JPS5974563A - Electrophotographic receptor - Google Patents

Electrophotographic receptor

Info

Publication number
JPS5974563A
JPS5974563A JP18384782A JP18384782A JPS5974563A JP S5974563 A JPS5974563 A JP S5974563A JP 18384782 A JP18384782 A JP 18384782A JP 18384782 A JP18384782 A JP 18384782A JP S5974563 A JPS5974563 A JP S5974563A
Authority
JP
Japan
Prior art keywords
layer
selenium
photoconductive
tellurium
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18384782A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Mimura
三村 義行
Takao Okada
孝夫 岡田
Akitoshi Toda
戸田 明敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP18384782A priority Critical patent/JPS5974563A/en
Priority to DE19833337814 priority patent/DE3337814C2/en
Publication of JPS5974563A publication Critical patent/JPS5974563A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/102Bases for charge-receiving or other layers consisting of or comprising metals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers
    • G03G5/104Bases for charge-receiving or other layers comprising inorganic material other than metals, e.g. salts, oxides, carbon
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain an image having high contrast and high density, and to obtain a good image even in high humidity, by forming a conductive layer made of Te on a substrate, and forming an Se type photoconductive layer and an insulating layer on this conductive layer in succession. CONSTITUTION:The conductive layer 2 is formed on a conductive substrate made of aluminum or the like or a substrate 1 of a polyester film or the likeby thinly vapor depositing Te. A photoconductive layer 3 made of Se or contg. Se as a main component, and also Te or As is formed on the layer 2, and then, an insulating layer 4 of a polyester film or the like is formed on the layer 3. When the layer 3 is substituted for a 2-layer type photoconductive layer 3' consisting of a charge transfer layer 3b of Se type doped with <=4,000ppm halogen, and a charge generating layer 3a contg. 5- 25% Te, the composite layer 3' is made larger in spectral sensitivity region than the single Se layer 3, and enhanced in efficiency. When the layers 3, 3' are formed, it is preferable to heat temp. of the substrate to 55-65 deg.C to carry out vapor deposition, and it is more desirable to heat treat it to 30-65 deg.C after forming the layer 4. As a result, the Te layer 2 is enhanced in charge injection performance at the time of primary charging, and since it has blocking ability at the time of secondary charging, high contrast is obtained.

Description

【発明の詳細な説明】 この発明は静電m1象を誘電体フィルムに電荷パターン
として複写させる電子写真感光体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrophotographic photoreceptor in which an electrostatic m1 image is copied onto a dielectric film as a charge pattern.

一般的に電子写真感光体は導電層、光導電層、絶縁層に
より構成され、潜像形成プロセス中1例えば特公昭42
−23910または43−24748に提案されている
ように一次帯電、二次帯4(AC帯屯または通帯′t 
)と同時帯電光像露光を含む工程(こより静電潜像が形
成される。通常電子写真感光体は導電性支持体に光電材
料を真空蒸着により薄膜を形成して作られる。
Generally, an electrophotographic photoreceptor is composed of a conductive layer, a photoconductive layer, and an insulating layer.
-23910 or 43-24748.
) and simultaneous charging light image exposure (from which an electrostatic latent image is formed). Electrophotographic photoreceptors are usually made by forming a thin film of a photoelectric material on a conductive support by vacuum deposition.

従来、電子写真感光体を構成する導・成層をアルミニウ
ムCf1Jり  で、光導電層をセレン(Se)で、絶
縁層を、 PET・で形成したものがある。この、セレ
ン光導電体はP型の特性を有し、潜像形成プロセスにお
いて、負の一次コロナ帯電、正の二次コロナ帯電と同時
に光像露光、全面露光を加えたときに、−次帯電時にセ
レン光導1+−の暗抵抗が高くなり、かつ導電層側から
のキャリアの注入が減少する。このため、絶縁層の上下
に遊荷対を形成する効果が十分に発揮されず、高い静電
コントラストを得ることができなかった。
Conventionally, electrophotographic photoreceptors have been formed in which conductive and laminated layers are made of aluminum Cf1J, the photoconductive layer is made of selenium (Se), and the insulating layer is made of PET. This selenium photoconductor has P-type characteristics, and when subjected to negative primary corona charging, positive secondary corona charging, and simultaneous photoimage exposure and full-surface exposure in the latent image forming process, -order charging occurs. At times, the dark resistance of the selenium photoconductor 1+- increases, and the injection of carriers from the conductive layer side decreases. For this reason, the effect of forming free charge pairs above and below the insulating layer was not sufficiently exhibited, and high electrostatic contrast could not be obtained.

この結果、光導電性絶縁層の実効的な光感度は一次帯電
が増感帯電であるという効果を失なう。したがって光感
度は単に二次帯電の同時光像露光のプロセスのみに依存
するため、二次帯1がACの場合にはほとんどコントラ
ストが得られず、また逆極性直流コロナ帯電の場合には
非常に低いコントラストしか得られない。
As a result, the effective photosensitivity of the photoconductive insulating layer loses the effect that the primary charge is a sensitizing charge. Therefore, the photosensitivity depends only on the process of simultaneous photoimage exposure of secondary charging, so when secondary band 1 is AC, almost no contrast is obtained, and when the secondary band 1 is AC, very little contrast is obtained when the secondary band 1 is charged with DC corona charging. Only low contrast can be obtained.

次に補助手段として、−次帯電時に全面露光を行ないな
がら、あるいCよ一次帯「比後に全面露光を入れた後、
二次帯電と同時に光像露光を行なうことが考え出された
Next, as an auxiliary means, while performing full exposure during the -th charge, or after performing full exposure after the first charge of C,
It was devised to perform optical image exposure at the same time as secondary charging.

これにより、若干コントラストが改善さ1”したが。This improved the contrast slightly by 1".

十分実用に耐えるほどのコントラストを得ること一方、
上述した電子写真感光体以外に螢光体ZnCd5の粉末
と、光導電材Z’nOの粉末上を樹脂バインダーに分散
させて形成した酸化亜鉛フィルムが知られているが、耐
湿性の点で問題1−りうこの発明は上記の問題点を解決
するためになされたもので、セレン系の光導電層の一方
の面にテルル導電層を設けるとともに他方の面に絶縁l
−を設けることにより、高コントラストおよび高濃度の
画像を得ることができる電子写真感光体を提供しようと
するものである。
On the other hand, to obtain enough contrast for practical use,
In addition to the above-mentioned electrophotographic photoreceptor, a zinc oxide film is known that is formed by dispersing a powder of a phosphor ZnCd5 and a powder of a photoconductive material Z'nO in a resin binder, but there is a problem in terms of moisture resistance. - Ryuko's invention was made to solve the above problems, and includes a tellurium conductive layer on one side of a selenium-based photoconductive layer and an insulating layer on the other side.
- By providing an electrophotographic photoreceptor, it is possible to obtain an image with high contrast and high density.

以下図面を参照してこの発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図はこの発明の基本構造を示すもので、1はアルミ
ニウム(A/) 、 銅(Cu)、 ステy L/ ス
(8uS)等の導電体材料または・PET等の絶縁体材
料よりなる支持体層である。この支持体IN 1の一方
の板面に真空蒸着、スパッタ等の手段を用いて40以上
の高純度のテルル(Te)導電層2を0.05μ〜2μ
の厚さIこ形成する。その後テルル導電層2の上面にセ
レン(Se)あるいはセレンを主成分とするセレン系光
導電層3を形成し、さらにその上面に可視光を透過する
体積固有抵抗の高い(1(114Ω以上)ポリエステル
(PET)、バラキシレンおよびその他にアクリル、エ
ポキシ、ウレタン、フッ素、スチレン、カーボネート等
の樹脂で形成した透明絶縁IN 4を貼着する。この透
明絶縁f鐸4は5〜40μの厚さに形成される。
Figure 1 shows the basic structure of the present invention, where 1 is made of a conductive material such as aluminum (A), copper (Cu), stainless steel (8uS), or an insulating material such as PET. It is a support layer. A conductive layer 2 of 40 or more high purity tellurium (Te) of 0.05 μm to 2 μm is applied to one plate surface of the support IN 1 by means such as vacuum evaporation or sputtering.
A thickness of I is formed. Thereafter, selenium (Se) or a selenium-based photoconductive layer 3 containing selenium as a main component is formed on the top surface of the tellurium conductive layer 2, and then a polyester (1 (114 Ω or more) polyester with high volume resistivity that transmits visible light) is formed on the top surface of the tellurium conductive layer 2. (PET), xylene, and other resins such as acrylic, epoxy, urethane, fluorine, styrene, carbonate, etc., and a transparent insulation IN 4 is pasted thereon. be done.

以上にこの発明の基本構造を示したが、好ましくは第1
図の光導成層3を第2図に示すようにセレンまたはセレ
ンにハロゲンをドープしたセレン系成行輸送/113a
とセレンおよびテルルを主成分とするα荷発生層3bに
構成することのほうが望ましい。
The basic structure of this invention has been shown above, but preferably the first
As shown in FIG. 2, the light guide layer 3 shown in the figure is made of selenium or selenium-based secular transport/113a in which selenium is doped with halogen.
It is preferable to form the α charge generation layer 3b mainly composed of selenium and tellurium.

すなわち、高コントラストを得るためには、一時帯電時
に導電層2より注入された電荷はブロックされることな
く光導電I@3′を移動する必要がある。
That is, in order to obtain high contrast, the charges injected from the conductive layer 2 during temporary charging must move through the photoconductor I@3' without being blocked.

しかも、セレン系感光体においては、ハロゲンを除く不
純物が少しでもドープされると易動度が低下することが
知られでいる。し力)しながら、二次帯電の同時光像露
光および最終工程の全面露光時においては、純粋のセレ
ン単層では光の感度域が可視光線の短波長域に制限され
効率が悪くなるため、 Te、As  等をドープする
ことにより分光感度域の拡大を計り、効率を向上させる
必要がある。
Furthermore, it is known that the mobility of a selenium-based photoreceptor decreases if it is doped with even a small amount of impurities other than halogen. However, during the simultaneous light image exposure of secondary charging and the entire surface exposure in the final process, the light sensitivity range of a pure selenium single layer is limited to the short wavelength range of visible light, resulting in poor efficiency. It is necessary to expand the spectral sensitivity range and improve efficiency by doping with Te, As, etc.

以上の2つの条件を同時に満たすためには、第2図に示
したように透明絶縁2層の下に易動度を低下させない程
度に薄く形成した′1電荷生j鰻3 bを設けて、光感
度波長域の拡大を計り、光感度を増し、同時帯電光像露
光時および全面露光時の効率を向上させるとともに、こ
の電荷発生層3bと導電層2との間にセレンlζハロゲ
ンヲo〜4000ppmドープした晟荷愉送1僧3aを
設けて、−次帯鑞時に導電92より注入された電荷の易
動度を大きくシ。
In order to satisfy the above two conditions at the same time, as shown in FIG. 2, a '1 charge generator 3b formed so thin as not to reduce the mobility is provided under the two transparent insulating layers. In order to expand the photosensitivity wavelength range, increase the photosensitivity, and improve the efficiency during simultaneous charging light image exposure and full-surface exposure, selenium lζ halogen ~ 4000 ppm is added between the charge generation layer 3b and the conductive layer 2. By providing a doped steel wire 3a, the mobility of the charge injected from the conductor 92 during soldering is greatly increased.

−次増感帯電効果を向上させる必要がある。- It is necessary to improve the secondary sensitizing charging effect.

さらに、この光導電)−3′を詳しく説明する。上述し
た電荷発生層3bはテルルの含有率が5〜25チのSe
−’re層で、 0.(’15〜5μの厚さに形成され
Furthermore, this photoconductivity)-3' will be explained in detail. The charge generation layer 3b described above is made of Se with a tellurium content of 5 to 25
-'re layer, 0. (It is formed to a thickness of 15-5μ.

必要に応じて結晶化防止、感度向と、残留電位除去の目
的によりヒ素(As ) 、ケイ素(Si) 、アンチ
モン(sb) 、ハロゲンをドープしてもよい。また。
If necessary, arsenic (As), silicon (Si), antimony (sb), or halogen may be doped for the purpose of preventing crystallization, improving sensitivity, and removing residual potential. Also.

電荷輸送層3aは5 n (99,999% )以上の
高純度のセレンにハロゲンを0〜4nQopp!nドー
プし、これを導電層2の上面に20〜70μの厚さにな
るように真空蒸着する。
The charge transport layer 3a contains 0 to 4 nQopp of halogen in highly purified selenium of 5 n (99,999%) or higher! It is doped with n and vacuum-deposited on the upper surface of the conductive layer 2 to a thickness of 20 to 70 μm.

このとき真空蒸着の基板温度を55〜65℃に設定する
。これは基板温度で55℃以下になると、残留電位が高
くなるキキもに、応答が悪くなり、コントラストがとれ
なくなるためである。また65℃以上だと光導電層の抵
抗が著しく低下して、電圧印加した場合に光導電層3′
に電位が分配しなくなるため、二次の同時帯電光像露光
において明部および暗部の区別なく導電層2より電荷が
注入し移動する結果、コントラストがとれなくなること
に起因している。
At this time, the substrate temperature for vacuum deposition is set at 55 to 65°C. This is because when the substrate temperature becomes 55° C. or lower, the response becomes poor and contrast cannot be obtained even though the residual potential becomes high. Furthermore, if the temperature exceeds 65°C, the resistance of the photoconductive layer will drop significantly, and when a voltage is applied, the photoconductive layer 3'
This is due to the fact that the electric potential is no longer distributed between the two, and as a result, charges are injected and moved from the conductive layer 2 without distinguishing between bright and dark areas during the secondary simultaneous charging light image exposure, resulting in a loss of contrast.

次に、高コントラストに討してもう1つの鍵をにぎって
いる導′α層2について説明する。導電層2の要件とし
て、第1に一次帯ぺ時に良好な注入性を示し、第2に二
次帯電同時光像緋光時に明暗部のコントラストを得るた
めに導電層2からの注入がないことが必要になる。ナな
わち、 7n像形成プロセスに対して、光導°成層3′
との整合がきれた遍心材料が要求される。この発明にお
けるテルル導′t!1層と従来の導電層の特陣を次のよ
うな実験により明らかにする。
Next, the conductive α layer 2, which is another key to achieving high contrast, will be explained. The requirements for the conductive layer 2 are: firstly, it must exhibit good injection properties during primary charging, and secondly, it must not be injected from the conductive layer 2 in order to obtain contrast between light and dark areas during secondary charging and simultaneous optical image scarlet light. is required. For a 7n imaging process, the light guiding layer 3'
Eccentric materials that are well matched are required. Tellurium conductivity in this invention! The special features of the single layer and the conventional conductive layer will be clarified through the following experiment.

アルミニウムを導電層とした従来のセレン系感光体とテ
ルルを導電層としたこの発明の感光体に各々−2000
Vの暗中コロナ帯“dをした後に強い全面露光をした時
の電位低下を調べてみると、アルミニウム(従来例)の
場合は約1000vの電位変化があるのに対して、テル
ル(本案)の場合は200層程度とアルミニウムに比べ
て著しく小さくなっている。このテルルの場合−200
QVの暗中帯電ですでに一18QOVに相当する電荷が
絶縁層の上下に形成されているこさが分かる。一方、ア
ルミニウムの場合は約−1oooVの電位分配が光導1
11層に発生し。
A conventional selenium-based photoreceptor with a conductive layer made of aluminum and a photoreceptor of the present invention with a conductive layer made of tellurium were each coated with -2000
Examining the potential drop when strong full-plane exposure is performed after performing the dark corona zone "d" of V, it is found that in the case of aluminum (conventional example) there is a potential change of approximately 1000V, while that of tellurium (this proposal). In the case of tellurium, there are approximately 200 layers, which is significantly smaller than that of aluminum.
It can be seen that charges equivalent to 118 QOV have already been formed above and below the insulating layer due to QV dark charging. On the other hand, in the case of aluminum, the potential distribution of about -1oooV is
Occurred on the 11th floor.

−2000Vの暗中帯電の約半分の一1000Vに相当
する電荷が絶縁層の上下に形成され、テルルに比べて電
荷の注入が著しく悪くなることがわかる。
It can be seen that charges equivalent to 1,000 V, which is about half of the dark charge of -2,000 V, are formed above and below the insulating layer, and charge injection is significantly worse than that of tellurium.

次に、二次帯電時を想定して従来の感光体上本案の感光
体に各々+20+1nVの正コロナ帯電をした時の電位
変化は両方とも1150V[度になる。
Next, assuming secondary charging, when the conventional photoreceptor and the photoreceptor of the present invention are positively corona charged to +20+1 nV, the potential changes are 1150 V[degrees].

この結果1本案の感光体は一次帯電時に注入性が良好に
なり、また二次帯電時に電荷阻止性があることが分かり
、高コントラストが得やすい特性を示していることが分
かる。
As a result, it was found that the photoreceptor of the present invention has good injection properties during primary charging and has charge blocking properties during secondary charging, indicating that it exhibits characteristics that make it easy to obtain high contrast.

なお、このテルル導電層と光導成層界面での注入性を支
配している物性的機構は本発明者等の実験によると、真
空蒸着から約1ケ月間以内の時間経過を施したテルル感
光体に、−20oQVの暗中コロナ帯電をした後に全面
露光した場合、アルミニウム感光体と同様に一1000
Vの電位分配が生じ、注入性が非常に悪くなることが分
かった。しがしながら、テルル感光体を所定の期間経過
させるさ。
According to experiments conducted by the present inventors, the physical mechanism governing the injection properties at the interface between the tellurium conductive layer and the photoconducting layer was found to be similar to that of the tellurium photoconductor that was vacuum-deposited for about one month or less. , -20oQV corona charging in the dark and then full exposure, the same as the aluminum photoreceptor, -1000
It was found that potential distribution of V occurred, resulting in very poor injection performance. However, the tellurium photoreceptor is allowed to elapse for a predetermined period of time.

または強制的に熱ないし光でエージングすると。Or by forced aging with heat or light.

上述したような良好な注入性を得ることができるが、ア
ルミニウム感光体の場合にはほとんど注入性の改良をみ
ることができない。
Although the above-mentioned good injection properties can be obtained, in the case of an aluminum photoreceptor, there is hardly any improvement in injection properties.

テルル感光体を強制的に熱処理する場合、  30〜6
5℃で1〜60時間程時間−ジングすると良い結果が得
られる。
When forcibly heat-treating the tellurium photoreceptor, 30 to 6
Good results can be obtained by aging at 5° C. for about 1 to 60 hours.

このテルル導電層と光導成層界面での注入性を支配しで
いる物性的tinとして以下に示す4つの可n目性が考
えられる。
The following four types of visibility can be considered as the physical tin that governs the injection property at the interface between the tellurium conductive layer and the photoconductive layer.

1)テルル導電層の表面状態(例えば接触面積)。1) Surface condition of the tellurium conductive layer (for example, contact area).

2)界面での光導電層の再結合センター密度。2) Recombination center density of the photoconductive layer at the interface.

3)セレンとテルルの仕事関係の差によるバリア層形成
の難易。
3) Difficulty in forming barrier layer due to difference in work relationship between selenium and tellurium.

4)支持体層とテルルの仕事開放の差によるバリア層形
成の難易。
4) Difficulty in forming barrier layer due to difference in work release between support layer and tellurium.

次に、この発明の物性的機構を実証するために数種の実
験を行なったので、以下順を追って説明する。
Next, several types of experiments were conducted to demonstrate the physical mechanism of the present invention, which will be explained step by step below.

■)実施例1.および参考例1゜ アルミニウムをドラム状に形成した支持体上に50の純
粋度を有Cるテルルを約0.5μの厚さに真空蒸着して
導電層を形成し、この4醒層上に基板温度60℃で5n
の純粋度を有するセレンを約50μ の厚さに真空蒸着
して電荷輸送層を形成する。次に電荷輸送層上に8俤の
テルルを含有する5e−Te合金を約0.5Mの厚さに
真空蒸着して電荷発生層を形成し、そのLに20μのP
 、IB Tフィルムを貼着して絶縁層を形成してこの
本案の感光体を構成した。この感光体を作成した後1週
間経過したものを参考例1のサンプルとし。
■) Example 1. Reference Example 1 A conductive layer is formed by vacuum evaporating tellurium having a purity of 50 to a thickness of about 0.5μ on a drum-shaped aluminum support. 5n at substrate temperature 60℃
The charge transport layer is formed by vacuum depositing selenium having a purity of about 50 μm. Next, a 5e-Te alloy containing 8 layers of tellurium was vacuum-deposited to a thickness of about 0.5M on the charge transport layer to form a charge generation layer, and 20μ of P was deposited on the charge transport layer.
The photoreceptor of this invention was constructed by attaching an IBT film to form an insulating layer. A sample of Reference Example 1 was obtained one week after the photoreceptor was prepared.

1、5チ月間経過したものを本案の実施1*g 1のサ
ンプルとして下記の条件で実験を実施した。
Experiments were carried out under the following conditions using the samples that had been used for 1.5 months as samples for implementation 1*g 1 of the present invention.

−次帯電としで、スコロトロン帯疏器で一2000Vに
帯電させ9次いで6.51cvのACコロナ帯′αと同
時に光像を露光し、その後全面露光を行なって靜1潜像
を得る。
Next, the sample was charged to -2000 V using a Scorotron capacitor, and then a light image was exposed at the same time as a 6.51 cv AC corona band 'α, and then the entire surface was exposed to obtain a silent latent image.

また、同様にして一次帯・べした後に+6.5KVの正
コロナ帯電と同時に光像を露光し、その後全面露光を行
なっ゛C静電潜像を得る。
In the same manner, after the primary belt and the plate, a light image is exposed at the same time as +6.5 KV positive corona charging, and then the entire surface is exposed to obtain a C electrostatic latent image.

以上の実験結東は表に示したように、1.5ケ月間aA
L 7’1m実74M 1 ノは’5 カAC460V
、 DC600Vと高いコントラスト1位を示した。こ
の実施nJ 1の静成潜暉を磁気ブラシ現像し、祇にo
 −ラーで転写したところ、高4度の良好なfJr象が
得られた。その後で、除電し、クリーニングして次の画
像をくり返しとったところ、残留電位残像等がなく良好
な画1象を得ることができた。
The above experiment was carried out for 1.5 months as shown in the table.
L 7'1m Actual 74M 1 No is '5 AC460V
, showed the highest contrast of DC600V. The static latent image of this implementation nJ 1 was developed with a magnetic brush, and then
When the image was transferred with -color, a good fJr image of high 4 degrees was obtained. Thereafter, when the static electricity was removed and the next image was repeatedly taken after cleaning, a good image was obtained without any residual potential afterimage.

さらに、実施例1の感光体を相対湿度85%の恒a漕1
こ3日間放置して、再び上述と同様の方法で静電tδ像
を形成したところ、コントラスト電位かは吉んど変化し
なかった。
Furthermore, the photoconductor of Example 1 was placed in a constant aeration chamber 1 with a relative humidity of 85%.
When the electrostatic tδ image was formed again in the same manner as described above after being left for three days, the contrast potential did not change much.

ルルをスパッタして約1μの導電層を形成し。A conductive layer of about 1 μm was formed by sputtering Lulu.

その上に基板温度55℃でクロルを50 ppm 含有
するセレンを40μの厚さに真空蒸着して電荷輸送層を
形成する。さらにこのd荷輸送層上に20チのテルルと
lチのヒ素(As )を含有した5e−Te合f、 E
 0.7μの厚さに真空蒸着して電荷発生層を形成し、
その上lこパラキシリンを20μの厚さに気相蒸着して
絶縁層を形成する。この感光体を参考例2のサンプルと
し、この感光体を40℃で5時間路エージングして本案
の実施例2のサンプルを作る。
Thereon, selenium containing 50 ppm of chlorine is vacuum-deposited to a thickness of 40 μm at a substrate temperature of 55° C. to form a charge transport layer. Furthermore, a 5e-Te alloy containing 20 parts tellurium and 1 part arsenic (As) was formed on this d-carrying layer.
A charge generation layer is formed by vacuum deposition to a thickness of 0.7μ,
Furthermore, an insulating layer is formed by vapor-depositing paraxylin to a thickness of 20 .mu.m. This photoreceptor was used as a sample of Reference Example 2, and this photoreceptor was path aged at 40° C. for 5 hours to prepare a sample of Example 2 of the present invention.

これらのサンプルを実施例1と同様の条件で実験したと
ころ1表に示すように熱エージングした実砲例2のほう
カAC470V、DC590Vと高イコントラスト亀位
を示した。
When these samples were tested under the same conditions as in Example 1, as shown in Table 1, the heat-aged actual gun example 2 exhibited a high contrast ratio of 470 V AC and 590 V DC.

I[)参考例3 アルミニウムをドラム状に形成した支持体上に8チのテ
ルルを含有するS e −T e合金を基板温度60℃
で50μの厚さに真空蒸着して光導電層を形成し、その
上に20μのPITフィルムを貼着して従来タイプの感
光体を形成する。この感光体を作成した後1.5ケ月間
経過させて参考例3のサンプルを作る。
I[) Reference Example 3 A S e -T e alloy containing 8 t of tellurium was deposited on a drum-shaped aluminum support at a substrate temperature of 60°C.
A photoconductive layer is formed by vacuum evaporation to a thickness of 50 μm, and a PIT film of 20 μm is adhered thereon to form a conventional type photoreceptor. A sample of Reference Example 3 was prepared after 1.5 months had elapsed after this photoreceptor was prepared.

このサンプルを実施例1と同様の条件で実験したところ
、 表11C示tヨウ1ckc6nV、DC170Vと
低いコントラスト電位しかとれなかった。
When this sample was tested under the same conditions as in Example 1, only a low contrast potential of 6 nV and 170 V DC was obtained as shown in Table 11C.

リ 実施例3 ドラム状に形成したAI!支持体上に50の純粋度を有
するテルルを約0.5μに真空蒸着して導α層を形成し
、この導電j偏上に基板温度60’Cで8チのテルルを
含有する5e−Te合金を50μの厚さに真空蒸着して
一層の光導電層を形成する。
Example 3 AI formed into a drum shape! Tellurium having a purity of 50% is vacuum deposited on the support to a thickness of about 0.5μ to form a conductive α layer, and 5e-Te containing 8% tellurium is deposited on the conductive layer at a substrate temperature of 60°C. The alloy is vacuum deposited to a thickness of 50 microns to form a single photoconductive layer.

そしてこの光導電層上に20μのPETフィルムを貼着
して絶縁層を形成して本案第1図の感光体を作る。この
感光体を作成した後1.5ケ月間経過させて実施例3の
サンプルを作る。
Then, a 20 μm PET film is adhered onto this photoconductive layer to form an insulating layer, thereby producing the photoreceptor shown in FIG. 1 of the present invention. A sample of Example 3 was prepared after 1.5 months had elapsed after this photoreceptor was prepared.

このサンプルを実施例1と同様の条件で実検したところ
1表に示すようにAC300V、 DC390Vのコン
トラスト電位を示し、実砲例1のデータと比較すると見
劣りするが、参考例(従来例)に比べて高いコントラス
ト電位を示していることが分かる。
When this sample was actually tested under the same conditions as Example 1, it showed a contrast potential of 300 V AC and 390 V DC as shown in Table 1. Although it is inferior to the data of Actual Gun Example 1, it is comparable to the reference example (conventional example). It can be seen that a higher contrast potential is shown in comparison.

以下余白 以上の結果から光導電層との界面導電14としてテルル
を用いることにより、−次帯電時の注入性が改良される
とともに、二次帯′「r(同時光1象露光時の注入阻止
性は良好に維持された状態になり、高コントラスト、高
濃度の画像を得ることができる。
From the results shown in the margins below, by using tellurium as the interfacial conductivity 14 with the photoconductive layer, the injection property during -order charging is improved, and the injection is inhibited during simultaneous light 1-quadrant exposure. The image quality is maintained well, and images with high contrast and high density can be obtained.

また、光キャリアの発生は電荷発生)−に、光キャリア
の輸送および注入キャリアの輸送は電荷輸送j鰻に機能
分担させているため、光感度にすぐれ。
In addition, the generation of photocarriers is caused by charge generation, and the transport of photocarriers and the transport of injected carriers are shared by charge transport, which provides excellent photosensitivity.

かつ残留電位、残像のない良好なI[!j像時特性示す
And good I[!] with no residual potential or afterimage. Characteristics in J image are shown.

さらに、光導電層はセレン系の蒸着鴫で形成されるため
、パイングー系感光体に較べて耐湿性が非常に優れてい
る等の特長がある。
Furthermore, since the photoconductive layer is formed of a selenium-based vapor-deposited layer, it has features such as extremely superior moisture resistance compared to a pineapple-based photoreceptor.

なお、この発明は上6己実hm例に限定されるものでは
なく、要旨を変更しない範囲において種々変形して実施
することができる。
It should be noted that the present invention is not limited to the above six practical examples, and can be implemented with various modifications without changing the gist.

上記実施例では感光体を同時帯電#、像罎光を利用した
作像プロセスについて説明したが、この発明はこれに限
定されるものではなく1例えば特開昭48−89737
に示すように一次帯屯として負コロナ帯層を加えた後、
正コロナ帯αを加え、しかる後に光像を露光する電子写
真法を用いることもできる。この場合、特開昭48−8
9737は全面照射しながら一次帯成を行なっているが
、注入i/+、良好な本発明においてはこの一次帯電時
の全面照射がなくても、絶縁層の上下に重荷対を十分に
形成することができる。
In the above embodiment, an image forming process was described in which the photoreceptor was simultaneously charged # and image forming light was used; however, the present invention is not limited thereto.
After adding the negative corona layer as a primary layer as shown in
It is also possible to use an electrophotographic method in which a positive corona zone α is added and then a light image is exposed. In this case, JP-A-48-8
9737 performs primary band formation while irradiating the entire surface, but in the present invention with good implantation i/+, heavy pairs can be sufficiently formed on the top and bottom of the insulating layer even without irradiation on the entire surface during primary charging. be able to.

以上述べたようにこの発明によれば、セレン系の光導電
層の一方の面にテルル導1−を設けるとともに他方の面
に絶縁層を設けることにより、高コントラストおよび高
濃度のj所Mを得ることができる(子写真感光体を提供
することができる。
As described above, according to the present invention, high contrast and high concentration can be achieved by providing a tellurium conductor 1- on one surface of a selenium-based photoconductive layer and providing an insulating layer on the other surface. can be obtained (a child photoreceptor can be provided).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の鳩本構造図、第2図はこの発明の一
実施例を示C構造図である。 1・・・支持体層    2・・・チルIし導電層3.
3・・・セレン系光導電層  3a・・・電荷輸送層3
b・・・電荷発生層   4・・・透明絶縁層第1図 昭和 年 月 日 特許庁長官 若 杉 和 夫   殿 ■、事件の表示 特願昭57−183847号 2、 発明の名称 成子写真感光体 3、補正をする者 中伸との関係 特許出願人 (037)オリンパス光学工業株式会社4、代理人 5、 自発補正 7、補正の内容 (1)本願特許請求の範囲を別紙の通り訂正する。 (2)本願明細書第2頁第12行目の「誘電体フィルム
」の部分を「絶縁層」と訂正する。 (3)  同明細書第2頁第13行目の「複写」の部分
を「形成」と訂正する。 (4)同明細書第2頁第15行目ないし第16行目の「
一般的に・・・・・・潜像形成プロセス中、」の部分を
「導電層、光導電層、絶1&層より構成される電子写真
感光体は、」と訂正する。 (5)同明細書第2頁第19行目ないし末行の「同時帯
電光像露光を・・・・・・静電潜像力月の部分を「同時
帯電光像露光、全面露光を含む工程により絶縁層に静電
潜像が」と訂正する。 (6)同明細書第2頁末行ないし第3頁第2行目の[通
常電子写真感光体は・・・・・−形成して作られる−の
部分を抹消する。 (7)同明細書第3頁第9行目ないし第10行目の「高
くなり、」の部分を「高く、」と訂正する。 (8)  同明細書第3頁第10行目ないし第11行目
の「減少する。」の部分を「少ない。」と訂正する。 (9)同明細書第3頁第14行目の「この結果、光導電
性絶縁層の」の部分を「即ち、感光体の」と訂正する。 al  同明細書第3頁第15行目ないし第16行目の
「効果を失なう。・・・・・・光感度は単に」の部分を
「効果が弱く、単に」と訂正する。 all  同明細書第4頁第9行目ないし第10行目の
「螢光体Zn CdSの粉末と、光導電材ZnO粉末と
」の部分をredsの粉末とか、  ZnOの粉末など
」と訂正する。 (L3  同明細書第4に第11行目の「酸化亜鉛フィ
ルム」の部分を「バインダー系感光体」と訂Iヒする。 a争  同明細書第2頁第13行目のrsusJの部分
をrsUsJと訂正する。 I 同明細書第5頁第11行目ないし第12行目の「そ
の他に」の部分を「その他の」と訂正する。 晒 同明細書第5頁第13行目ないし第14行目の「樹
脂で形成した・−・・・・貼着する。」の部分を「樹脂
で透明絶縁層4を形成する。」と訂正する。 (11同明細書第6頁第2行目の「一時」の部分を「−
次」と訂正する。 αη 同明細書第6頁第5行目の「セレン系感光体」の
部分を「セレン系光導電層」と訂正する。 tll  同明細書第6頁第15行目、第18行目、第
7頁第4行目の「3b」の部分を「3a」と訂正する。 (11同明細書第6頁末行、第7頁第9行目の「3a」
の部分を「3b」と訂正する。 (イ)同明細書第9頁第17行目の「経過を施したテル
ル感光体に、Jの部分を「しか経過していないテルル導
電層を有する感光体に、」と訂正する。 @)同明細書第10頁第1行目の「所定の」の部分を「
1ケ月以上のJ(!:訂正する。 (22)同明細書第11頁第8行目のro、5MJの部
分を「0.5μ」と訂正する。 (23)同明細書第16頁第12行目、第14行目の「
照射」の部分を「照射」と訂正する。 (24)  同明細書第17頁第6行目の「電荷輸送層
」の部分を「電荷発生層Jと訂正する。 (25)同明細書第17頁第7行目の「電荷発生層」の
部分を「電荷輸送層」と訂正する。 2、特許請求の範囲 (1)支持体層と、この支持体層の一方の面に設けられ
るテルル(Te)よりなる導電層き、この導電層上に設
けられるセレン(Se)系の光導電材料よりなる光導電
層と、この光導電層上に設けられる絶縁層とを具備した
ことを特徴とする電子写真感光体。 (2)上記光導電層はセレンまたはハロゲンをドープし
たセレンよりなる電荷輸送層と、セレンとテルルを主要
素さする電荷発生層とにより構成され、上記電荷輸送層
を上記導電層側に設けることを特徴とする特許請求の範
囲第1項に記載の電子写真感光体。 (3)上記光導電層はハロゲンを4000PPM以下含
有するセレン系電荷輸送層を25〜70μの厚さになる
ようlこ導電層に蒸着するときもに少なくともテルルを
5〜25チ含有する電荷発生層を0.05〜5μの厚さ
になるように上記セレン系電荷輸送層に蒸着することを
特徴とする特許請求の範囲第2項記載の電子写真感光体
。 (4)上記光導電層は基板温度55〜65℃で蒸着され
ることを特徴とする特許請求の範囲第1項ないし第3項
にそれぞれに記載した電子写真感光体。 (5)上記導電層および光導電層は光導電層または光導
成層上に絶縁層を形成した後に30〜65℃の温度で熱
処理を施すことを特徴とする特許請求の範囲第1項ない
し第4項にそれぞれに記載した電子写真感光体。
FIG. 1 is a structural diagram of Hatomoto of this invention, and FIG. 2 is a structural diagram of C showing one embodiment of this invention. 1... Support layer 2... Chilled conductive layer 3.
3... Selenium-based photoconductive layer 3a... Charge transport layer 3
b...Charge generating layer 4...Transparent insulating layer Figure 1: Showa year, month, day, Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office ■, Indication of the case, Patent Application No. 183847/1982, Name of the invention: Naruko Photoconductor 3. Relationship with Nakanobu, the person making the amendment Patent applicant (037) Olympus Optical Industry Co., Ltd. 4, Agent 5, Spontaneous amendment 7. Contents of the amendment (1) The scope of the claims of the patent application is amended as shown in the attached sheet. (2) The part "dielectric film" on page 2, line 12 of the present specification is corrected to "insulating layer." (3) The word "copying" on page 2, line 13 of the same specification is corrected to "formation." (4) "In the 15th and 16th lines of page 2 of the same specification,"
In general, the part ``during the latent image forming process'' is corrected to ``An electrophotographic photoreceptor consisting of a conductive layer, a photoconductive layer, and a layer is''. (5) From the 19th line to the last line of page 2 of the same specification, ``Simultaneous charging light image exposure...''The portion of the electrostatic latent image power month is replaced with ``simultaneous charging light image exposure, including full-surface exposure.'' The process creates an electrostatic latent image on the insulating layer.'' (6) From the last line of page 2 to the second line of page 3 of the same specification, the part [Usually, an electrophotographic photoreceptor is made by forming...] is deleted. (7) The part "It becomes high" in lines 9 and 10 of page 3 of the same specification is corrected to "It becomes high." (8) The part "Decreases." on page 3, line 10 to line 11 of the same specification is corrected to "decreases." (9) On page 3, line 14 of the same specification, the phrase ``As a result, of the photoconductive insulating layer'' is corrected to ``that is, of the photoreceptor.'' al In the same specification, on page 3, lines 15 and 16, the phrase "the effect is lost...the photosensitivity is simply" is corrected to "the effect is weak and only". all In the same specification, on page 4, lines 9 and 10, the phrase ``phosphor Zn CdS powder and photoconductive material ZnO powder'' is corrected to read ``reds powder, ZnO powder, etc.''. (L3 In the 4th line of the same specification, the ``zinc oxide film'' part is revised to ``binder-based photoreceptor.'' Correct it as rsUsJ. I Correct the part of “others” in lines 11 to 12 of page 5 of the same specification to read “others.” Explanation Lines 13 to 13 of page 5 of the same specification In line 14, the part "formed with resin... pasted" is corrected to "the transparent insulating layer 4 is formed with resin." (11, page 6, line 2 of the same specification) The “temporary” part of the eye is “-”
"Next," he corrected. αη The part "Selenium-based photoreceptor" on page 6, line 5 of the same specification is corrected to "Selenium-based photoconductive layer." tll The part "3b" on page 6, line 15, line 18, and page 7, line 4 of the same specification is corrected to "3a." (11 “3a” in the last line of page 6 and line 9 of page 7 of the same specification)
Correct the part as "3b". (a) On page 9, line 17 of the same specification, the part J in ``On a tellurium photoconductor that has been subjected to a process,'' is corrected to ``On a photoconductor that has a tellurium conductive layer that has only undergone a process.'' @) The part “predetermined” in the first line of page 10 of the same specification was changed to “
J of 1 month or more (!: Corrected. (22) Correct ro and 5MJ on page 11, line 8 of the same specification to "0.5μ". (23) Correct the same specification, page 16, line 8. Lines 12 and 14 “
Correct the "irradiation" part to "irradiation." (24) "Charge transport layer" on page 17, line 6 of the same specification is corrected as "charge generation layer J." (25) "Charge generation layer" on page 17, line 7 of the same specification The part is corrected to "charge transport layer." 2. Claims (1) A support layer, a conductive layer made of tellurium (Te) provided on one side of the support layer, and a selenium (Se)-based photoconductive layer provided on the conductive layer. An electrophotographic photoreceptor comprising a photoconductive layer made of a material and an insulating layer provided on the photoconductive layer. (2) The photoconductive layer is composed of a charge transport layer made of selenium or halogen-doped selenium, and a charge generation layer whose main elements are selenium and tellurium, and the charge transport layer is provided on the conductive layer side. An electrophotographic photoreceptor according to claim 1, characterized in that: (3) The photoconductive layer is a charge-generating layer containing at least 5 to 25 tellurium when a selenium-based charge transport layer containing 4000 PPM or less of halogen is deposited on the conductive layer to a thickness of 25 to 70 μm. 3. The electrophotographic photoreceptor according to claim 2, wherein the layer is deposited on the selenium-based charge transport layer to a thickness of 0.05 to 5 .mu.m. (4) The electrophotographic photoreceptor described in each of claims 1 to 3, wherein the photoconductive layer is deposited at a substrate temperature of 55 to 65°C. (5) The conductive layer and the photoconductive layer are formed by forming an insulating layer on the photoconductive layer or the photoconductive layer, and then heat-treating the conductive layer at a temperature of 30 to 65°C. Electrophotographic photoreceptors listed in each section.

Claims (5)

【特許請求の範囲】[Claims] (1)支持体層さ、この支持体層の一方の面に設けられ
るテルル(Te)よりなる導電層と、この導電層上に設
けられるセレン(Se)系の光導電材料よりなる光導電
層と、この光導電層上に設けられる絶縁層とを具備した
ことを特徴とする電子写真感光体。
(1) Support layer: a conductive layer made of tellurium (Te) provided on one surface of this support layer, and a photoconductive layer made of a selenium (Se)-based photoconductive material provided on this conductive layer. and an insulating layer provided on the photoconductive layer.
(2)上記光導電層はセレンまたはハロゲンをドープし
たセレンよりなる電荷輸送層と、セレンとテルルを主要
素とする電荷発生層とにより構成され、上記電荷輸送層
を上記導電層例に設けろことを特徴とする特#/F請求
の範囲第1項lこ記載の電子写真感光体。
(2) The photoconductive layer is composed of a charge transport layer made of selenium or halogen-doped selenium, and a charge generation layer whose main elements are selenium and tellurium, and the charge transport layer is provided in the conductive layer example. Claim 1: An electrophotographic photoreceptor according to the present invention.
(3)上記光導電層はハロゲンを4000PPM以下含
有するセレン系4荷輸送層を25〜70μの厚さになる
ように導電層に蒸着するとともに少なくともテルルを5
〜25チ含有する電荷発生層を0.05〜5μの厚さに
なるように上記セレン系・1荷輸送層に蒸着することを
特徴とする特許請求の範囲第2項記載の電子写真感光体
(3) The photoconductive layer is a selenium-based 4 charge transport layer containing 4000 PPM or less of halogen and deposited on the conductive layer to a thickness of 25 to 70 μm, and at least 50% tellurium.
The electrophotographic photoreceptor according to claim 2, characterized in that a charge generation layer containing ~25 µm is deposited on the selenium-based single charge transporting layer to a thickness of 0.05 to 5 μm. .
(4)上記光導電層は基板温度55〜65℃で蒸着され
ることを特徴とする特許請求の範囲第1項ないし第3項
にそれぞれに記載した電子写真感光体。
(4) The electrophotographic photoreceptor described in each of claims 1 to 3, wherein the photoconductive layer is deposited at a substrate temperature of 55 to 65°C.
(5)上記導電層および光導電層は光導電層または絶縁
層を形成した後に30〜65℃の温度で熱処理を施すこ
とを特徴とする特許請求の範囲第1項ないし第4項にそ
れぞれに記載した電子写真感光体。
(5) The conductive layer and the photoconductive layer are heat-treated at a temperature of 30 to 65° C. after forming the photoconductive layer or the insulating layer. The electrophotographic photoreceptor described above.
JP18384782A 1982-10-20 1982-10-20 Electrophotographic receptor Pending JPS5974563A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18384782A JPS5974563A (en) 1982-10-20 1982-10-20 Electrophotographic receptor
DE19833337814 DE3337814C2 (en) 1982-10-20 1983-10-18 Electrophotographic recording material and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18384782A JPS5974563A (en) 1982-10-20 1982-10-20 Electrophotographic receptor

Publications (1)

Publication Number Publication Date
JPS5974563A true JPS5974563A (en) 1984-04-27

Family

ID=16142872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18384782A Pending JPS5974563A (en) 1982-10-20 1982-10-20 Electrophotographic receptor

Country Status (2)

Country Link
JP (1) JPS5974563A (en)
DE (1) DE3337814C2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316751A (en) * 1988-06-16 1989-12-21 Fuji Electric Co Ltd Electrophotographic sensitive body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2055269C3 (en) * 1969-11-11 1982-07-15 Canon K.K., Tokyo Electrophotographic recording material
DE3000305C2 (en) * 1980-01-05 1982-12-23 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Method for producing an electrophotographic recording material

Also Published As

Publication number Publication date
DE3337814C2 (en) 1986-03-27
DE3337814A1 (en) 1984-04-26

Similar Documents

Publication Publication Date Title
US4426435A (en) Process for forming an electrophotographic member having a protective layer
US4255505A (en) Electrophotographic process using layered element containing p-type or n-type materials, with multiple charging steps and blanket irradiation
JPS6345585B2 (en)
JPS59223444A (en) Electrophotographic sensitive body
JPS5913021B2 (en) Composite photoreceptor material
JPS61204637A (en) Multi-layer type image forming member
JPS614066A (en) Xerographic image conversion method and member using interface layer
US3867143A (en) Electrophotographic photosensitive material
US3775109A (en) Electrophotographic photosensitive plate
JPS5974563A (en) Electrophotographic receptor
US4170476A (en) Layered photoconductive element having As and/or Te doped with Ga, In or Tl intermediate to Se and insulator
US3966470A (en) Photo-conductive coating containing Ge, S, and Pb or Sn
JPS5819B2 (en) Selenium japonica
US4537846A (en) Multiconductive layer electrophotographic photosensitive device and method of manufacture thereof
JP2742264B2 (en) Electrophotographic photoreceptor
JPS6318184B2 (en)
JPS5974566A (en) Electrophotographic receptor
US4537845A (en) Multiconductive layer electrophotographic photosensitive device and method of manufacture thereof
JPS5974564A (en) Electrophotographic receptor
JP3164356B2 (en) Electrophotographic photoreceptor
JPH0217021B2 (en)
JPS59107358A (en) Electrophotographic sensitive body
JPH0514272B2 (en)
US3816116A (en) N-type photosensitive member for electrophotography
CA1249476A (en) Low field electrophotographic process