JPS5974566A - Electrophotographic receptor - Google Patents

Electrophotographic receptor

Info

Publication number
JPS5974566A
JPS5974566A JP18385182A JP18385182A JPS5974566A JP S5974566 A JPS5974566 A JP S5974566A JP 18385182 A JP18385182 A JP 18385182A JP 18385182 A JP18385182 A JP 18385182A JP S5974566 A JPS5974566 A JP S5974566A
Authority
JP
Japan
Prior art keywords
layer
selenium
photoconductive
forming
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18385182A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Mimura
三村 義行
Takao Okada
孝夫 岡田
Akitoshi Toda
戸田 明敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP18385182A priority Critical patent/JPS5974566A/en
Publication of JPS5974566A publication Critical patent/JPS5974566A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers

Abstract

PURPOSE:To obtain an electrophotographic receptor forming an image of high contrast and high density, and having superior humidity resistance and high durability, etc., by forming an Ni conductive layer on a substrate, and forming an Se type photoconductive layer and a transparent insulating layer in succession. CONSTITUTION:A conductive layer 2 is formed on a conductive substrate of aluminum or the like or an insulating substrate 1, such as polyester. On the layer 2, a photoconductive layer 3 contg. Se alone, or Se as a main component, and Te or the like, and on the layer 3 a tansparent insulating layer 4 made of polyester resin or the like. It is preferable that a laminate photoconductive layer 3' consisting of an Se type charge transfer layer 3a of Se doped with <=4,000 ppm halogen, and a charge generating layer 3b contg. 5-25% Te is used in place of the single layer 3. It is advantageous to keep the temp. of the substrate 1 at 55-65 deg.C at the time of forming the layers 3, 3', and to heat treat said substrate at 30-65 deg.C after forming the insulating layer. As a result, a photoreceptor forming a high-contrast and high-density image and having good durability is obtained.

Description

【発明の詳細な説明】 この発明は靜′に潜像を誘電体フィルムに電荷パターン
として複写させるα子方j1G感光体に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photoreceptor that silently copies a latent image onto a dielectric film as a charge pattern.

一般的に電子写真感光体は導電層、光導d層。Generally, electrophotographic photoreceptors have a conductive layer and a photoconductive d layer.

絶縁層により構成され、潜像形成プロセス中1例えば特
公昭42−23910または43−24748に提案さ
れているように一次相電、二次帯’d(AC帯成または
通帯′成)と同時帯電光像露光を含む工程により静電潜
像が形成されるう通常電子写真感光体は導電性支持体に
丸電材側を真空蒸着により薄膜を形成して作られる。
It is composed of an insulating layer, and during the latent image forming process, the primary phase current and the secondary band 'd (AC band formation or continuous band 'd) are simultaneously formed, as proposed in Japanese Patent Publication No. 42-23910 or No. 43-24748. An electrophotographic photoreceptor, in which an electrostatic latent image is formed by a process including exposure to a charged light image, is usually produced by forming a thin film on a conductive support on the side of the conductive material by vacuum deposition.

従来、電子写真感光体を構成する導電層をアルミニウム
(A/?)で、光導iff、Iii#をセレン(Se)
で、絶縁層を PE’I’ で形成したものがある。こ
の、セレンブC; :S を体はP型の特性を有し、潜
像形成プロセスにおいて、負の一次コロナ帯′1.正の
二次コロナ帯電と同時に光像露光、全面露光を加えたと
きに。
Conventionally, the conductive layer constituting the electrophotographic photoreceptor was made of aluminum (A/?), and the light guide iff and III# were made of selenium (Se).
There is one in which the insulating layer is made of PE'I'. This body has P-type characteristics, and in the latent image formation process, a negative primary corona zone '1. When applying positive secondary corona charging and photoimage exposure and full-scale exposure at the same time.

−水帯電荷にセレン光導電層の暗抵抗が高くなり。-The dark resistance of the selenium photoconductive layer increases due to the water charge.

かつ4成層側からのキャリアの注入が減少する。In addition, carrier injection from the fourth layer side is reduced.

ことができなかった。この結果、光導電[主絶縁層の実
効的な光感1(は−次相電が増感帯電であるきいう効果
を失なう。したがって光感度は単に二次帯r[の同時光
像露光のプロセスのみに依存するため、二次帯・這がA
Cの場合にはほとんどコントラストが1等られ1“、ま
た逆極性直流コロナ帯′αの場合には非常に低いコント
ラストしか得られない。
I couldn't. As a result, the photoconductivity [the effective photosensitivity 1 (-) of the main insulating layer is lost; Because it depends only on the process of
In the case of C, the contrast is almost 1", and in the case of the opposite polarity DC corona zone 'α, only a very low contrast is obtained.

次に補助手段として、−次相重荷に全面露光を行ないな
がら、・ちるいは−次相電後に全面露光を入れた後、二
次帯電と同時に光像露光を行なうことが考え出された。
Next, as an auxiliary means, it was devised to carry out full-surface exposure for the next phase, and then perform full-surface exposure after the second phase charge, and then carry out photoimage exposure at the same time as the secondary charge.

これにより、若干コントラストが教養されたが。This made the contrast a little more enlightening.

十分実用に耐えるほどのコントラストを得ること一方、
上述した成子写真感光体以外に螢光体ZnCd5の粉末
と、光導螺材ZnOの粉末とを@脂バインダーに分散さ
せて形成した酸化岨鉛フィルムが知られているが、耐湿
性の点で問題l:’+C3゜この発明は上記の問題点を
解決するためになされたもので、セレン系の光導4Hの
一方の而にニッケル導′成層を設けるとともに他方の而
に絶縁層を設けることにより、高コントラスト上よび高
濃度の画像を得ることができるm子写真感光体を提供し
ようと1−るものである。
On the other hand, to obtain enough contrast for practical use,
In addition to the above-mentioned Naruko photographic photoreceptor, a lead oxide film is known, which is formed by dispersing powder of the phosphor ZnCd5 and powder of the light guiding screw material ZnO in an @ fat binder, but it has problems in terms of moisture resistance. l:'+C3゜This invention was made to solve the above problems, and by providing a nickel conductive layer on one side of the selenium-based light guide 4H and providing an insulating layer on the other side, The object of the present invention is to provide an m-child photographic photoreceptor capable of obtaining images with high contrast and high density.

以下図面を参照してこの発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図はこの発明の基本構造を示すもので、1はニッケ
ル(Ni ) 、 ’1’ ルミニウム(A/’)、銅
(Cu)、 ステンレス(Sue)等の導′電体材料ま
たは・PgT  等の絶縁体材料よりなる支持体層であ
る。この支持休さに形成丈る。このとき、支持体1と導
電層2をニッケルで一体に形成することもできる。その
後ニッケル導wt層2の上面にセレン(Se)あるいは
セレンを主成分とするセレン系光導電1−3を形成し。
Figure 1 shows the basic structure of this invention, where 1 is a conductive material such as nickel (Ni), '1' aluminum (A/'), copper (Cu), stainless steel (Sue), or PgT. The support layer is made of an insulating material such as. This support rests on the formation of length. At this time, the support 1 and the conductive layer 2 may be integrally formed of nickel. Thereafter, selenium (Se) or a selenium-based photoconductor 1-3 containing selenium as a main component is formed on the upper surface of the nickel conductive wt layer 2.

さらにその上rf5に可視光を透過する体積固有抵抗の
高い(lQl+Ω以上)ポリエステル(P13T) 、
バラキシレンおよびその他にアクリル、エポキシ、ウレ
タン、フッ素、スチレン、カーボネート等の樹脂で形成
した透明絶縁層4を貼着Cる。この透明絶縁層4は5〜
40μの厚さに形成される。
Furthermore, polyester (P13T) with high volume resistivity (more than lQl+Ω) that transmits visible light to RF5,
A transparent insulating layer 4 made of xylene and other resins such as acrylic, epoxy, urethane, fluorine, styrene, and carbonate is pasted. This transparent insulating layer 4 is 5~
It is formed to a thickness of 40μ.

以上にこの発明の基本構造を示したが、好ましくは第1
図の光導電層3を第2図に示す、ようにセレンまたはセ
レンにハロゲンをドープしたセレン系(荷輸送層3aと
セレンおよびテルルを主成分とする′1電荷生f131
)に構成することのほうが望ましい。すなわち、高コン
トラストを得るためには、一時帯電時に導α層2より注
入された電荷はブロックされることなく光導電層3′を
移動する必要がある。しかも、セレン系感光体に16い
ては、ハロゲンを除く不純物が少しでもドープされる吉
易動度が低下することが知られている。しかしながら。
The basic structure of this invention has been shown above, but preferably the first
As shown in FIG. 2, the photoconductive layer 3 is composed of selenium or a selenium-based selenium-based selenium doped with halogen (charge transport layer 3a and '1 charge generation f131 mainly composed of selenium and tellurium).
) is preferable. That is, in order to obtain high contrast, the charges injected from the conductive α layer 2 during temporary charging must move through the photoconductive layer 3' without being blocked. Moreover, it is known that when a selenium-based photoreceptor is doped with even a small amount of impurities other than halogen, the mobility decreases. however.

二次帯Itの同時光像#客先および最終工種の全面露光
時においては、純粋のセレン単層では光の感度域が可視
光線の短波長城に制限され効率が悪くなるため、 Te
、As等をドープすることにより分光感度域の拡大を計
り、効率を向上させる必要がある。
Simultaneous optical image of the secondary band It # At the time of full-scale exposure at the customer site and in the final process, the light sensitivity range of a pure selenium single layer is limited to the short wavelength range of visible light, resulting in poor efficiency.
It is necessary to expand the spectral sensitivity range and improve efficiency by doping with , As, or the like.

以上の2つの条件を同時に満たすためには1、¥C2図
に示したよりに透明絶縁層の下に易動度を低下させない
程度に薄く形成した電荷発生層36を設けて、光感度波
圏域の拡大を計り、光感度を増し、同時帯電光1#!露
光時および全面露光時の効率を向上させるとともに、こ
の電荷発生層3b(!:導電層2との間にセレンにハロ
ゲンを0〜4000ppmドープした電荷輸送)響3a
を設けて、−水帯電荷1こ導電層2より注入された電荷
の易動度を大きくし、−次増感帯電効果を向上させる必
蟹がある。
In order to satisfy the above two conditions at the same time, a charge generation layer 36 is formed under the transparent insulating layer to be thin enough not to reduce the mobility, as shown in Figure 1 and C2. Measures the expansion of light, increases light sensitivity, and simultaneously charges light 1#! This charge generation layer 3b (!: charge transport in which selenium is doped with 0 to 4000 ppm of halogen between the conductive layer 2) Hibiki 3a improves the efficiency during exposure and full-surface exposure.
It is necessary to increase the mobility of the charge injected from the conductive layer 2 by providing the -water charge 1 and to improve the -order sensitizing charging effect.

さらに、この光導電層3′を詳しく説明する。上述した
電荷発生層3bはテルルの含有率が5〜25チの5e−
Te層で、 0.05〜5μの厚さに形成され、必に応
じて結晶化防止、感度向上、残留電位除去の目的(こよ
りヒ素(As)、ケイ素(Si) 、アンチモン(Sb
)ハロゲンをドープしてもよい。また、′1ニ荷輸送層
3aは5 n (99,999%)以上の高純IWのセ
レンにハロゲンを0〜4000PPmドープし、これを
導α層2の上面に20〜70μの厚さになるように真空
蒸着する。
Further, this photoconductive layer 3' will be explained in detail. The charge generation layer 3b described above has a tellurium content of 5 to 25 5e-
The Te layer is formed with a thickness of 0.05 to 5μ, and is optionally used for the purpose of preventing crystallization, improving sensitivity, and removing residual potential (moreover, it contains arsenic (As), silicon (Si), antimony (Sb), etc.).
) May be doped with halogen. In addition, the '1 nitrogen transport layer 3a is made by doping selenium of high purity IW of 5 n (99,999%) or more with 0 to 4000 PPm of halogen, and depositing this on the upper surface of the α-conducting layer 2 to a thickness of 20 to 70 μm. Vacuum evaporate so that

このとき真空蒸着の基板温度を55〜65℃に設定する
。これは基板温1fで55℃以下になると、残留1位が
高くなるとともに、応答が悪くなり、コントラストがと
れなくなるためである。また65℃以上だと光導成層の
抵抗が著しく低下して、電圧印加した場合に光導成層3
′に電位が分配しなくなるため、二次の同時帯電光像露
光において明部および暗部の区別なく4鵡712より電
荷が注入し移動する結果、コントラストがとれなくなる
ことに起因している。
At this time, the substrate temperature for vacuum deposition is set at 55 to 65°C. This is because when the substrate temperature is 55° C. or less, the residual number 1 increases, the response deteriorates, and contrast cannot be obtained. Moreover, if the temperature is higher than 65°C, the resistance of the light guide layer will drop significantly, and when a voltage is applied, the light guide layer 3
Since the electric potential is no longer distributed between the areas 1 and 2, charges are injected and moved from the 4-ring 712 without distinguishing between bright and dark areas in the secondary simultaneous charging light image exposure, resulting in a loss of contrast.

次に、高コントラストに対してもう1つの鍵を1こぎっ
ている導電層2について説明する。導電層2の要件とし
て、第1に一次帯電時に良好な注入性を示し、第2に二
次帯電同時光1象露光時に明暗部のコントラストを得る
ため1ζ導71 I蓄2からの注入がないことが必要に
なる。すなわち、潜像形成プロセスに対して、光導電層
3′との整合がされた導電材料が要求される。この発明
におけるニッケル導電層と従来の導電層の特性を次のよ
うな実験により明らかにする。
Next, the conductive layer 2, which is another key to high contrast, will be explained. The requirements for the conductive layer 2 are: firstly, it exhibits good injection properties during primary charging, and secondly, there is no injection from the 1ζ conductor 71 I storage 2 in order to obtain contrast between bright and dark areas during secondary charging and simultaneous light exposure. It becomes necessary. That is, a conductive material that is aligned with the photoconductive layer 3' is required for the latent image formation process. The characteristics of the nickel conductive layer in this invention and the conventional conductive layer will be clarified through the following experiments.

アルミニウムを導電層とした従来のセレン系感光体とニ
ッケルを導電層としたこの発明の感光体に各々−200
0Vの暗中コロナ帯電をした後に強い全面露光をした時
の電位低下を調べてみると、アルミニウム(従来例)の
場合は約xooovのIF位変化があるのに対して、ニ
ッケル(本案)の場合は150v程度とアルミニウムに
比べて著しく小さくなっている。このニッケルの場合−
zooovの暗中帯電ですでに一1850Vに相当する
屈荀が絶縁層の上下に形成されCいることが分かる。一
方、アルミニウムの場合は約−1000Yの電位分配が
光導電層に発生し、 −2000Vの暗中帯電の約半分
の一1000Vに相当する電荷が絶縁層の上下に形成さ
れ、f、31品< T ’t[@ (7)ユいヵ3□。
A conventional selenium-based photoreceptor with an aluminum conductive layer and a photoreceptor of the present invention with a nickel conductive layer each had -200
Examining the potential drop when strong full-plane exposure is performed after 0V corona charging in the dark, we find that in the case of aluminum (conventional example) there is a change in IF level of approximately xooov, while in the case of nickel (proposed) is about 150v, which is significantly smaller than that of aluminum. In this case of nickel −
It can be seen that during the dark charging of ZOOOV, curves corresponding to -1850V are already formed above and below the insulating layer. On the other hand, in the case of aluminum, a potential distribution of approximately -1000Y occurs in the photoconductive layer, and a charge equivalent to 1000V, which is about half of the dark charge of -2000V, is formed above and below the insulating layer, and f, 31 products < T 't [@ (7) Yuika 3□.

。6oよヵ3わかる。. I understand 6 o yoka 3.

次に、二次帯電時を想定して従来の感光体と本案の感光
体に各々+2000Vの正コロナ帯電をした時の′電位
変化は両方とも1150Y程度になる。
Next, when the conventional photoreceptor and the photoreceptor of the present invention are each positively corona charged to +2000V assuming secondary charging, the potential changes are about 1150Y for both.

この結果1本案の感光体は一次帯電時に注入性が良好ζ
こなり、また二次帯電時に゛α荷15u止性であること
が分かり、高コントラストがf等やすい特性を示してい
ることが分かる。このニッケル導電層と光導電層界面で
の注入性を支配している物性的機構として以下に示す4
つの可能性が考えられる。
As a result, the photoreceptor of this invention has good injection properties during primary chargingζ
It was also found that the α charge was inhibited by 15u during secondary charging, and it was found that high contrast exhibited characteristics such as f. The physical mechanism governing the injection property at the interface between the nickel conductive layer and the photoconductive layer is shown below.
There are two possibilities.

1)ニッケル導電層の表面状態(例えば接触面績)2)
界面での光導電層の再結合センター密度。
1) Surface condition of the nickel conductive layer (e.g. contact surface roughness) 2)
Recombination center density in the photoconductive layer at the interface.

3)セレンとニッケルの仕事関数の差によるバリア層形
成の難易。
3) Difficulty in forming a barrier layer due to the difference in work function between selenium and nickel.

4)支持体層とニッケルの仕事関数の差によるバリア層
形成の廊易。
4) Easier barrier layer formation due to the difference in work function between the support layer and nickel.

次に、この発明の物性的機構を実証するために。Next, to demonstrate the physical mechanism of this invention.

数種の実験を行なったので、頃下順を追って説明する。I conducted several types of experiments, so I will explain them step by step.

■)実施例1゜ アルミニウムをドラム状に形成した支持体上に50の純
粋度を有するニッケルを約0.5μのjlさに真空蒸着
して導電層を形成し、この導電層上に基板温度60℃で
5nの純粋度を有するセレンを約50μの厚さに真空蒸
着して電荷輸送層を形成する。次1こ電荷輸送層上に1
0%のテルルを含有するBe−1”e合金を約0.5μ
の厚さに真空蒸着して電荷発生層を形成し、その上に2
0μのP[H′I’フィルムを貼着して絶縁層を形成し
てこの本案の感光体を構成した。
■) Example 1 A conductive layer was formed by vacuum evaporating nickel with a purity of 50 to a jl of about 0.5μ on a drum-shaped aluminum support. A charge transport layer is formed by vacuum depositing selenium having a purity of 5n at 60° C. to a thickness of about 50 μm. Next, 1 layer is placed on the charge transport layer.
Approximately 0.5μ of Be-1”e alloy containing 0% tellurium
A charge generation layer is formed by vacuum evaporation to a thickness of
The photoreceptor of this invention was constructed by pasting a 0μ P[H'I' film to form an insulating layer.

この感光体−水帯電として、スコロトロン帯電器チー2
000Vニ帯電サセ、次イテ6.5KV O) A C
コロナ帯′成と同時化光像を露光し、その後全面露光を
行なって静電潜像を1ひる。
As this photoreceptor-water charging, Scorotron charger Q2
000V charging sequence, next cycle 6.5KV O) A C
A corona zone formation and simultaneous light image are exposed, and then the entire surface is exposed to form an electrostatic latent image.

また、同様Iζして一水帯′躍した後1こ+6.5KV
の正コロナ帯電上同時に光像を露光し、その後金面謂光
を行なって静電潜像を得る。
Also, after doing the same Iζ and jumping in one water belt, 1 + 6.5KV
A light image is simultaneously exposed on the positive corona charge, and then the gold surface is exposed to light to obtain an electrostatic latent image.

以上の実験結果は表に示したように、AC460V1)
C555Vと高いコントラスト電位を示した。この実施
例1の静電潜像を磁気ブラシ現像し1紙にローラーで転
写したところ、高濃度の良好な画像が得られた。その後
で、除電し、クリーニングして次の画像をくり返しきっ
たところ残留電位、残像等がなく良好な画像を得ること
ができた。
The above experimental results are as shown in the table, AC460V1)
It showed a high contrast potential of C555V. When the electrostatic latent image of Example 1 was developed with a magnetic brush and transferred onto a sheet of paper using a roller, a good image with high density was obtained. Thereafter, when the charge was removed, the image was cleaned, and the next image was repeated, a good image was obtained with no residual potential or afterimage.

さらに、実施例1の感光体を相対湿度85%1LHの高
湿下に3日間放置して、再び上述と同様の方法で静電潜
像を形成したところ、コントラスト電位がほとんど変化
しなかった。
Furthermore, when the photoreceptor of Example 1 was left under high humidity at a relative humidity of 85% 1LH for 3 days and an electrostatic latent image was again formed in the same manner as described above, the contrast potential hardly changed.

X)実施例2゜ 50FのPET支持体にニッケルを真空蒸着して約1μ
の導電層を形成し、その上に基板温度55℃でクロルを
soppm含有するセレンを40μの厚さに真空蒸着し
て電荷輸送層を形成する。さらにこの電荷輸送層上に1
5%のテルルと1俤の真空蒸着して゛4電荷生層を形成
し、その上にバラキシリンを20μの)9さに気相蒸着
して絶縁層を形成する。このサンプルを実施例1と同様
の条件で実験したところ1表に示すようにAC455Y
1)C585Vと高いコントラスト電位を示した。
X) Example 2 Nickel was vacuum deposited on a PET support of 50F to a thickness of about 1μ.
A conductive layer is formed thereon, and selenium containing soppm of chlorine is vacuum-deposited thereon to a thickness of 40 μm at a substrate temperature of 55° C. to form a charge transport layer. Furthermore, 1
A layer of 5% tellurium is vacuum deposited to form a charge-generating layer (4), and then varaxylin is vapor-deposited onto a 20 μm layer (9) to form an insulating layer. When this sample was tested under the same conditions as in Example 1, AC455Y
1) It showed a high contrast potential of C585V.

■)参考例1゜ アルミニウムをドラム状に形成した支持体上に10俤の
テルルを含有rるSe−’L’e合金を基板温度60℃
で50μのjXさに真空蒸着して光導電層を形成し、そ
の上に20μの円り′Fフィルムを貼ノaして従来タイ
プの感光体を形成する。このサンプルを実施例1と同様
の条件で実11検したところ。
■) Reference example 1゜ Se-'L'e alloy containing 10 layers of tellurium was placed on a drum-shaped aluminum support at a substrate temperature of 60°C.
A photoconductive layer is formed by vacuum deposition on a 50 μm jX, and a 20 μm round film is laminated thereon to form a conventional type photoreceptor. This sample was subjected to 11 actual tests under the same conditions as in Example 1.

表rに示すようにA C70V、 J)C170Vと低
イコントラスト電位しかとれなかった。
As shown in Table r, only a low contrast potential of AC70V and J)C170V could be obtained.

vL)実施例3゜ ドラム状に形成したAI!支持体上に銀を約0.5μの
厚さに電気メッキして導電j涛を形成し、この導゛鑞層
上に基板温度60’Cで10%のテルルを含有するSe
−’l”e合金を50μの厚さに真空蒸着して一層の光
導′fJL膚を形成する。そしてこの光導電層上に20
μのPETフィルムを貼着して絶縁層を形成して本案第
1図の感光体を作る。
vL) Example 3 AI formed into a drum shape! A conductive layer was formed by electroplating silver to a thickness of about 0.5μ on the support, and Se containing 10% tellurium was deposited on this conductive layer at a substrate temperature of 60'C.
-'l''e alloy is vacuum deposited to a thickness of 50μ to form one layer of light-guiding 'fJL skin, and on this photoconductive layer 20μ
A PET film of .mu. is attached to form an insulating layer to produce the photoreceptor shown in FIG. 1 of the present invention.

このサンプルを実施例1と同様の条件で実験したところ
1表に示すようにAC300Y、 DC391のコント
ラスト電位を示し、実施例1のデータと比較すると見劣
りするが、参考例(従来例)に比べて高いコントラスト
電位を示していることが分かる。
When this sample was tested under the same conditions as Example 1, it showed the contrast potential of AC300Y and DC391 as shown in Table 1. Although it is inferior to the data of Example 1, it is better than the reference example (conventional example). It can be seen that a high contrast potential is shown.

表 以上の結果から光導電層との界面導電層としてニッケル
を用いることにより、−成帯電荷の注入性が改良される
とともに、二次帯電同時光像露光時の注入阻止性は良好
に維持された状態になり。
From the results shown in the table above, by using nickel as the interfacial conductive layer with the photoconductive layer, the injection property of negative charges is improved, and the injection prevention property during secondary charging simultaneous photoimage exposure is maintained well. It became a state.

高コントラスト、高濃度の画像を得ることができる。ま
た、光キャリアの発生は蹴荷発生層に、光キャリアの輸
送および注入キャリアの輸送は電荷輸送層に機能分担さ
せているため1光感度にすぐれ、力)つ残留電位、残像
のない良好な画像特性を示す。さらに、光導電層はセレ
ン系の蒸着嘆で形成されるため、バインダー系感光体に
較べて耐湿性が非常に優れている等の特長がある。
Images with high contrast and high density can be obtained. In addition, the generation of photocarriers is performed by the kick generation layer, and the transport of photocarriers and the transport of injected carriers are performed by the charge transport layer. Indicates image characteristics. Furthermore, since the photoconductive layer is formed by vapor deposition of selenium, it has features such as extremely superior moisture resistance compared to binder-based photoreceptors.

なお、この発明は上記実施例に限定されるものではなく
、要旨を変更しない範囲において種々変形して実施する
ことができる。
Note that the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without changing the gist.

上記実施例では感光体を同時帯電光像露光を利用した作
像プロセスについで説明したが、この発明はこれ1こ限
定されるものではなく1例えば特開昭48−89737
に示すように一水帯電として負コロナ帯電を加えた後、
正コロナ帯電を加え、しかる後に光像を露光する電子写
真法を用いることもできる。この場合、特開昭48−8
9737は全面照射しながら一水帯成を行なっているが
、注入性良好な本発明においてはこの一次帯電時の全面
照射がなくても、絶縁層の上下に電荷対を十分に形成す
ることができる。
In the above embodiment, an image forming process using simultaneous charging and light image exposure of a photoreceptor was explained, but the present invention is not limited to this, and for example, Japanese Patent Application Laid-Open No. 48-89737
After adding a negative corona charge as a monohydric charge as shown in
It is also possible to use electrophotography in which a positive corona charge is applied and then a light image is exposed. In this case, JP-A-48-8
9737 performs monohydric formation while irradiating the entire surface, but in the present invention, which has good injection properties, it is possible to sufficiently form charge pairs above and below the insulating layer even without irradiating the entire surface during primary charging. can.

以上述べたようにこの発明によれば、セレン系の光導電
層の一方の面にニッケル導電層を設けるとともに他方の
面に絶縁層を設けるこ吉により、高コントラストおよび
高濃度の画像を得ることができる電子写真感光体を提供
することができる。
As described above, according to the present invention, images with high contrast and high density can be obtained by providing a nickel conductive layer on one side of a selenium-based photoconductive layer and an insulating layer on the other side. It is possible to provide an electrophotographic photoreceptor that can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の基本構造図、第2図はこの発明の一
実施例を示す構造図である。 l・・・支持体層    2・・・ニッケル導電層3.
3′・・・セレン系光導電層 3a・・・電荷輸送層  3b・・・電荷発生層4・・
・透明絶縁層 第1図 第2図 特許庁長官  若 杉 和 夫    殿1、事件の表
示 特願昭57−183851号 2、発明の名称 電子写真感光体 3、補正をする者 事件との関係特許出願人 (037)オリンパス光学工業株式会社4、代理人 5、自発補正 補正の内容 1)本願特許請求の範囲を別紙の通り訂正する。 (2)本願明細書第2頁第12行目の[誘電体フィルム
Jの部分を「絶縁層」と訂正する。 (3)  同明細$第2頁第13行目の「複写」の部分
を「形成」と訂正する。 (4)同明細書第2頁第19行目ないし第16行目の「
一般的に・・・・・・潜像形成プロセス中、」の部分を
[導電層、光導[層、絶縁層より構成される電子写真感
光体は、]と訂正する。 (5)同明細書第2頁第19行目ないし末行の「同時帯
電光像露光を・・・・・・静電潜像力月の部分を[同時
帯電光像露光、全面露光を含む1稈により絶if!層に
静電潜像が」と訂正する。 6)同明細書p42頁末行ないし#¥3頁第2行目の「
通常電子写真感光体は・・・・・・形成して作られる。 Jの部分を抹消する。 /7)  同明細vJ第3頁第9行目の「高くなり、」
の部分を「高く、」と訂正する。 8)同明細11’第3頁第10行目の「減少する。」の
部分を「少ない。」と訂正する。 0階 同明細書第5頁第2行目のrsusJの部分をr
susJと訂正する。 αa 同明細書第5頁第12行目の「その他に」の部分
を「その他の」き訂正する。 (19同明細書第5頁第14行目の「樹脂で形成した・
・・・・・貼着する。」の部分を[樹脂で透明絶縁層4
を形成する。」と訂正する。 ae  同明細1第6頁@2行目の「一時Jの部分を[
−次Jき訂正する。 (17)  同明細1!:第6頁第4行目の「セレン系
感光体」の部分を「セレン系光導電層」と訂正する。 aB  同明細書第14頁第19行目、第15頁第1行
目の「照射Jの部分を「照射Jと訂正する。 (1)支持体層と、この支持体層の一方の面に設けられ
るニッケル(Ni )よりなる導電層と、この導電層上
に設けられるセレン(Se)系の光導電材料よりなる光
導電層と、この光導電層上に設けられる絶縁層とを具備
したことを特徴さする電子写真感光体。 (2)上記光導電層はセレンまたはハロゲンをドープし
たセレンよりなる電荷輸送層と、セレンとテルルを主要
素とする電荷発生層とにより措成され、上記電荷輸送層
を上記導電層側に設けることを特徴とする特許請求の範
囲8α1項に記載の電子写真感光体。 (3)上記光導@層はハロゲンを4QOQPPMμ下含
有するセレン系電荷輸送層を25〜70μの厚さになる
ように導電層に蒸着するささもに少なくともテルルを5
〜25チ含有する電荷発生層をO,O,S〜5μの厚さ
になるように上記セレン系電荷輸送層に蒸着することを
特徴とする特許請求の範囲第2項記載の電子写真感光体
。 (4)  上記光導電層は基板温度55〜65℃で蒸着
されることを特徴とする特許請求の範囲第1項ないし第
3項にそれぞれに記載した電子写真感光体。
FIG. 1 is a basic structural diagram of the present invention, and FIG. 2 is a structural diagram showing one embodiment of the present invention. l... Support layer 2... Nickel conductive layer 3.
3'... Selenium-based photoconductive layer 3a... Charge transport layer 3b... Charge generation layer 4...
・Transparent insulating layer Figure 1 Figure 2 Kazuo Wakasugi, Commissioner of the Japan Patent Office 1, Indication of the case, Patent Application No. 183851/1982, 2, Name of the invention, electrophotographic photoreceptor 3, Person making the amendment Patents related to the case Applicant (037) Olympus Optical Industry Co., Ltd. 4, Agent 5, Contents of spontaneous amendment 1) The scope of the claims of the present application is corrected as shown in the attached sheet. (2) On page 2, line 12 of the specification of the present application, [the part of dielectric film J is corrected to read "insulating layer." (3) The word "copying" on page 2, line 13 of the same specification is corrected to "formation." (4) "In lines 19 to 16 of page 2 of the same specification"
In general, during the latent image formation process, the part ``is corrected to ``An electrophotographic photoreceptor composed of a conductive layer, a photoconductive layer, and an insulating layer''. (5) From the 19th line to the last line of page 2 of the same specification, ``Simultaneous charging light image exposure......The electrostatic latent image power month portion [including simultaneous charging light image exposure and full-surface exposure] 1 culm causes an electrostatic latent image in the layer.'' 6) From the bottom line of page 42 of the same specification to the second line of page #¥3, “
Usually, an electrophotographic photoreceptor is made by forming... Delete the J part. /7) "It becomes high" on page 3, line 9 of the same specification vJ
Correct the part with "high." 8) The part "Decreases." on page 3, line 10 of Specification 11' is corrected to "fewer." 0th floor The part of rsusJ in the second line of page 5 of the same specification is r
Correct it to susJ. αa The part of "other" on page 5, line 12 of the same specification is corrected to "other". (19 In the same specification, page 5, line 14, “A resin-formed
・・・・・・Paste it. ” part [transparent insulating layer 4 with resin]
form. ” he corrected. ae Same specification 1 page 6 @ line 2 “temporary J part [
-I will make the next correction. (17) Same statement 1! : In the 4th line of page 6, the "Selenium-based photoreceptor" is corrected to "Selenium-based photoconductive layer." aB "Irradiation J" on page 14, line 19 and page 15, line 1 of the same specification is corrected as "irradiation J." (1) A support layer and one surface of this support layer. A conductive layer made of nickel (Ni), a photoconductive layer made of a selenium (Se)-based photoconductive material provided on the conductive layer, and an insulating layer provided on the photoconductive layer. An electrophotographic photoreceptor characterized by The electrophotographic photoreceptor according to claim 8α1, characterized in that a transport layer is provided on the conductive layer side. (3) The photoconductor layer includes a selenium-based charge transport layer containing 4QOQPPMμ of halogen. At least 50% tellurium is deposited on the conductive layer to a thickness of 70μ.
The electrophotographic photoreceptor according to claim 2, wherein a charge generation layer containing ~25% O, O, S is deposited on the selenium-based charge transport layer to a thickness of ~5μ. . (4) The electrophotographic photoreceptor described in each of claims 1 to 3, wherein the photoconductive layer is deposited at a substrate temperature of 55 to 65°C.

Claims (5)

【特許請求の範囲】[Claims] (1)支持体層と、この支持体層の一方の面に設けられ
゛るニッケル(Ni )よりなる導電層と、この導t 
!?i上に設けられるセレン(Se)系の光導電材料よ
りなる光導電層と、この光導電層上に設けられる絶縁層
とを具備したことを特徴とする電子写真感光体。
(1) A support layer, a conductive layer made of nickel (Ni) provided on one surface of the support layer, and a conductive layer made of nickel (Ni) provided on one surface of the support layer;
! ? 1. An electrophotographic photoreceptor comprising: a photoconductive layer made of a selenium (Se)-based photoconductive material, and an insulating layer provided on the photoconductive layer.
(2)上記光導電層はセレンまたはノ10ゲンをドープ
したセレンよりなる電荷輸送層と、セレンとテルルを主
要素とする電荷発生層とにより構成さイシ、上記α荷輸
送層を上記導電層側に設けることを特徴とする特許請求
の範囲ii項に記載のは子写真感光体。
(2) The photoconductive layer is composed of a charge transport layer made of selenium or selenium doped with nitrogen, and a charge generation layer whose main elements are selenium and tellurium. The child photographic photoreceptor according to claim ii, characterized in that it is provided on the side.
(3)上記光導電層はハロゲンを4000PPM以下含
有テルルを5〜25チ含有する電荷発生1@を0.05
〜5μの厚さになるかうに上記セレン系心待輸送層に蒸
着することを特徴とする特許請求の範囲第2項記載の電
子写真感光体。
(3) The photoconductive layer contains halogen at 4000 PPM or less, contains 5 to 25 tellurium, and has charge generation 1@0.05
3. The electrophotographic photoreceptor according to claim 2, wherein the selenium-based centrifugal transport layer is deposited to a thickness of 5 μm.
(4)上記光導電層は基板温度55〜65℃で蒸着され
ることを特徴とする特許請求の範囲第1項ないし第3項
にそれぞれに記載した電子写真感光体。
(4) The electrophotographic photoreceptor described in each of claims 1 to 3, wherein the photoconductive layer is deposited at a substrate temperature of 55 to 65°C.
(5)上記導電層および光導電層は光導電層または絶縁
層を形成した後に30〜65℃の温度で熱処理を施すこ
とを特徴とする特許請求の範囲第1項ないし第4項にそ
れぞれに記載した電子写真感光体。
(5) The conductive layer and the photoconductive layer are heat-treated at a temperature of 30 to 65° C. after forming the photoconductive layer or the insulating layer. The electrophotographic photoreceptor described above.
JP18385182A 1982-10-20 1982-10-20 Electrophotographic receptor Pending JPS5974566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18385182A JPS5974566A (en) 1982-10-20 1982-10-20 Electrophotographic receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18385182A JPS5974566A (en) 1982-10-20 1982-10-20 Electrophotographic receptor

Publications (1)

Publication Number Publication Date
JPS5974566A true JPS5974566A (en) 1984-04-27

Family

ID=16142937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18385182A Pending JPS5974566A (en) 1982-10-20 1982-10-20 Electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS5974566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204637A (en) * 1985-03-04 1986-09-10 ゼロツクス コーポレーシヨン Multi-layer type image forming member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204637A (en) * 1985-03-04 1986-09-10 ゼロツクス コーポレーシヨン Multi-layer type image forming member

Similar Documents

Publication Publication Date Title
US4255505A (en) Electrophotographic process using layered element containing p-type or n-type materials, with multiple charging steps and blanket irradiation
US3769010A (en) Electrophotographic photosensitive member
JPS5974566A (en) Electrophotographic receptor
US3867143A (en) Electrophotographic photosensitive material
JP2675035B2 (en) Electrophotographic photoreceptor
JPS63159865A (en) Electrophotographic sensitive body
US4170476A (en) Layered photoconductive element having As and/or Te doped with Ga, In or Tl intermediate to Se and insulator
US4537846A (en) Multiconductive layer electrophotographic photosensitive device and method of manufacture thereof
JPS5974563A (en) Electrophotographic receptor
US4537845A (en) Multiconductive layer electrophotographic photosensitive device and method of manufacture thereof
US3837853A (en) Electrophotographic method of imaging with an element containing an amorphous semiconductor
JPS6245986B2 (en)
JPH0514272B2 (en)
JPS59107358A (en) Electrophotographic sensitive body
JPH0215865B2 (en)
CA1249476A (en) Low field electrophotographic process
JP2748975B2 (en) Electrophotographic photoreceptor
JP2920668B2 (en) Electrophotographic photoreceptor
JPS5840554A (en) Electrophotographic screen receptor
JPS5840733B2 (en) Electrophotographic photoreceptor
JPS5981649A (en) Electrophotographic receptor
JPH0550741B2 (en)
JPS58100854A (en) Electrophotographic receptor
JPS5870235A (en) Production for photoreceptor
JPS60114864A (en) Electrophotographic sensitive material