditions, maximum output ratings, and the like are set for such a DC power supply device.
The output resistance (output voltage × output current) is supplied from a light load to a full load by varying the load resistance R, and a test such as a temperature rise test and an output constant voltage performance of the device is performed. During this time, all the supplied output power is consumed as heat by the load resistor R. Such a test operation is performed simultaneously or individually for several tens to several hundreds of devices, so that the amount of electric power used in a factory or the like increases and there is a problem in energy saving.

【0005】[0005]

【解決すべき課題】本発明は、試験運転時の使用電力の
低減を図り、所謂省エネ効果の高い運転方法を提供す
る。
SUMMARY OF THE INVENTION The present invention provides an operation method that reduces power consumption during a test operation and has a high so-called energy saving effect.

【0006】[0006]

【課題が解決するための手段】上記の課題を解決するた
め請求項1の発明は、交流入力部もしくは直流入力部
(第1)と、順変換部もしくは逆変換部(第1)と、直
流出力部(第1)とを備えた被試験用直流電源装置の負
荷運転において、該直流出力部(第1)に直流入力部
(第2)と、逆変換部(第2)と、直流出力部(第2)
とを備えた電力帰還回路を接続すると共に、該電力帰還
回路の直流出力を該第1の直流入力部に接続し、該被試
験用直流電源装置の負荷運転時、該直流出力部(第1)
の余乗電力を該電力帰還回路を介して、被試験用直流電
源装置の直流入力部(第1)に帰還せしめるようにした
ことを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 comprises: an AC input section or a DC input section (first); a forward conversion section or an inverse conversion section (first); In a load operation of the DC power supply under test provided with the output unit (first), the DC output unit (first) has a DC input unit (second), an inverse converter (second), and a DC output unit. Department (second)
And a DC output of the power feedback circuit is connected to the first DC input section. When the DC power supply under test is in a load operation, the DC output section (first )
Is fed back to the DC input unit (first) of the DC power supply under test via the power feedback circuit.

【0007】又、上記課題を解決するため請求項2の発
明は、電力帰還回路の直流出力電圧を被試験用直流電源
装置の直流入力部電圧より高く設定したことを特徴とす
る。
According to another aspect of the present invention, a DC output voltage of a power feedback circuit is set higher than a DC input voltage of a DC power supply under test.

【0008】上記課題を解決するため請求項3の発明
は、被試験用直流電源装置として、単相交流入力部もし
くは三相交流入力部をもつ定電圧整流装置を用いたこと
を特徴とする。
According to a third aspect of the present invention, a constant voltage rectifier having a single-phase AC input section or a three-phase AC input section is used as the DC power supply under test.

【0009】又、上記課題を解決するため請求項4の発
明は、被試験用直流電源装置として定電圧DC−DCコ
ンバータを用いたことを特徴とする。
According to another aspect of the present invention, a constant voltage DC-DC converter is used as the DC power supply under test.

【0010】[0010]

【実施の形態】図1は本発明の一実施例を示す回路構成
図で従来例と同一符号は同等部分を示す。図中TPSは
被試験用直流電源装置としての定電圧整流器の例を示
し、SHは直流出力側に設けた電流検出素子で制御回路
CONにおいて、該電流検出素子SHの検出信号と直流
出力電圧(V2)の検出信号の合成信号によりスイッチ
ング素子Sをオン、オフ制御し、所定の定電圧直流電力
(V2×I2)を供給するように構成されている。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, in which the same reference numerals as in the prior art denote the same parts. In the drawing, TPS denotes an example of a constant voltage rectifier as a DC power supply device under test, and SH denotes a current detection element provided on the DC output side. In a control circuit CON, a detection signal of the current detection element SH and a DC output voltage ( The switching element S is turned on and off by a composite signal of the detection signal of V2), and is configured to supply a predetermined constant-voltage DC power (V2 × I2).

【0011】この装置TPSの交流入力部a,b,cは
商用交流ACを直接入力することなく後述するインバー
タINVを介し、その出力端子U0,V0,W0より入
力されている例を示す。INVはインバータで商用三相
交流電源ACを交流入力部U,V,Wで受電し、トラン
スT1で昇降圧した後、サイリスタ整流器RFで直流に
順変換する。そして直流平滑用のチョークコイルCH、
コンデンサCを通し、インバータ直流入力部の定電圧
出力電圧V1を形成する。INは該直流電圧V1を再び
交流に変換する逆変換部で所要周波数の出力を端子U
0,V0,W0より供給するように形成される。なおG
Tは整流器RF及び逆変換部INの図示しないサイリス
タ等を制御する点弧回路である。
The AC input units a, b, and c of the device TPS are input from their output terminals U0, V0, and W0 via an inverter INV described later without directly inputting commercial AC. INV is an inverter that receives commercial three-phase AC power supply AC at AC input units U, V, and W at the AC input units U, V, and W, steps up and down the voltage at the transformer T1, and then converts the voltage to DC at the thyristor rectifier RF. And choke coil CH for DC smoothing,
Through capacitor C 0, to form a constant voltage output voltage V1 of the inverter DC input section. IN is an inverse converter for converting the DC voltage V1 into AC again, and outputs an output of a required frequency to a terminal U.
It is formed so as to be supplied from 0, V0, W0. G
T is a firing circuit for controlling a rectifier RF and a thyristor (not shown) of the inverse converter IN.

【0012】次にPRCは本発明の要部を構成する電力
帰還回路で、直流入力端子f,gと直流出力端子J,K
を備えたDC−DCコンバータを構成し、直流入力端子
f,gは該被試験装置TPSの直流出力端子d,e間に
直接接続され、又直流出力は逆流防止用ダイオードDR
を介して、該インバータINVの直流入力部に接続され
ている。T2は出力変換トランス、n1,n2はその1
次巻線及び2次巻線、Sはスイッチング素子、SHは電
流検出素子D3,L3及びC3は直流出力部を形成する
ダイオード、チョークコイル及びコンデンサ、CONは
スイッチング素子の制御回路で入力電流検出信号と出力
電圧検出信号との合成信号により該スイッチング素子を
オン、オフ制御し、直流出力部に定電圧、定電流の直流
を供給する如く構成されている。
Next, PRC is a power feedback circuit constituting a main part of the present invention, wherein DC input terminals f, g and DC output terminals J, K
The DC input terminals f and g are directly connected between the DC output terminals d and e of the device under test TPS, and the DC output is connected to a reverse current prevention diode DR.
Is connected to the DC input of the inverter INV. T2 is an output conversion transformer, n1 and n2 are 1
The secondary winding and the secondary winding, S is a switching element, SH is a current detection element D3, L3 and C3 are diodes forming a DC output section, a choke coil and a capacitor, and CON is a control circuit of the switching element and an input current detection signal. The switching element is controlled to be turned on and off by a combined signal of the output signal and the output voltage detection signal, and a constant voltage and a constant current DC are supplied to the DC output unit.

【0013】上記の構成において、電力帰還回路PRC
の直流出力電圧V3は予めインバータINの入力部直流
電圧V1より僅かに高めに電圧設定する。試験運転を開
始すると、電力帰還回路PRCは被試験装置TPSの直
流出力V2を受けてインバータ直流部電圧V1より若干
高い電圧(V1+ΔV1=V3)に変換する。電流は流
れ設定した入力電流値(電流検出素子SHで検出した電
流)で電流制限がかかり出力電圧V3は若干下がりほぼ
インバータINの直流部電圧V1落ちついて運転を行
う。
In the above configuration, the power feedback circuit PRC
Of the DC output voltage V3 is set slightly higher than the DC voltage V1 at the input of the inverter IN in advance. When the test operation starts, the power feedback circuit PRC receives the DC output V2 of the device under test TPS and converts it to a voltage (V1 + ΔV1 = V3) slightly higher than the inverter DC section voltage V1. The current is limited by the set input current value (current detected by the current detection element SH), and the output voltage V3 decreases slightly, and the operation is performed while the DC voltage V1 of the inverter IN is settled down.

【0014】図1において、運転中の使用電力について
説明する。先ず商用電源ACの出力電力を(W)、イン
バータ入力直流設定部に供給される電力を(W4)、イ
ンバータINVの出力電力を(W2)(試験装置TPS
の入力電力)、又電力帰還回路PRCの出力(帰還)電
力を(W3)とすると運転に必要な電力は
Referring to FIG. 1, the power consumption during operation will be described. First, the output power of the commercial power supply AC is (W), the power supplied to the inverter input DC setting unit is (W4), and the output power of the inverter INV is (W2) (test apparatus TPS).
If the output (feedback) power of the power feedback circuit PRC is (W3), the power required for operation is

【0015】[0015]

【数1】 となる。又インバータINVの電力損失(ロス)を(Δ
W2)、被試験装置TPSの電力損失を(ΔW1)、又
電力帰還回路の電力損失を(ΔW3)とする。
(Equation 1) Becomes The power loss (loss) of the inverter INV is represented by (Δ
W2), the power loss of the device under test TPS is (ΔW1), and the power loss of the power feedback circuit is (ΔW3).

【0016】[0016]

【数2】 (Equation 2)

【0017】[0017]

【数3】 (Equation 3)

【0018】[0018]

【数4】 従って、電力Wは(1)式より、(Equation 4) Therefore, the power W is given by the equation (1).

【0019】[0019]

【数5】 となる。(Equation 5) Becomes

【0020】上記(5)式から明らかなように試験運転
に必要な電力(W)はインバータINV、被試験装置T
PS及び電力帰還回路PRCのトータルロス分を供給す
ればよい。従ってこのトータルロスWが、従来負荷抵抗
Rで熱として消費したロスに比べ、小さければ省電力効
果が生じることになる。因みに直流電源装置等における
電源効率(入力電力に対する出力電力比率)は一般に7
0%〜90%位である。
As is apparent from the above equation (5), the power (W) required for the test operation is determined by the inverter INV and the device under test T
What is necessary is just to supply the total loss of PS and the power feedback circuit PRC. Therefore, if the total loss W is smaller than the loss that is conventionally consumed as heat by the load resistance R, a power saving effect is obtained. Incidentally, the power supply efficiency (ratio of output power to input power) in a DC power supply or the like is generally 7
It is about 0% to 90%.

【0021】ここで被試験装置TPSの効率を(q
1)、インバータINVの効率を(q2)、又電力帰還
回路の効率を(q3)とすると、上記式(2)の電力
(W2)は
Here, the efficiency of the device under test TPS is represented by (q
1) Assuming that the efficiency of the inverter INV is (q2) and the efficiency of the power feedback circuit is (q3), the power (W2) in the above equation (2) is

【0022】[0022]

【数6】 又、式(3)の電力は(W3)は(Equation 6) In addition, the power of the equation (3) is (W3)

【0023】[0023]

【数7】 又、式(4)の電力(W4)は(Equation 7) Also, the electric power (W4) in equation (4) is

【0024】[0024]

【数8】 又、式(5)の電力(W)は(Equation 8) The power (W) in equation (5) is

【0025】[0025]

【数9】 となる。一方、従来方法の必要電力(W0)は(Equation 9) Becomes On the other hand, the required power (W0) of the conventional method is

【0026】[0026]

【数10】 で表される。従って従来の使用電力(W0)と本発明実
施例の使用電力の比(W/W0)は
(Equation 10) It is represented by Therefore, the ratio (W / W0) between the conventional power consumption (W0) and the power consumption of the embodiment of the present invention is:

【0027】[0027]

【数11】 となる。そこで上記の電源効率q1,q2,q3を各9
0%と想定すると
[Equation 11] Becomes Therefore, the power supply efficiency q1, q2, q3 is set to 9
Assuming 0%

【0028】[0028]

【数12】 又、各80%とすると、同様に0.61に、更に70%
とすると0.94となり、従来の使用量に比し、各の略
3割、6割及び9割となる。従って電源効率の高い装置
程、省電力効果は大きい。逆に電源効率が約68%以下
の装置では効果がなく、逆にロスが増大する。
(Equation 12) Also, if each of them is 80%, it is similarly reduced to 0.61 and 70%.
Then, it becomes 0.94, which is approximately 30%, 60%, and 90% of each of the conventional usage amounts. Therefore, the higher the power supply efficiency, the greater the power saving effect. Conversely, a device having a power supply efficiency of about 68% or less has no effect, and conversely increases the loss.

【0029】図2は本発明の他の実施例を説明する構成
図で試験装置TPSとして直流入力を受電する定電圧D
C−DCコンバータを使用した例を示す。この実施例で
は該コンバータTPSの直流入力電圧V1は別途構成さ
れた試験用電源DCから供給される。係る構成において
も上記実施例と同様に被試験装置TPSの直流出力端子
d,eを電力帰還回路PRCの入力端子f,gに直接接
続し、電力帰還回路PRCの出力V3を逆流防止用ダイ
オードDRを介して、該コンバータの入力部に接続す
る。なお帰還回路PRCの出力電圧V3は上記同様にコ
ンバータ入力電圧V1より若干高めに設定する。
FIG. 2 is a block diagram for explaining another embodiment of the present invention. As a test apparatus TPS, a constant voltage D receiving a DC input is used.
An example using a C-DC converter will be described. In this embodiment, the DC input voltage V1 of the converter TPS is supplied from a separately configured test power supply DC. In this configuration as well, the DC output terminals d and e of the device under test TPS are directly connected to the input terminals f and g of the power feedback circuit PRC, and the output V3 of the power feedback circuit PRC is connected to the reverse current prevention diode DR as in the above embodiment. To the input of the converter. The output voltage V3 of the feedback circuit PRC is set slightly higher than the converter input voltage V1 in the same manner as described above.

【0030】図4は本発明の実施例図で、図中UPSは
試験電力供給用の無停電電源装置を示し、通常は商用交
流ACを入出力し、停電時は、バッテリBattからイン
バータINを介し交流出力(W)を供給する如く構成さ
れてる。係る回路においては、USPはIKVA(10
0V,10A)の定格出力特性を備え、又被試験用電源
として54.6V14Aの定格出力を有するコンバータ
で実施した。又図中、A1,A2,A3は各部の電流
(A)、BVはバッテリ電圧、WはインバータINの出
力電力A1,V1はこの出力電流及び出力電圧である。
以下表1にこの実験データを示す。
FIG. 4 is a diagram showing an embodiment of the present invention. In the figure, UPS indicates an uninterruptible power supply for supplying test power. Normally, a commercial AC is input / output, and during a power failure, the inverter IN is supplied from the battery Batt. It is configured to supply an AC output (W) via the power supply. In such a circuit, USP is based on IKVA (10
(0V, 10A) and a converter having a rated output of 54.6V14A as a power supply under test. In the drawing, A1, A2, and A3 denote currents (A) of respective parts, BV denotes a battery voltage, W denotes output powers A1 and V1 of the inverter IN, and the output current and the output voltage.
Table 1 shows the experimental data.

【0031】[0031]

【表1】 上記の表1から明らかなように、インバータを電源とし
てコンバータ(整流器)を運転し、そのコンバータDC
電力をインバータの電源側に戻すことによって、回収率
なおCONVは垂下領域で運転を行った。又、インバータは
バッテリー付で行ったが、バッテリーは付けなくても安
定化された電源があれば必要ない事が確認できた。
[Table 1] As is apparent from Table 1 above, the converter (rectifier) is operated using the inverter as a power source, and the converter DC
By returning power to the power supply side of the inverter, the recovery rate In addition, CONV operated in the drooping region. In addition, although the inverter was equipped with a battery, it was confirmed that even if a battery was not attached, it was not necessary if a stabilized power supply was provided.

【0032】[0032]

【発明の効果】以上の説明から明らかなように本発明に
よれば工場等の設備電力の使用量の大幅な削減が可能と
なり、エネルギーの高効率化等の省エネ効果が大であ
り、又、発熱による周辺環境への配慮も不要になる等実
用上の効果は大きい。
As is clear from the above description, according to the present invention, it is possible to greatly reduce the amount of electric power used in factories and the like, and to achieve a large energy saving effect such as higher energy efficiency. Practical effects are great, such as the need to consider the surrounding environment due to heat generation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例(構成図)FIG. 1 shows an embodiment (configuration diagram) of the present invention.

【図2】本発明の他の実施例(構成図)FIG. 2 shows another embodiment (configuration diagram) of the present invention.

【図3】従来構成図FIG. 3 is a conventional configuration diagram.

【図4】本発明の実施例FIG. 4 shows an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

AC 商用交流電源 TPS 被試験用直流電源装置 PRC 電力帰還回路 SH 電流検出端子 UPS 無停電電源装置 R 負荷抵抗 W0,W1,W2,W3 供給電力 q1,q2,q3 効率 AC Commercial AC power supply TPS DC power supply under test PRC Power feedback circuit SH Current detection terminal UPS Uninterruptible power supply R Load resistance W0, W1, W2, W3 Supply power q1, q2, q3 Efficiency

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 交流入力部もしくは直流入力部(第1)
と、順変換部もしくは逆変換部(第1)と、直流出力部
(第1)とを備えた被試験用直流電源装置の負荷運転に
おいて、該直流出力部(第1)に直流入力部(第2)
と、逆変換部(第2)と、直流出力部(第2)とを備え
た電力帰還回路を接続すると共に、該電力帰還回路の直
流出力を、該第1の直流入力部に接続し、該被試験用直
流電源装置の負荷運転時、該直流出力部(第1)の余乗
電力を該電力帰還回路を介して、該被試験用直流電源装
置の直流入力部(第1)に帰還せしめるようにしたこと
を特徴とする被試験用直流電源装置の運転方法。
An AC input section or a DC input section (first)
And a DC conversion unit (first) and a DC output unit (first) in a load operation of the DC power supply under test, the DC output unit (first) has a DC input unit ( 2)
And a power feedback circuit including an inverse conversion unit (second) and a DC output unit (second), and a DC output of the power feedback circuit is connected to the first DC input unit; During load operation of the DC power supply under test, the surplus power of the DC output section (first) is fed back to the DC input section (first) of the DC power supply under test via the power feedback circuit. A method of operating a DC power supply under test, characterized in that the method comprises:
【請求項2】 電力帰還回路の直流出力電圧を被試験用
直流電源装置の直流入力部電圧より高く設定したことを
特徴とする請求項1の被試験用直流電源装置の運転方
法。
2. The method for operating a DC power supply under test according to claim 1, wherein the DC output voltage of the power feedback circuit is set higher than the DC input voltage of the DC power supply under test.
【請求項3】 被試験用直流電源装置として、単相交流
入力部もしくは三相交流入力部をもつ定電圧整流装置を
用いたことを特徴とする請求項1又は請求項2の被試験
用直流電源装置の運転方法。
3. The DC power supply under test according to claim 1, wherein a constant voltage rectifier having a single-phase AC input portion or a three-phase AC input portion is used as the DC power supply device under test. How to operate the power supply.
【請求項4】 被試験用直流電源装置として定電圧DC
−DCコンバータを用いたことを特徴とする請求項1又
は請求項2の被試験用直流電源装置の運転方法。
4. A constant-voltage DC power supply as a DC power supply under test.
The method for operating a DC power supply under test according to claim 1 or 2, wherein a DC converter is used.
JP11040152A 1999-02-18 1999-02-18 Operation method for direct current power supply device to be tested Pending JP2000241477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11040152A JP2000241477A (en) 1999-02-18 1999-02-18 Operation method for direct current power supply device to be tested

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11040152A JP2000241477A (en) 1999-02-18 1999-02-18 Operation method for direct current power supply device to be tested

Publications (1)

Publication Number Publication Date
JP2000241477A true JP2000241477A (en) 2000-09-08

Family

ID=12572805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11040152A Pending JP2000241477A (en) 1999-02-18 1999-02-18 Operation method for direct current power supply device to be tested

Country Status (1)

Country Link
JP (1) JP2000241477A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247717A (en) * 2012-05-23 2013-12-09 Advanced Power Technology Corp Electric power regeneration aging apparatus
CN105717388A (en) * 2015-12-08 2016-06-29 国家电网公司 Transformer test platform
CN106645916A (en) * 2015-10-29 2017-05-10 国网智能电网研究院 Power test system of high-voltage DC-DC converter
JP6456578B1 (en) * 2017-11-10 2019-01-23 三菱電機株式会社 Test system and test method for power converter
WO2019092911A1 (en) * 2017-11-10 2019-05-16 三菱電機株式会社 Test system and test method for power conversion device
CN110196371A (en) * 2019-06-28 2019-09-03 潍柴动力股份有限公司 The test macro of DC-DC converter
JP2020112492A (en) * 2019-01-15 2020-07-27 富士電機株式会社 Load device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247717A (en) * 2012-05-23 2013-12-09 Advanced Power Technology Corp Electric power regeneration aging apparatus
CN106645916A (en) * 2015-10-29 2017-05-10 国网智能电网研究院 Power test system of high-voltage DC-DC converter
CN105717388A (en) * 2015-12-08 2016-06-29 国家电网公司 Transformer test platform
JP6456578B1 (en) * 2017-11-10 2019-01-23 三菱電機株式会社 Test system and test method for power converter
WO2019092911A1 (en) * 2017-11-10 2019-05-16 三菱電機株式会社 Test system and test method for power conversion device
EP3709493A4 (en) * 2017-11-10 2020-12-23 Mitsubishi Electric Corporation Test system and test method for power conversion device
US11428748B2 (en) 2017-11-10 2022-08-30 Mitsubishi Electric Corporation System and method for testing power conversion device
JP2020112492A (en) * 2019-01-15 2020-07-27 富士電機株式会社 Load device
JP7286975B2 (en) 2019-01-15 2023-06-06 富士電機株式会社 load device
CN110196371A (en) * 2019-06-28 2019-09-03 潍柴动力股份有限公司 The test macro of DC-DC converter
CN110196371B (en) * 2019-06-28 2021-02-23 潍柴动力股份有限公司 Test system of DC-DC converter

Similar Documents

Publication Publication Date Title
US6256213B1 (en) Means for transformer rectifier unit regulation
US6307761B1 (en) Single stage high power-factor converter
US7456524B2 (en) Apparatus for and methods of polyphase power conversion
US6819576B2 (en) Power conversion apparatus and methods using balancer circuits
EP1365499B1 (en) Switching power supply circuit
US20220190638A1 (en) System to provide AC or DC power to electronic equipment
JP5347362B2 (en) Emergency power circuit
US5343378A (en) Power circuit
JP3191097B2 (en) Uninterruptible power supply and charge control method thereof
US6424549B1 (en) Low consumption converter directly connectable to the mains
JP2000241477A (en) Operation method for direct current power supply device to be tested
JPH06141536A (en) Low-loss power supply device including dc/dc converter
JPH02269426A (en) Dc uninterruptible power supply unit
JPS605779A (en) Control power source circuit of inverter
CN112075019A (en) Buck matrix rectifier with boost switch and operation thereof during one phase loss
JPH1039936A (en) Multi-output power supplying device
JP2003061353A (en) Power supply unit
JP2956372B2 (en) Uninterruptible power system
JPH1066349A (en) Power supply apparatus
JP2716721B2 (en) Solar power system
JP2005176460A (en) Uninterruptible power supply unit
JPH06335254A (en) Power converter
JPH0686557A (en) Uninterruptible power supply
JPS6192166A (en) Multioutput dc/dc converter
KR100863458B1 (en) Output test device of dc regenerative inverter using ac system interconnection transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205